JPS6066073A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6066073A
JPS6066073A JP17541783A JP17541783A JPS6066073A JP S6066073 A JPS6066073 A JP S6066073A JP 17541783 A JP17541783 A JP 17541783A JP 17541783 A JP17541783 A JP 17541783A JP S6066073 A JPS6066073 A JP S6066073A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat exchanger
water supply
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17541783A
Other languages
Japanese (ja)
Inventor
和夫 森
石垣 茂弥
光男 瀬山
敏夫 高嶋
持原 浩行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP17541783A priority Critical patent/JPS6066073A/en
Publication of JPS6066073A publication Critical patent/JPS6066073A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は給湯が行なえる冷凍装置に関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a refrigeration system that can supply hot water.

(ロ)従来技術 一般に圧縮機からの吐出冷媒な貯湯槽内の給湯用熱交換
器で凝縮させて市水を加熱するようにしているが、従来
装置は単一冷媒を用いたものであった為、高い給湯温度
を得るには給湯用熱交換器での冷媒凝縮圧力を高く設定
しなげればならず、この為、圧縮比を上げた成績係数の
悪い運転を行なっているのが実状であった。
(b) Prior art Generally, city water is heated by condensing the refrigerant discharged from a compressor in a hot water heat exchanger in a hot water storage tank, but conventional devices used a single refrigerant. Therefore, in order to obtain a high hot water supply temperature, the refrigerant condensation pressure in the hot water supply heat exchanger must be set high, and for this reason, the actual situation is that the compression ratio is increased and operation is performed with a poor coefficient of performance. there were.

(ハ)発明の目的 本発明は高い成績係数のもとて高温給湯水が得られる冷
凍装置を提供することにある。
(c) Object of the Invention The object of the present invention is to provide a refrigeration system that can provide hot water at a high temperature with a high coefficient of performance.

に)発明の構成 本発明装置は、非共沸混合冷媒を用いたカスケードサイ
クルで給湯回路を構成すると共に、下部に給水口を、上
部に給湯口を有する貯湯槽内に上下方向へ収納され、圧
縮機からの吐出冷媒を上部より導入して下部から流出さ
せる給湯用熱交換器を用いるようにしたもので、給湯用
熱交換器内を通る非共沸混合冷媒の流れと対流作用によ
る貯湯槽内の市水流とを対向させて貯湯槽内の上部高温
域では王に高沸点冷媒を、下部低温域では生に低沸点冷
媒を夫々凝縮させることにより、単一冷媒を用いた従来
装置よりも低い凝縮圧力(平均値)で高い給湯温度を得
るようにしたものである。
B) Structure of the Invention The device of the present invention has a hot water supply circuit configured with a cascade cycle using a non-azeotropic mixed refrigerant, and is housed vertically in a hot water storage tank having a water supply port at the bottom and a hot water supply port at the top, A hot water supply heat exchanger is used in which the refrigerant discharged from the compressor is introduced from the upper part and flows out from the lower part.The hot water storage tank is created by the flow of a non-azeotropic mixed refrigerant passing through the hot water supply heat exchanger and by convection. By condensing high-boiling point refrigerant in the upper high-temperature area of the hot water storage tank and condensing low-boiling point refrigerant in the lower low-temperature area, the system is more efficient than conventional equipment using a single refrigerant. It is designed to obtain high hot water supply temperature with low condensing pressure (average value).

