JPS6065766A - Method of sintering silicon nitride ceramic - Google Patents

Method of sintering silicon nitride ceramic

Info

Publication number
JPS6065766A
JPS6065766A JP58175591A JP17559183A JPS6065766A JP S6065766 A JPS6065766 A JP S6065766A JP 58175591 A JP58175591 A JP 58175591A JP 17559183 A JP17559183 A JP 17559183A JP S6065766 A JPS6065766 A JP S6065766A
Authority
JP
Japan
Prior art keywords
nitrogen gas
pressure
sintering
temperature
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58175591A
Other languages
Japanese (ja)
Inventor
森近 俊明
北村 耕二
土田 二朗
卓也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58175591A priority Critical patent/JPS6065766A/en
Publication of JPS6065766A publication Critical patent/JPS6065766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は窒化けい素系セラミックの焼結法に関し、特に
常圧焼結での焼結過程における焼結体表面の炭化反応を
防止するものであるらなお、ここに窒化けい素系セラミ
ックとは、窒化けい素(S i 3N4 ) を主体と
し、これに焼結助剤として、例えば酸化マグネシウム(
MgO)、アルミナ(AA’+03)、イツトリウム酸
化物(Y2O2)、ジルコニウム酸化物(Zr02)な
どの1種または2種以上を混合したものを言う。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sintering silicon nitride ceramics, and particularly to a method for preventing a carbonization reaction on the surface of a sintered body during the sintering process in pressureless sintering. Silicon nitride-based ceramics are mainly composed of silicon nitride (S i 3 N 4 ), with addition of sintering aids such as magnesium oxide (
MgO), alumina (AA'+03), yttrium oxide (Y2O2), zirconium oxide (Zr02), etc., or a mixture of two or more thereof.

窃Jkけし)麦藁セラミックの堂庄位枯り寸 −鐙鑑こ
窒化けい素粉末と焼結助剤粉末とを混合混練しくこれに
は、適宜成形助剤が配合される)、所要形状に成形した
のち、成形体を1650〜1800°Cの窒素ガス(N
2)雰囲気(通常1気圧〜数十気圧)に調整された焼結
炉内に所定時間保持することにより行なわれる。
Mix and knead silicon nitride powder and sintering aid powder (add appropriate forming aid) and form into the desired shape. After that, the molded body was heated to 1650 to 1800°C with nitrogen gas (N
2) It is carried out by holding the sintering furnace for a predetermined period of time in a sintering furnace adjusted to an atmosphere (usually 1 atm to several tens of atm).

その焼結工程について説明すると、まず成形体を成形の
まま、あるいは脱脂処理または仮焼処理した状態で適当
な容器(黒鉛ルツボなど)に入れて焼結炉(焼結容器)
内に装入する。成形体装入後、炉内を排気、真空にする
とともに昇温を開始し、400〜800°Cに到達する
まで雰囲気を真空に保ち、この温度で窒素ガスを所定の
圧力まで封入する。この温度まで炉内を真空に保持する
のは成形体から放出される水分、有機分を雰囲気から除
去するためであり、この温度で窒素ガスを封入するのは
5i3N4の分解を防止するためである。
To explain the sintering process, first, the molded body is placed in a suitable container (such as a graphite crucible) as it is molded, or after degreasing or calcining treatment, and then placed in a sintering furnace (sintering container).
Insert it inside. After charging the molded bodies, the inside of the furnace is evacuated and evacuated, and the temperature is started to rise.The atmosphere is kept in a vacuum until the temperature reaches 400 to 800°C, and at this temperature, nitrogen gas is sealed up to a predetermined pressure. The purpose of keeping the furnace in vacuum up to this temperature is to remove moisture and organic components released from the compact from the atmosphere, and the purpose of filling in nitrogen gas at this temperature is to prevent the decomposition of 5i3N4. .

窒素ガス封入後、所定の焼結温度まで昇温しで所定時間
保持することにより焼結を完了し、冷却して焼結体を得
る。これが通常の工程である。
After filling with nitrogen gas, the temperature is raised to a predetermined sintering temperature and held for a predetermined time to complete sintering, and then cooled to obtain a sintered body. This is the normal process.

