JPS6065765A - Process for sintering cubic silicon carbide powder - Google Patents

Process for sintering cubic silicon carbide powder

Info

Publication number
JPS6065765A
JPS6065765A JP58174680A JP17468083A JPS6065765A JP S6065765 A JPS6065765 A JP S6065765A JP 58174680 A JP58174680 A JP 58174680A JP 17468083 A JP17468083 A JP 17468083A JP S6065765 A JPS6065765 A JP S6065765A
Authority
JP
Japan
Prior art keywords
boron
weight
amount
carbon
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58174680A
Other languages
Japanese (ja)
Other versions
JPS613303B2 (en
Inventor
英彦 田中
猪股 吉三
佃 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP58174680A priority Critical patent/JPS6065765A/en
Priority to US06/583,236 priority patent/US4579704A/en
Publication of JPS6065765A publication Critical patent/JPS6065765A/en
Publication of JPS613303B2 publication Critical patent/JPS613303B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は立方晶炭化けい素(以下β−3i(Eと記載す
る)粉末の焼結法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sintering cubic silicon carbide (hereinafter referred to as β-3i (hereinafter referred to as E)) powder.

炭化けい素糸焼結体は硬度と高温強度が大きいことから
耐摩耗、耐熱材料として広く利用されている。炭化けい
素は大別してα、βの2つの結晶形のものがあるが、本
発明はβ−8iO粉末の焼結法に関する。β−3iO粉
末の焼結法としては、従来、この粉末に硼素及び炭素を
一定量混合し、真空中、COガス雰囲気中もしくは不活
性ガス雰囲気中で焼成する方法が知られている。
Sintered silicon carbide threads are widely used as wear-resistant and heat-resistant materials because of their high hardness and high-temperature strength. Silicon carbide can be roughly classified into two crystal forms, α and β, and the present invention relates to a method for sintering β-8iO powder. Conventionally, as a method for sintering β-3iO powder, a method is known in which this powder is mixed with a certain amount of boron and carbon, and the mixture is fired in a vacuum, a CO gas atmosphere, or an inert gas atmosphere.

β−3iO粉末の焼結において、そのち密化の困難な点
は、焼結の終期に粒成長が生じ、例えば粒径100μm
以上の粒子が多量に生成し、高ち密化し難いことである
。硼素は焼結体のち密化に有効に作用するが、同時に焼
結終期の粒成長を促進する作用を持っている。また炭素
はβ−8iG粉末中に含まれている不純物の5in2(
焼結を阻害する)を除去する作用をするが、脱酸に必要
な量を超えると有害であるとされていた。
In the sintering of β-3iO powder, the difficulty in making it compact is that grain growth occurs at the final stage of sintering, and for example, the grain size is 100 μm.
The problem is that a large amount of the above particles are generated and it is difficult to increase the density. Boron effectively acts to densify the sintered body, but at the same time has the effect of promoting grain growth at the final stage of sintering. In addition, carbon is an impurity contained in β-8iG powder, 5in2 (
However, it was considered harmful if the amount exceeded the amount required for deoxidation.

従って、β−8iO粉末に混合する硼素及び炭素の量は
或範囲内において使用されていた。例えば、硼素0.5
〜5.0重量%、炭素1.5〜5.0重量%(特公昭5
8−17146号)、硼素0.3〜3重量%、炭素0.
1〜1.0重量%(特公昭57−32035号)、用い
られている。
Therefore, the amounts of boron and carbon mixed into the β-8iO powder were used within a certain range. For example, boron 0.5
~5.0% by weight, carbon 1.5~5.0% by weight (Tokuko Sho 5
No. 8-17146), boron 0.3 to 3% by weight, carbon 0.
It is used in an amount of 1 to 1.0% by weight (Japanese Patent Publication No. 57-32035).

このように、硼素は0.3重量%以上を使用し、炭素は
必要以上には加えないとされた。
In this way, boron should be used in an amount of 0.3% by weight or more, and carbon should not be added in an amount more than necessary.

しかし、これらの方法では未だ満足すべき高密度の焼結
体は得られない欠点があった。
However, these methods still have the drawback that a sintered body with a satisfactory high density cannot be obtained.