(ホ)実施例 本発明の実施例として冷暖房機能を有する冷凍装置を例
にあげ、図面に基づいて説明すると、(1)は高沸点冷
媒(R1l 4 )と低沸点冷媒(R115)との非共
沸混合冷媒を吸入圧縮する圧縮機、(2aX2b)は下
部に給水口(3)を、上部に給湯口(4)を有する貯湯
槽(5)内に上下方向へ分割して収納され、圧縮機(1
)からの吐出冷媒を上部入口(6)より導入して下部出
口(7)から流出させる第1、第2の給湯用熱交換器、
(8)は給湯運転時に第11第2の給湯用熱交換器(2
a) (2b) で凝縮された冷媒を、又、冷房給湯運
転時に第1給湯用熱交換器(2a)と室外熱交換器(9
)とで凝縮された冷媒を、更には暖房運転時に室内熱交
換器GO)で凝縮された冷媒を、夫々高沸点冷媒を多く
含む液冷媒と低沸点冷媒を多く含むガス冷媒とに分離す
る気液分離器、(111は分離された一方の高沸点冷媒
を多く含む液冷媒を減圧する膨張弁からなる第1減圧素
子、(121はこの減圧素子で減圧された液冷媒と他方
の低沸点冷媒を多く含むガス冷媒とを熱交換させて液冷
媒を蒸発させると共にガス冷媒を凝縮させる中間熱交換
器、a暗マ低沸点冷媒を多く含む液冷媒を減圧する膨張
弁からなる第2減圧素子である。
(e) Example As an example of the present invention, a refrigeration system having an air conditioning function will be taken as an example, and will be explained based on the drawings. The compressor (2aX2b) that sucks and compresses azeotropic mixed refrigerant is housed vertically in a hot water storage tank (5) that has a water supply port (3) at the bottom and a hot water supply port (4) at the top. machine (1
) a first and second hot water supply heat exchanger that introduces the discharged refrigerant from the upper inlet (6) and flows out from the lower outlet (7);
(8) is the 11th and 2nd hot water supply heat exchanger (2) during hot water supply operation.
a) The refrigerant condensed in (2b) is also transferred to the first hot water supply heat exchanger (2a) and the outdoor heat exchanger (9) during cooling hot water supply operation.
), and further, during heating operation, the refrigerant condensed in the indoor heat exchanger GO) into a liquid refrigerant containing a large amount of high boiling point refrigerant and a gas refrigerant containing a large amount of low boiling point refrigerant, respectively. Liquid separator, (111 is a first pressure reducing element consisting of an expansion valve that reduces the pressure of one separated liquid refrigerant containing a large amount of high boiling point refrigerant, (121 is a liquid refrigerant whose pressure has been reduced by this pressure reducing element and the other low boiling point refrigerant) an intermediate heat exchanger that evaporates the liquid refrigerant and condenses the gas refrigerant by exchanging heat with a gas refrigerant that contains a large amount of the refrigerant; be.

Iaωは給湯運転及び冷房給湯運転時に実線状態に、暖
房運転時に破線状態に設定される第1、第2の三方弁、
α6)卸は給湯運転及び暖房運転時に実線状態に、冷房
給湯運転時に破線状態に設定される第3、第4の三方弁
、α唱ま給湯運転及び暖房運転時に閉じ、冷房給湯運転
時に開(二方弁である。
Iaω is a first and second three-way valve that is set to a solid line state during hot water supply operation and cooling hot water supply operation, and a broken line state during heating operation;
α6) The third and fourth three-way valves are set to the solid line state during hot water supply operation and heating operation, and the broken line state during cooling hot water supply operation, α closed during hot water supply operation and heating operation, and open during cooling hot water supply operation ( It is a two-way valve.

←9は第1、第2の給湯用熱交換器(2)(3)を包囲
した筒体で、実線矢印の如く下方から上方へ対流作用で
上昇する市水の流れをガイドすることによって、この市
水流と第11第2の給湯用熱交換器(2)(3)内の冷
媒流れとを一層確実に対向させるものである。
←9 is a cylindrical body surrounding the first and second hot water supply heat exchangers (2) and (3), and by guiding the flow of city water rising by convection from the bottom to the top as shown by the solid arrow, This city water flow and the refrigerant flow in the eleventh and second hot water supply heat exchangers (2) and (3) are made to face each other more reliably.