しかるに、こうして得られる焼結体は表面に炭化物(S
iC)層を伴うことが多い。この炭化物層は脆弱であり
、剥離して肌荒れを生じる。剥離しないとしてもかかる
炭化物層が生じるのは好ましいことではない。
However, the sintered body obtained in this way has carbide (S) on the surface.
iC) layer is often involved. This carbide layer is fragile and peels off, causing rough skin. Even if it does not peel off, the formation of such a carbide layer is not desirable.

このような現象が生じる原因は次のように考えられる。The reason why such a phenomenon occurs is considered to be as follows.

すなわち、前記焼結工程において、窒素ガス封入前に炉
内を排気、真空にするが、その真空は完全真空ではなく
、一般に10−4〜1O−5torrであるので、炉内
にはわずかながら大気あるいは成形体から放出された酸
素分が残留する。
That is, in the sintering process, the inside of the furnace is evacuated and vacuumed before filling with nitrogen gas, but the vacuum is not a complete vacuum and is generally 10-4 to 1O-5 torr, so there is a small amount of air inside the furnace. Alternatively, oxygen released from the molded product remains.

そのため、封入された窒素ガス雰囲気中には、この微量
残留した酸素分がそのまま混在することになる。これら
の酸素分は、H2O、Co ’、 02などである。一
方、焼結炉内には、通常発熱体、支持部材などに黒鉛が
使用され、また成形体を炉内に装入する際の容器として
黒鉛ルツボなどの黒鉛製容器が使用されることが多い。
Therefore, this trace amount of residual oxygen remains mixed in the sealed nitrogen gas atmosphere. These oxygen components include H2O, Co', 02, etc. On the other hand, inside a sintering furnace, graphite is usually used for heating elements, supporting members, etc., and graphite containers such as graphite crucibles are often used as containers when charging compacts into the furnace. .

従って、炉内が高温になるとともに、下記の反応式で示
されるように、容器などの表面で炭素と雰囲気中に混在
する酸素分とが反応してCOが生成し、このCOが成形
体と表面反応を起して窒化けい素を炭化する。
Therefore, as the temperature inside the furnace becomes high, carbon reacts with the oxygen mixed in the atmosphere on the surface of the container, etc., as shown in the reaction formula below, and CO is generated, and this CO is mixed with the molded body. Carbonizes silicon nitride by causing a surface reaction.

2C(黒鉛)+02→2CO・・・・・・山2Si 3
N4 + 6CO→6S iC+4N2 + 802 
・・・・・・出lSi3N4 の炭化反応で解放された
酸素は再ひ炭素(黒鉛)と反応してCOとなり、更にS
i3N4の炭化反応に関与する。この反応の繰返し、に
より焼結体表面の炭化が進行し、炭化物層の成長、剥離
・肌荒れが生じるわけである。
2C (graphite) + 02 → 2CO...Mountain 2Si 3
N4 + 6CO→6S iC+4N2 + 802
...The oxygen liberated by the carbonization reaction of the extracted Si3N4 reacts with carbon (graphite) to become CO, and further S
Participates in the carbonization reaction of i3N4. By repeating this reaction, carbonization progresses on the surface of the sintered body, resulting in growth of a carbide layer, peeling, and roughening of the surface.

上記焼結体表面の炭化防止策として一般に次の2つの方
法がある。その1つは、成形体を黒鉛容器に入れる際に
窒化けい素粉末にくるんで装入する方法である。こうす
れば、容器表面でCOが生成しても、生成したCOは成
形体表面に到達する前に窒化けい素粉末と反応するので
、成形体にとどきにくくなり表面炭化が防止される。他
の方法は、雰囲気窒素ガス圧力を高め、例えば約10k
Q/cA以上に調整する方法である。窒素ガス圧力を上
げれば、00分圧が低下するとともに、S i 3N4
 0分解炭化は抑制される。しかし、第1の方法では、
充填用窒化けい素粉末を必要とし、かつ装入の工数が増
加する。また第2の方法では焼結炉が高耐圧構造である
ことを要し、設備費の増大を余儀なくされる。
There are generally two methods for preventing carbonization of the surface of the sintered body. One method is to wrap the compact in silicon nitride powder when placing it in a graphite container. In this way, even if CO is generated on the surface of the container, the generated CO will react with the silicon nitride powder before reaching the surface of the compact, making it difficult for the CO to reach the compact and preventing surface carbonization. Another method is to increase the atmospheric nitrogen gas pressure, e.g.
This is a method of adjusting Q/cA or higher. If the nitrogen gas pressure is increased, the 00 partial pressure will decrease and S i 3N4
Zero decomposition carbonization is suppressed. However, in the first method,
Silicon nitride powder for filling is required, and the number of steps for charging increases. Furthermore, the second method requires the sintering furnace to have a high pressure-resistant structure, which inevitably increases equipment costs.