従来、特定方法で製造したβ−3ift粉末に、炭素及
び硼素をそれぞれO11〜5重量%混合して焼成する方
法が提案されている(特公昭55−46996号)。こ
の方法では硼素の使用量を0.1重量%まで可、能とし
ているが、その実施例ではすべて1.0本発明の目的は
これらの従来法の欠点をなくし、少量の硼素の使用で特
別な製法によらないβ−8iO粉末でも高密度のβ−8
i(3粉末の焼結体を製造し得る焼結法を提供するにあ
る。
Conventionally, a method has been proposed in which carbon and boron are mixed in amounts of 11 to 5% by weight of each of β-3ift powder produced by a specific method and fired (Japanese Patent Publication No. 46996/1983). In this method, it is possible to use boron in an amount of up to 0.1% by weight, but in all of the examples, the amount of boron used is 1.0%. High-density β-8 can be obtained even with β-8iO powder regardless of the manufacturing method.
The object of the present invention is to provide a sintering method capable of producing a sintered body of three powders.

本発明者らは、β−8iO粉末の焼結における反応機構
及び条件について詳細に検討した結果、(1) β−8
iO粒子の粒界エネルギーは、炭素物質(他の無機物質
でもよい)を粒子間に介在させると低下し、この介在に
よって焼結を促進し粒成長を抑制し得られること。
As a result of detailed study on the reaction mechanism and conditions for sintering β-8iO powder, the present inventors found that (1)
The grain boundary energy of iO particles is reduced by interposing a carbon material (or other inorganic material) between the particles, and this interposition promotes sintering and suppresses grain growth.

【ト) β−8iOに随伴する5102は1000℃以
上で混合した炭素と 5in2+ O= SiO+ 00 (1)壕だけ SiO+ 30 = SiO+ 200 (2)の反応
によってCOガスを発生ずる。このCOは混合したBと
反応し くjQ+13=BO+G (3) この反応によりBOガスを生成し、Bを消耗する。従っ
て、焼結前にBを消耗することなく5in2を除去すれ
ばBの使用量を少なくなし得る。それには焼結前に10
−1〜10−8気圧の低真空下で1100〜1500℃
に加熱することが必要である。すなわち、10〜10 
気圧1100〜1500℃で(1) 、 (2)の反応
がおこり、発生したCOガスは硼素と反応せず県外に放
出され、反応(3)は生じないので硼素の消耗がない。
[g) 5102 accompanying β-8iO generates CO gas through a reaction with carbon mixed at 1000° C. or higher: 5in2+ O = SiO+ 00 (1) SiO+ 30 = SiO+ 200 (2). This CO reacts with the mixed B and jQ+13=BO+G (3) This reaction produces BO gas and consumes B. Therefore, the amount of B used can be reduced by removing 5 in2 without wasting B before sintering. It requires 10% before sintering.
-1100~1500℃ under low vacuum of -1~10-8 atmospheres
It is necessary to heat it to That is, 10-10
Reactions (1) and (2) occur at an atmospheric pressure of 1,100 to 1,500°C, and the generated CO gas does not react with boron and is released outside the prefecture, and reaction (3) does not occur, so there is no consumption of boron.

(5)硼素の混合量は図−2に示すように、前記510
2の除去を行わないと、密度を高めるには0.4重量%
と多量の硼素を必要とし、それでも焼結体の密度は3.
Off/am2以下のものしか得られない。
(5) The amount of boron mixed is as shown in Figure 2.
0.4% by weight to increase density without removal of 2.
However, the density of the sintered body is still only 3.
Only Off/am2 or less can be obtained.

これに対し、5102の除去の前処理を行うと、0.1
〜0.3重量%でよく、得られる焼結体の密度は3.1
82/crIL3までKも達し得られること。
On the other hand, when preprocessing is performed to remove 5102, 0.1
~0.3% by weight is sufficient, and the density of the obtained sintered body is 3.1
It is possible to reach K up to 82/crIL3.

なお、硼素量をそれより多くすると焼結終期に粒成長を
促し密度を低下させる。
It should be noted that if the amount of boron is increased more than this, grain growth will be promoted in the final stage of sintering and the density will be reduced.