(20)は第2給湯用熱交換器(3)の近傍の湯温t、
を検出する湯温サーモ、(21)は室外熱交換器α〔の
近傍の外気@t、を検出する外気温サーモ、(2湯はこ
の両す−七(2G(21)の温度を冷房給湯運転時に比
較し、1+<t、の時は三方向切換弁@を実線状態に、
1.)12の時はこの切換弁(ハ)を破線状態に切換え
設定させる制御器である。
(20) is the hot water temperature t near the second hot water supply heat exchanger (3),
The hot water temperature thermometer (21) detects the outside air @t near the outdoor heat exchanger α, and the outside temperature thermometer (21) detects the outside air @t near the outdoor heat exchanger α. Compare during operation, when 1+<t, set the three-way switching valve @ to the solid line state,
1. ) 12 is a controller that switches and sets this switching valve (c) to the state shown by the broken line.

次に回路動作を説明すると、給湯運転時には第1乃至第
4の三方弁−α■αe(I7)と三方向切換弁(ハ)と
を実線状態に設定すると共に二方弁a樽を閉じると、圧
縮機(1)からの吐出冷媒は第1三方弁圓を介して第1
給湯用熱交換器(2a)に流入してここで高沸点冷媒が
主に凝縮し、然る後、三方向切換弁(ハ)を介して第2
給湯用熱交換器(2b)に流入してここで低沸点冷媒が
主に凝縮する。然る後、第2三方冷媒とに分離され、液
冷媒は第1減圧素子aυで減圧された後中間熱交換器(
14の第1熱交換コイル(12a)に、ガス冷媒は中間
熱交換器(121の第2熱交換コイル(12b)に夫々
流れてこの中間熱交換器(I2で互いに熱交換され、液
冷媒は蒸発して圧縮機(1)に帰還されると共にガス冷
媒は凝縮して第2減圧素子a3に流入する。そしてこの
減圧素子(13で減圧された液冷媒は第3三方弁aQを
介して室外熱交換器(9)に流入し、ここで蒸発した後
第4三方弁aηを介して圧縮機(1)K帰還される。
Next, to explain the circuit operation, during hot water supply operation, the first to fourth three-way valves -α■αe (I7) and three-way switching valve (c) are set to the solid line state, and the two-way valve a is closed. , the refrigerant discharged from the compressor (1) passes through the first three-way valve
The high boiling point refrigerant flows into the hot water supply heat exchanger (2a), where it mainly condenses, and then passes through the three-way switching valve (c) to the second refrigerant.
The refrigerant flows into the hot water supply heat exchanger (2b), where the low boiling point refrigerant is mainly condensed. Thereafter, it is separated into a second three-way refrigerant, and the liquid refrigerant is depressurized by the first pressure reducing element aυ and then transferred to the intermediate heat exchanger (
The gas refrigerant flows through the first heat exchange coil (12a) of No. 14 and the second heat exchange coil (12b) of No. 121, respectively, where they exchange heat with each other at the intermediate heat exchanger (I2). While being evaporated and returned to the compressor (1), the gas refrigerant is condensed and flows into the second pressure reducing element a3.Then, the liquid refrigerant whose pressure has been reduced in this pressure reducing element (13) is returned to the outdoors via the third three-way valve aQ. It flows into the heat exchanger (9), where it evaporates, and then returns to the compressor (1)K via the fourth three-way valve aη.

この運転において、筒体部内を対流作用で上昇している
市水の温度は貯湯槽(5)内の下部より上部に至るに従
って高くなっており、高温水は第1給湯用熱交換器(2
a)で主に凝縮される高沸点冷媒の凝縮熱で高温加熱さ
れ、低温水は第2給湯用熱交換器(2b)で主に凝縮さ
れる低沸点冷媒の凝縮熱で低温加熱されることにより、
単一冷媒を凝縮させる従来装置と比較して冷媒凝縮温度
を約5c(平均値)低(しても同等の高い給湯温度(8
5C)を得ることができ、この凝縮圧力の低下により圧
縮機は圧縮比が小さい、所謂、高い成績係数のもとで給
湯運転をすることができる。
In this operation, the temperature of the city water rising inside the cylindrical body due to convection increases from the bottom to the top of the hot water storage tank (5), and the high temperature water is transferred to the first hot water heat exchanger (2).
The water is heated to a high temperature by the condensation heat of the high boiling point refrigerant mainly condensed in a), and the low temperature water is heated at a low temperature by the condensation heat of the low boiling point refrigerant mainly condensed in the second hot water supply heat exchanger (2b). According to
Compared to conventional equipment that condenses a single refrigerant, the refrigerant condensation temperature is approximately 5c (average value) lower (even though the same high hot water temperature (8c) is achieved.
5C) can be obtained, and due to this decrease in condensing pressure, the compressor can perform hot water supply operation with a small compression ratio, so-called a high coefficient of performance.