本発明は上記問題を解決し、安価にかつ確実に焼結体の
表面炭化を防止し得る焼結方法を提供する。
The present invention solves the above problems and provides a sintering method that can inexpensively and reliably prevent surface carbonization of a sintered body.

本発明の焼結方法は、焼結炉内の雰囲気窒素ガス中の酸
素分の残留量を低下させて表面炭化を防止するものであ
り、その特徴とするところは、昇温過程において、炉内
封入窒素ガスを減圧排除し、新たな窒素カスを封入する
操作を1回もしくは複数回反復実施するこ−とにある。
The sintering method of the present invention prevents surface carbonization by reducing the residual amount of oxygen in the atmospheric nitrogen gas in the sintering furnace. The purpose is to repeat the operation of removing the filled nitrogen gas under reduced pressure and filling it with new nitrogen gas once or multiple times.

本発明によれば、成形体装入後、大気を減圧排除して封
入された窒素ガスは、少くとも1回減圧排除され、新た
な窒素ガスに置換される。例えば、第1回目に封入され
た窒素ガス(例えば1気圧)に酸素分がAp pm混在
していると仮定し、これを+11−6mI工rr ?d
j DG +41: M l +−M七、甫yN 1.
s ”IL−Id7r−封入して1気圧にした場合の酵
素分混在量を単純に試算すればA X i O’ppm
となる。窒素ガスの封入・減圧排除および再封入をくり
返せば、更に酸素分の減少をみる。酸素分の低下ととも
に、焼結体の表面炭化が生起しにくくなることは前記説
明から明らかである。
According to the present invention, after charging the compact, the atmosphere is removed under reduced pressure and the enclosed nitrogen gas is removed under reduced pressure at least once and replaced with new nitrogen gas. For example, assuming that the nitrogen gas (e.g., 1 atm) that was filled in the first time is mixed with oxygen at Ap pm, this is +11-6 mI engineering rr? d
j DG +41: M l +-M7, 甫yN 1.
s "IL-Id7r- If you simply estimate the amount of enzyme mixed in when sealed and the pressure is 1 atm, A X i O'ppm
becomes. If nitrogen gas is repeatedly charged, removed under reduced pressure, and refilled, the oxygen content will further decrease. It is clear from the above description that as the oxygen content decreases, surface carbonization of the sintered body becomes less likely to occur.

もちろん、窒素ガス雰囲気中の残留酸素分量は前記のよ
うに単純に算出し得るものではな(、窒素ガスの封入・
排除と再封入の反復操作途中に成形体から放出される水
分、その他の酸素分や封入窒素ガス中に不純物として付
随する酸素分などが考慮されねばならないが、窒素ガス
の再封入操作を適当回数(例えば、2回〜数回)実施す
ることにより、後実施例にも示されるように、酸素分の
十分な低減とそれによる確実な炭化防止効果が奏せられ
る。
Of course, the amount of residual oxygen in a nitrogen gas atmosphere cannot be calculated simply as described above.
Although it is necessary to take into consideration the moisture released from the compact during the repeated removal and refilling operations, other oxygen content, and the oxygen content that accompanies the filled nitrogen gas as an impurity, it is necessary to carry out the nitrogen gas refilling operation an appropriate number of times. By carrying out the process (for example, twice to several times), as shown in the later examples, a sufficient reduction in oxygen content and a reliable carbonization prevention effect can be achieved.

窒素カスの封入と減圧排除および再封入の操作は、常温
〜1400°Cの温度範囲で行なわれる。
The operations of enclosing nitrogen scum, removing it under reduced pressure, and re-enclosing it are performed in a temperature range of room temperature to 1400°C.