この給湯運転中に冷房運転を同時に行なう際は制御器(
2秒を動作開始させると共に第1、第2の三方弁−α9
を実線状態に、第3、第4の三方弁HQ力を破線状態に
設定し、且つ、二方弁α印を開くようにする。この時、
貯湯槽(5)内の湯温t、が前述の給湯運転で外気温t
、よりも高い場合は湯温サーモ翰と外気温サーモ0υか
らの信号で制御器(2′lJが三方向切換弁CI!3)
を破線状態に設定する。すると、圧縮機(1)からの吐
出冷媒は第1三方弁■−第1給湯用熱交換器(2a)−
三方向切換弁(2■−室外熱交換器(9)−二方弁QF
j−第2三方弁(15+−気液分離器(8)と流れた後
、液ガス二層に分離され、高沸点冷媒を多く含む液冷媒
は第1減圧素子αυ−中間熱交換器a2の第1熱交換コ
イル(12a)を介して圧縮機(1)に帰還されると共
に低沸点冷媒を多く含むガス冷媒は中1 間熱交換器0
りの第2熱交換コイル(12b)−第2減圧素子(I3
)−第3三方弁α6)−室内熱交換器α0)−第4三方
弁(17)を介して圧縮機(1)に帰還される。
When performing cooling operation at the same time during hot water supply operation, the controller (
At the same time as starting the operation for 2 seconds, the first and second three-way valves - α9
is set to the solid line state, the third and fourth three-way valve HQ forces are set to the broken line state, and the two-way valve α mark is opened. At this time,
The hot water temperature t in the hot water storage tank (5) becomes the outside temperature t during the hot water supply operation described above.
If the temperature is higher than , the controller uses signals from the hot water temperature thermometer and the outside temperature thermometer 0υ (2'lJ is the three-way switching valve CI!3)
Set to dashed state. Then, the refrigerant discharged from the compressor (1) passes through the first three-way valve ■ - the first hot water supply heat exchanger (2a) -
Three-way switching valve (2 - outdoor heat exchanger (9) - two-way valve QF
j - After flowing through the second three-way valve (15 + - gas-liquid separator (8), it is separated into two layers of liquid gas, and the liquid refrigerant containing a large amount of high boiling point refrigerant is passed through the first pressure reducing element αυ - intermediate heat exchanger a2. The gas refrigerant containing a large amount of low boiling point refrigerant is returned to the compressor (1) via the first heat exchange coil (12a) and is fed back to the compressor (1) through the first heat exchanger (12a).
2nd heat exchange coil (12b) - 2nd pressure reducing element (I3
) - the third three-way valve α6) - the indoor heat exchanger α0) - the fourth three-way valve (17) is returned to the compressor (1).

又、この冷房給湯運転を行なう際、貯湯槽(5)内の湯
@t、が外気温t、よりも低い場合は湯温サーモ翰と外
気温サーそ(2])からの信号で制御器0りが三方向切
換弁(2)を実線状態に切り換える。すると、圧縮機(
1)からの吐出冷媒は第1三方弁圓−第1給湯用熱交換
器(2a)−三方向切換弁(ハ)−第2給湯用熱交換器
(2b)−第2三方弁05)−気液分離器(8)へと流
れ、以後は前述の冷房給湯運転時と同様に流れて圧縮機
(1)に帰還される。
In addition, when performing this cooling hot water supply operation, if the hot water @t in the hot water storage tank (5) is lower than the outside temperature t, the controller is activated by signals from the hot water temperature thermometer and the outside temperature thermometer (2]). 0 switches the three-way switching valve (2) to the solid line state. Then, the compressor (
1) The refrigerant discharged from the first three-way valve circle - the first hot water supply heat exchanger (2a) - the three-way switching valve (c) - the second hot water supply heat exchanger (2b) - the second three-way valve 05) - The water flows to the gas-liquid separator (8), and thereafter flows in the same manner as during the cooling hot water supply operation described above and is returned to the compressor (1).

このように、貯湯槽(5)内の湯温か高い時は第1給湯
用熱交換器(2a)で主に凝縮される高沸点冷媒の凝縮
熱で貯湯槽(5)内の上部高温水を加熱することにより
、給湯で湯温が85C以下に下がるのを食い止めること
かできる。しかも、第1給湯用熱交換器(2a)で凝縮
しきれない高沸点冷媒及び低沸点冷媒は室外熱交換器(
9)で更に凝縮される為、気液分離器(8)での気液分
離及び中間熱交換器α渇での熱交換も充分性なわれて室
内熱交換器(10)での蒸発も充分性なわれ、所望の高
い冷房能力を得ることができる。
In this way, when the temperature of the hot water in the hot water storage tank (5) is high, the high temperature water in the upper part of the hot water storage tank (5) is heated by the condensation heat of the high boiling point refrigerant that is mainly condensed in the first hot water supply heat exchanger (2a). By heating the water, you can prevent the water temperature from dropping below 85C. Moreover, the high boiling point refrigerant and low boiling point refrigerant that cannot be condensed in the first hot water supply heat exchanger (2a) are transferred to the outdoor heat exchanger (2a).
9), gas-liquid separation in the gas-liquid separator (8) and heat exchange in the intermediate heat exchanger α are sufficient, and evaporation in the indoor heat exchanger (10) is also sufficient. Accordingly, the desired high cooling capacity can be obtained.

又、貯湯槽(5)内の湯温か低い時は前述の給湯運転時
と同様に@1給湯用熱交換器(2a)で主に凝縮される
高沸点冷媒の凝縮熱で高温加熱を、第2給湯用熱交換器
(2b)で主に凝縮される低沸点冷媒の凝縮熱で低温加
熱を行なうことにより、貯湯槽(5)内の湯温を85U
近くの高温度に維持でき、且つ、同時に所望の高い冷房
能力を得ることができる。
In addition, when the temperature of the hot water in the hot water storage tank (5) is low, high temperature heating is performed using the condensation heat of the high boiling point refrigerant that is mainly condensed in the @1 hot water supply heat exchanger (2a), similar to the above-mentioned hot water supply operation. 2 By performing low-temperature heating using the condensation heat of the low boiling point refrigerant that is mainly condensed in the hot water supply heat exchanger (2b), the temperature of the hot water in the hot water storage tank (5) is increased to 85U.
It is possible to maintain a nearby high temperature and at the same time obtain a desired high cooling capacity.