成形体から放出される水分などの酸素分の炉外排除を促
進するためには昇温中に行うのがよく、高混捏有利であ
るが、1400°Cをこえる温度域で炉内を減圧すると
、S i 3N4の分解が起る。このため、1400°
Cを上限とする。水分等の酵素分の放出促進と、S i
 3N4の分解防止の両面を考慮すると、500〜11
00°Cの範囲が最適である。
In order to promote the removal of oxygen such as moisture released from the compact from the furnace, it is best to carry out the process while the temperature is rising, and high mixing is advantageous, but if the pressure inside the furnace is reduced in a temperature range exceeding 1400°C , S i 3N4 decomposition occurs. Therefore, 1400°
C is the upper limit. Promotion of release of enzyme components such as water, and S i
Considering both aspects of preventing decomposition of 3N4, 500 to 11
A range of 00°C is optimal.

なお、これらの操作は連続的に行ってもよく、断続的に
行ってもよい。また、操作中は昇温を停止してもよいし
、昇温と併行して実施してもよい。
Note that these operations may be performed continuously or intermittently. Further, during the operation, the temperature increase may be stopped or may be carried out concurrently with the temperature increase.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 窒化けい素粉末(平均粒度1.0μm0 α化率91%
)と酸化マグネシウム粉末(平均粒度1.3μm)9重
量%とをボールミルで混合混練し、−軸プレスにて円板
状成形体(直径60mm×厚さ7〜8關)に成形したの
ち、これを大気中、300°Cで乾燥した。
Example 1 Silicon nitride powder (average particle size 1.0 μm0 alpha conversion rate 91%)
) and 9% by weight of magnesium oxide powder (average particle size 1.3 μm) were mixed and kneaded in a ball mill, and formed into a disk-shaped compact (diameter 60 mm x thickness 7-8 mm) using a -shaft press. was dried in air at 300°C.

[I] 上記成形体を蓋付黒鉛ルツボに納めて焼結炉内
に装入し、常温で炉内の大気雰囲気を1O−5torr
まで減圧排除する。減圧を保ちながら昇温し、600°
Cで窒素ガスを1.1気圧まで封入する。
[I] The above molded body was placed in a graphite crucible with a lid and charged into a sintering furnace, and the atmospheric atmosphere in the furnace was adjusted to 1O-5 torr at room temperature.
Eliminate the pressure by reducing the pressure. Raise the temperature while maintaining reduced pressure to 600°
Fill with nitrogen gas to a pressure of 1.1 atm.

ついで、650°Cにおいて10 torr に減圧し
たのち、直ちに1.1気圧まで窒素カスを封入し、再び
10−5Lorr まで減圧し、直ちに窒素ガスを封入
する。その雰囲気圧力を1.1気圧に保ちながら170
0°Cまで胃温し、同温度に1時間保持して焼結を完了
したのち、1.1気圧に保ちながら自然冷却した。
Then, after reducing the pressure to 10 torr at 650°C, nitrogen gas is immediately filled in to 1.1 atm, the pressure is reduced again to 10 -5 Lorr, and nitrogen gas is immediately filled in. 170 while maintaining the atmospheric pressure at 1.1 atm.
The sample was heated to 0°C, maintained at the same temperature for 1 hour to complete sintering, and then naturally cooled while maintaining the pressure at 1.1 atm.

間 上記[I]と同様に成形体を焼結炉に装入し、炉内
大気雰囲気を10−5torrに減圧排除し、減圧を保
ちながら昇温しで600°Cで窒素ガスを1.1気圧ま
で封入する。ついで、800°Cにおいて、10−5t
orrまで減圧したのち直ちに窒素ガスを1.1気圧ま
で封入、更にこれをIQ torrまで減圧排除後1.
直ちに窒素ガスを1.1気圧まで封入する。そのまま窒
素ガス雰囲気を1.1気圧に保持しながら上記[I]と
同じ条件で焼結を完了して焼結体を得た。
In the same manner as in [I] above, the compact was charged into a sintering furnace, the atmospheric atmosphere inside the furnace was reduced to 10-5 torr, and the temperature was raised to 600°C while maintaining the reduced pressure, and nitrogen gas was added to 1.1 torr. Fill to atmospheric pressure. Then, at 800°C, 10-5t
Immediately after reducing the pressure to IQ torr, nitrogen gas was filled to 1.1 atm, and after removing the pressure to IQ torr, 1.
Immediately fill in nitrogen gas to 1.1 atm. Sintering was completed under the same conditions as in [I] above while maintaining the nitrogen gas atmosphere at 1.1 atm to obtain a sintered body.

比較例1 実施例1と同じように成形、乾燥した成形体を蓋付黒鉛
ルツボに入れて焼結炉内に装入し、常温で炉内大気雰囲
気を10−5torr に減圧排除する。
Comparative Example 1 A compact formed and dried in the same manner as in Example 1 was placed in a graphite crucible with a lid and charged into a sintering furnace, and the atmospheric atmosphere inside the furnace was reduced to 10 -5 torr at room temperature.

減圧を保ちながら昇温し、600°Cで窒素ガスを封入
して1.1気圧に保ちながら1700°Cまで昇温する
。同温度に1時間保持して焼結を完了したのち、1.1
気圧に保ちながら自然冷却した。
The temperature is raised while maintaining reduced pressure, and nitrogen gas is filled at 600°C, and the temperature is raised to 1700°C while maintaining the pressure at 1.1 atm. After completing sintering by holding at the same temperature for 1 hour, 1.1
Cooled naturally while maintaining atmospheric pressure.

上記実施例1[■]、間および比較例1で得られた各焼
結体(各試験繰返し数N−2)についてそれぞれの表面
炭化物の有無とその層厚を測定した。
The presence or absence of surface carbide and its layer thickness were measured for each of the sintered bodies obtained in Example 1 [■], Interval, and Comparative Example 1 (number of test repetitions N-2).

炭化物は極めて脆弱でサンドブラストにて容易に剥離脱
落する。炭化物層厚は、各試験のサンドブラスト前後の
厚さを測定して算出した。測定結果を第1表に示す。
Carbide is extremely brittle and easily peels off during sandblasting. The carbide layer thickness was calculated by measuring the thickness before and after sandblasting in each test. The measurement results are shown in Table 1.

実施例2 窒化けい素粉末(平均粒度1.0μm1 α化率92%
))こジルコニウム酸化物(Zr0z )粒末(平均粒
度1.3μm)8重量%を焼結助剤として加え、ボール
ミルで混合混練したのち、−軸プレスにて円板状成形体
(直径60朋×厚さ7〜B ytrm )を成形し、こ
れを大気中、300°Cにて乾燥した。
Example 2 Silicon nitride powder (average particle size 1.0 μm1 alpha conversion rate 92%)
)) 8% by weight of this zirconium oxide (Zr0z) powder (average particle size 1.3 μm) was added as a sintering aid, mixed and kneaded in a ball mill, and then formed into a disc-shaped compact (diameter 60 mm) in a -shaft press. × thickness 7~B ytrm ) was molded and dried at 300°C in the air.

口] ト1−−1Zli−ん芸承士甲」ムルツゼLr 
λ引旬竪京占利五内に装入して常温で炉内大気雰囲気を
10 ”torrに減圧排除する。減圧を保ちながら昇
温し、600°Cに達したとき、窒素ガスを封入し1,
1気圧としたのち直ちに10−5torrまで減圧し、
 再び窒素ガスを1.1気圧まで封入する。これを10
−5torrに減圧したのち、更に窒素ガスを封入し1
.1気圧に保持しながら1730°Cに昇温する。同温
度に1時間保持して焼結を完了したのち、■、1気圧に
保ちながら自然冷却した。
Mouth] To1--1Zli-n Geisha Ko”Murtsuze Lr
Charge the reactor into a λHinkushun Tatekyo Shirigo and remove the atmospheric atmosphere inside the reactor by reducing the pressure to 10” torr at room temperature.The temperature is increased while maintaining the reduced pressure, and when it reaches 600°C, nitrogen gas is filled in. 1,
After setting the pressure to 1 atm, immediately reduce the pressure to 10-5 torr,
Fill in nitrogen gas again to 1.1 atm. This is 10
After reducing the pressure to -5 torr, nitrogen gas was further filled in.
.. The temperature is raised to 1730°C while maintaining the pressure at 1 atm. After completing sintering by maintaining the same temperature for 1 hour, it was naturally cooled while maintaining the temperature at 1 atm.