次に暖房運転時には第1、第2の三方弁α4)(151
を破線状態に、第3、第4の三方弁αυαηを実線状態
に設定すると、圧縮機(1)からの吐出冷媒は第1三方
弁04)−室内熱交換器(10)−第2三方弁αω−気
液分離器(8)と流れた後、液ガス二層に分離され、高
沸点冷媒を多く含む液冷媒は第1減圧素子Ql)−中間
熱交換器aカの第1熱交換コイル(12a)を介して圧
縮機(1)に帰還されると共に低沸点冷媒を多く含むガ
ス冷媒は中間熱交換器(17Jの第2熱交換コイル(1
2b)−第2減圧素子αター第3三方弁(16)−室外
熱交換器(9)−第4三方弁07)を介して圧縮機(1
)に帰還され、蒸発器として作用する室外熱交換器(9
)で外気から熱を汲みあげ、凝縮器として作用する室内
熱交換器(1〔で室内が暖房される。
Next, during heating operation, the first and second three-way valve α4) (151
When set to the broken line state and the third and fourth three-way valves αυαη to the solid line state, the refrigerant discharged from the compressor (1) flows through the first three-way valve 04) - indoor heat exchanger (10) - second three-way valve. αω - After flowing through the gas-liquid separator (8), the liquid refrigerant is separated into two layers of liquid gas, and the liquid refrigerant containing a large amount of high boiling point refrigerant is transferred to the first pressure reducing element Ql) - the first heat exchange coil of the intermediate heat exchanger a (12a), the gas refrigerant containing a large amount of low boiling point refrigerant is returned to the compressor (1) through the intermediate heat exchanger (second heat exchange coil (17J)
2b) - second pressure reducing element alpha third three-way valve (16) - outdoor heat exchanger (9) - fourth three-way valve 07)
), and the outdoor heat exchanger (9) acts as an evaporator.
) draws heat from the outside air, and the indoor heat exchanger (1) acts as a condenser to heat the room.

(へ)発明の効果 本発明装置は、非共沸混合冷媒を用いたカスケードサイ
クルで給湯回路な徊成したので、単一冷媒を用いた従来
の給湯装置と比較して凝縮圧力/蒸発圧力の比、即ち、
圧縮比を下げることかできる。しかも給湯用熱交換器内
を通る非共沸混合冷媒の流れと対流による貯湯槽内の市
水の流れとを対向させて貯湯槽内の上部高温域では主に
高沸点冷媒を、下部低温域では主に低沸点冷媒を夫々凝
縮させるようにしたので、単一冷媒を用いた従来の給湯
装置よりも低い凝縮温度、即ち低い凝縮圧力で高い給湯
温度を得ることができ、カスケードサイクルで上述の如
く小さくなる圧縮比が更に下がる、成鎖係数の高い給湯
運転を行なうことができる。
(f) Effects of the Invention The device of the present invention has developed a hot water supply circuit using a cascade cycle using a non-azeotropic mixed refrigerant, so it has lower condensing pressure/evaporation pressure compared to a conventional water heating device using a single refrigerant. ratio, i.e.
You can lower the compression ratio. Moreover, the flow of the non-azeotropic mixed refrigerant passing through the heat exchanger for hot water supply and the flow of city water in the hot water storage tank due to convection are made to oppose each other, so that the high boiling point refrigerant is mainly used in the upper high temperature area of the hot water storage tank, and the high boiling point refrigerant is mainly used in the lower low temperature area. By condensing mainly low-boiling point refrigerants, it is possible to obtain a high hot water supply temperature at a lower condensing temperature, that is, a lower condensing pressure, than in conventional water heaters using a single refrigerant. It is possible to perform hot water supply operation with a high chain-forming coefficient in which the compression ratio, which has already become small, is further reduced.

併せて、本発明の実施例のように冷媒流路の切り換えに
複数個の三方弁を用いることにより、故障し易い差圧式
四方切換弁を用いた従来の冷暖房給湯装置と比較して修
理等のメンテナンスを極力少なくすることかできる。
In addition, by using a plurality of three-way valves to switch refrigerant flow paths as in the embodiments of the present invention, repairs, etc. are easier compared to conventional air-conditioning, heating, and water-heating systems that use differential pressure type four-way switching valves that are prone to failure. Maintenance can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示す冷媒回路図である。 (1)・・・圧縮機、 (2aX2b)・・・給湯用熱
交換器、(3)・・・給水口、 (4)・・・給湯口、
 (5)・・・貯湯槽、(8)・・・気液分離器、 (
9)・・・室外熱交換器、 (11)・・・第1減圧素
子、 aり・・・中間熱交換器、 03)・・・第2減
圧素子。
The drawing is a refrigerant circuit diagram showing an embodiment of the present invention. (1)... Compressor, (2aX2b)... Heat exchanger for hot water supply, (3)... Water supply inlet, (4)... Hot water supply inlet,
(5)... Hot water tank, (8)... Gas-liquid separator, (
9)...Outdoor heat exchanger, (11)...First pressure reducing element, a...Intermediate heat exchanger, 03)...Second pressure reducing element.