[111上記[I]と同様に成形体を焼結炉内に装入し
、炉内大気雰囲気を10−5torr に減圧排除し、
減圧を保ちながら昇温して600°Cで窒素ガスを1.
1気圧まで封入する。ついで700°Cにおいて10−
5torr に減圧したのち直ちに1゜1気圧まで窒素
カスを封入する。更に1100°Cにおいて10 ”t
orr に減圧し、直ちに窒素ガスを1.1気圧まで封
入する。そのまま窒素カス雰囲気を1.1気圧に保ちな
がら、1730°Cまで昇温し、同温度に1時間保持し
たのち自然冷却して焼結体を得た。
[111 In the same manner as in [I] above, the compact was charged into a sintering furnace, the atmospheric atmosphere inside the furnace was reduced to 10-5 torr, and
While maintaining reduced pressure, raise the temperature to 600°C and add nitrogen gas to 1.
Enclose to 1 atm. Then at 700°C 10-
After reducing the pressure to 5 torr, immediately fill it with nitrogen gas to a pressure of 1° and 1 atm. Furthermore, 10”t at 1100°C
The pressure is reduced to 1.1 atm and nitrogen gas is immediately filled in to 1.1 atm. While maintaining the nitrogen gas atmosphere at 1.1 atm, the temperature was raised to 1730°C, maintained at the same temperature for 1 hour, and then naturally cooled to obtain a sintered body.

比較例2 実施例2と同じように成形、乾燥した成形体を蓋付黒鉛
ルツボに入れ焼結炉に装入し、前記比較例1と同じ工程
で焼結を行った。但し、焼結温度は1780’Cである
Comparative Example 2 A molded body formed and dried in the same manner as in Example 2 was placed in a graphite crucible with a lid and charged into a sintering furnace, and sintered in the same process as in Comparative Example 1. However, the sintering temperature is 1780'C.

上記実施例2[月、川および比較例2で得られた各焼結
体(N=2)につき、前記と同じ方法で表面の炭化物層
厚を測定し、第1表に示す結果を得た。
The thickness of the carbide layer on the surface of each of the sintered bodies (N=2) obtained in Example 2 [Moon, Kawa, and Comparative Example 2] was measured in the same manner as above, and the results shown in Table 1 were obtained. .

第 1 表 第1表のように、窒素ガスの減圧排除と再封入を実施し
ない比較例では、炭化物層が著しく生成しているのに対
し、本発明例では、表面の炭化反応は実質上完全に防止
されていることがわかる。
Table 1 As shown in Table 1, in the comparative example in which nitrogen gas was not removed under reduced pressure and re-enclosed, a carbide layer was significantly formed, whereas in the inventive example, the carbonization reaction on the surface was virtually complete. It can be seen that this is prevented.

このように、本発明によれば、窒素カス雰囲気の減圧排
除・再封入という簡単な操作で表面の炭化物化を防止し
健全な窒化けい素焼結体を得ることができる。本発明に
おける焼結過程での窒素ガス雰囲気圧力は任意であり、
1気圧〜数十気圧の範囲内で適宜調節されるが、必ずし
も圧力を高める必要はなく、1〜3気圧程度の低圧力域
で炭化反応を防止し得ることは、高耐圧構造を不要とし
、設備・製造コストの低減、操業の容易化をもたらすも
のであり、工業的に非常に有用である。
As described above, according to the present invention, it is possible to prevent surface carbide formation and obtain a healthy silicon nitride sintered body by a simple operation of removing the nitrogen gas atmosphere under reduced pressure and re-enclosing it. The nitrogen gas atmosphere pressure during the sintering process in the present invention is arbitrary,
Although the pressure is adjusted appropriately within the range of 1 atm to several tens of atm, it is not necessarily necessary to increase the pressure, and the fact that the carbonization reaction can be prevented in a low pressure range of about 1 to 3 atm eliminates the need for a high pressure-resistant structure. It reduces equipment and manufacturing costs and facilitates operation, making it very useful industrially.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化けい素系セラミックの常圧焼結において、昇
温中、1400’Cまでの温度にて雰囲気窒素ガスを減
圧排除したのち新たな窒素ガスを封入する操作を1回以
上実施することを特徴とする窒化けい素系セラミックの
焼結法。
(1) During pressureless sintering of silicon nitride-based ceramics, the operation of removing atmospheric nitrogen gas under reduced pressure at a temperature up to 1400'C and then filling in new nitrogen gas is performed at least once during temperature rise. A method for sintering silicon nitride ceramics.
JP58175591A 1983-09-21 1983-09-21 Method of sintering silicon nitride ceramic Pending JPS6065766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175591A JPS6065766A (en) 1983-09-21 1983-09-21 Method of sintering silicon nitride ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175591A JPS6065766A (en) 1983-09-21 1983-09-21 Method of sintering silicon nitride ceramic