Claims (1)

【特許請求の範囲】[Claims] (1) 高沸点冷媒と低沸点冷媒との非共沸混合冷媒を
吸入圧縮する圧縮機と、下部に給水口を、上部に給湯口
を有する貯湯槽内に上下方向へ収納され、前記圧縮機か
らの吐出冷媒を上部より導入して下部から流出させる給
湯用熱交換器と、この熱交換器からの冷媒を液冷媒とガ
ス冷媒とに分離する気液分離器とを備え、分離された一
方の液冷媒を第1減圧素子、中間熱交換器を介して前記
圧縮機へ帰還させると共に、分離された他方のガス冷媒
を前記中間熱交換器、第2減圧素子、室外熱交換器を介
して前記圧縮機へ帰還させて給湯サイクルを形成してな
る冷凍装置。
(1) A compressor that sucks and compresses a non-azeotropic mixed refrigerant of a high boiling point refrigerant and a low boiling point refrigerant, and the compressor is housed vertically in a hot water storage tank having a water supply port at the bottom and a hot water supply port at the top. A hot water supply heat exchanger that introduces the discharged refrigerant from the upper part and flows out from the lower part, and a gas-liquid separator that separates the refrigerant from this heat exchanger into liquid refrigerant and gas refrigerant. The liquid refrigerant is returned to the compressor via the first pressure reducing element and the intermediate heat exchanger, and the other separated gas refrigerant is returned to the compressor via the intermediate heat exchanger, the second pressure reducing element and the outdoor heat exchanger. A refrigeration system in which hot water is returned to the compressor to form a hot water supply cycle.
JP17541783A 1983-09-22 1983-09-22 Refrigerator Pending JPS6066073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17541783A JPS6066073A (en) 1983-09-22 1983-09-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17541783A JPS6066073A (en) 1983-09-22 1983-09-22 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6066073A true JPS6066073A (en) 1985-04-16

Family

ID=15995732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17541783A Pending JPS6066073A (en) 1983-09-22 1983-09-22 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6066073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355919A (en) * 1999-07-30 2001-05-09 Snap On Tech Inc Workstation and spring-assisted door therefor
KR102558576B1 (en) * 2023-02-06 2023-07-25 주식회사 토담산업개발 Multifunctional flood gate system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355919A (en) * 1999-07-30 2001-05-09 Snap On Tech Inc Workstation and spring-assisted door therefor
KR102558576B1 (en) * 2023-02-06 2023-07-25 주식회사 토담산업개발 Multifunctional flood gate system

Similar Documents

Publication Publication Date Title
CA1068919A (en) Heat pump system selectively operable in a cascade mode and method of operation
JP4123829B2 (en) Refrigeration cycle equipment
JP2006283989A (en) Cooling/heating system
JP2006078026A (en) Air conditioner
JPS6066073A (en) Refrigerator
JP2004108715A (en) Air conditioner for many rooms
JPH0320574A (en) Air-conditioning apparatus
JP2765970B2 (en) Air conditioner
JPH07103622A (en) Air-conditioner
JP2002162122A (en) Air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPS5852461Y2 (en) Heat pump refrigeration equipment
JPH0674598A (en) Multichamber type air conditioner
JPS6066074A (en) Air conditioner which can supply hot water
JPS63302269A (en) Air conditioner
JPS63108174A (en) Defrostation method of heat pump type air conditioner
JPS63302264A (en) Air conditioner
JP2643708B2 (en) Air conditioner
JPS58129163A (en) Hot-water supply and air-conditioning system
JPS63302268A (en) Air conditioner
JPS60240968A (en) Air-conditioning-hot-water supply heat pump device
JPH08313101A (en) Absorption type refrigerating machine
JPS582563A (en) Refrigerator
JPS629132A (en) Heat pump for cooling and heating room space and supplying hot water
JPH08334274A (en) Air conditioner