Publications (1)

Publication Number Publication Date
JPS6065766A true JPS6065766A (en) 1985-04-15

Family

ID=15998756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175591A Pending JPS6065766A (en) 1983-09-21 1983-09-21 Method of sintering silicon nitride ceramic

Country Status (1)

Country Link
JP (1) JPS6065766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049531A (en) * 1988-09-09 1991-09-17 Ngk Spark Plug Co., Ltd. Silicon nitride sintered body
WO2017090718A1 (en) * 2015-11-25 2017-06-01 日本碍子株式会社 Method for substituting inert gas and method for manufacturing ceramic structure using method for substituting inert gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049531A (en) * 1988-09-09 1991-09-17 Ngk Spark Plug Co., Ltd. Silicon nitride sintered body
WO2017090718A1 (en) * 2015-11-25 2017-06-01 日本碍子株式会社 Method for substituting inert gas and method for manufacturing ceramic structure using method for substituting inert gas
CN108290796A (en) * 2015-11-25 2018-07-17 日本碍子株式会社 The manufacturing method of the ceramic structure of the method for replacing of non-active gas and the method for replacing of use non-active gas
CN108290796B (en) * 2015-11-25 2020-08-28 日本碍子株式会社 Method for replacing inert gas and method for manufacturing ceramic structure using same
US10774009B2 (en) 2015-11-25 2020-09-15 Ngk Insulatros, Ltd. Inert gas substituting method and ceramic structure manufacturing method using inert gas substituting method

Similar Documents

Publication Publication Date Title
EP0540671A1 (en) Preparing silicon nitride with densification aid, and results.
JPS6065766A (en) Method of sintering silicon nitride ceramic
JP3667121B2 (en) Boron carbide sintered body and manufacturing method thereof
JP4249830B2 (en) Sintering jig and manufacturing method thereof
TWI297672B (en) Method for synthesizing aluminum nitride and composite thereof
JPS63222075A (en) Manufacture of high density sintered body
WO1990002717A1 (en) Increasing aluminum nitride thermal conductivity via pre-densification treatment
JPH11236286A (en) Production of boron carbide coating
JP2628599B2 (en) Manufacturing method of aluminum nitride substrate
JP3480499B2 (en) Method for producing high-density polycrystalline silicon carbide molded article
JPWO2020090832A1 (en) Manufacturing method of silicon nitride substrate and silicon nitride substrate
JPH0431364A (en) Production of silicon carbide sintered compact
JP3856571B2 (en) Whitening method of hexagonal boron nitride sintered body
JPS6155918A (en) Semiconductor manufacturing apparatus
JPWO2008066088A1 (en) Method of using boron diffusion source and method of manufacturing semiconductor
JP2002249387A (en) Method for manufacturing silicon carbide-based member
JP2543353B2 (en) Method for producing silicon nitride based sintered body
JP2000026166A (en) High purity silicon nitride-base corrosion resistant member and its production
JPS631273B2 (en)
JPS61136963A (en) Manufacture of silicon nitride base sintered body
JPS5930763A (en) Manufacture of silicon carbide sintered body
JPH03174364A (en) Silicon nitride-based sintered body
JPH09235165A (en) Production of sintered compact of silicon nitride
JPS6321253A (en) Manufacture of silicon nitride sintered body
JP2004315352A (en) Heat-resistant coating member