(4)炭素の添加量は図−1に示すように、炭素源の種
類によって多少相違するが、1重量%を超え、3重量%
以下(炭素は5in2の除去で1部消費される)である
ことが好ましく、1重量%以下では粒子間に介在させる
相の厚みが不十分でち密化が困難となシ、3重量%を超
えると過剰となシち密化を阻害すること。
(4) As shown in Figure 1, the amount of carbon added varies somewhat depending on the type of carbon source, but it is more than 1% by weight and 3% by weight.
It is preferable that the carbon content be less than 1% by weight (1 part of carbon is consumed by removing 5 in 2), and if it is less than 1% by weight, the thickness of the phase interposed between the particles will be insufficient and densification will be difficult, and if it exceeds 3% by weight. and to prevent excessive urbanization.

以上の知見に基いて本発明を完成したものである。The present invention has been completed based on the above findings.

本発明の要旨は、立方晶炭化けい素粉末に1重R%を超
え3重量%以下の炭素及び0.10〜0.3重量%のほ
う素を含ませた混合物を成形し、この成形物を10””
 〜10−51:)圧力下テ1100〜15o。
The gist of the present invention is to mold a mixture of cubic silicon carbide powder containing more than 1% by weight of carbon and less than 3% by weight of carbon and 0.10 to 0.3% by weight of boron. 10""
~10-51:) Te 1100-15o under pressure.

℃に加熱し、生成したCOガスを排気除去する前処理を
施した後、真空中または化学的に不活性な雰囲気中で1
900〜2200℃で焼成することを特徴とする立方晶
炭化けい素粉末の焼結法にある。
After heating to ℃ and performing pretreatment to exhaust and remove the generated CO gas, it was heated for 1 hour in a vacuum or in a chemically inert atmosphere.
A method for sintering cubic silicon carbide powder characterized by firing at a temperature of 900 to 2200°C.

従来、β−8iO粉末の焼結前に、この粉末に随伴され
ている5i02を除去することがよいことは知られてい
る。(特開昭57−166369号、特開昭57−16
6372号) これらの方法はいずれも製水表面を活性化1丸冬ために
、還元性ガス(H2,00)の減圧雰囲勧で処理をして 5in2+ H2= SiO+ H2O5in2+ 0
0 = SiO+Co2の反応によp 5in2を除去
している。還元ガスを用いない場合は10−4〜10−
7気圧という高真空べし の反応をうながしている。
Conventionally, it is known that it is good to remove 5i02 accompanying the β-8iO powder before sintering the powder. (JP-A-57-166369, JP-A-57-16
(No. 6372) In both of these methods, in order to activate the water production surface for one whole winter, it is treated in a reduced pressure atmosphere of reducing gas (H2,00).
0 = p5in2 is removed by the reaction of SiO+Co2. 10-4 to 10- when no reducing gas is used
It promotes a reaction that requires a high vacuum of 7 atmospheres.

以上の方法は、還元性ガスを使用する方法は危険であり
、操作も面倒であるばかりでなく、還元性ガスを必要と
する。また高真空雰囲気の場合は通常の焼結炉で真空を
10−4〜10−7気圧に保つのは一般に高級な排気系
を必要とする。
The above method uses a reducing gas, which is not only dangerous and troublesome to operate, but also requires a reducing gas. Further, in the case of a high vacuum atmosphere, maintaining the vacuum at 10 -4 to 10 -7 atmospheres in a normal sintering furnace generally requires a high-grade exhaust system.

これに対し、本発明の方法は10〜10 のガスを必要
とせず、且つt簡単な排気装置で審勇し得られる。発生
したGOは1500℃以下の温fτ裏空で直ちに排気す
るので、硼素と反応しなく、消耗することがない。
In contrast, the method of the present invention does not require 10 to 10 ml of gas and can be performed with a simple exhaust system. Since the generated GO is immediately exhausted under the atmosphere at a temperature fτ of 1500° C. or lower, it does not react with boron and is not consumed.

加熱温度は1100℃よシ低いとSiO□の分解が起シ
難く、1500℃を起えるとSiOの分解が生じ焼結を
阻害するので加熱温度は1100〜1500℃の範囲で
あることが必要である。また真空度は^0−1よシ大き
いとCOガスへの分解排気がおそく□なシ、また10−
5よシ低くなると、加熱によシ5i(3の分解を起こす
ので、10〜10−3の真空度であることが必要である
If the heating temperature is lower than 1,100°C, decomposition of SiO□ will be difficult to occur, and if it is raised to 1,500°C, SiO will decompose and inhibit sintering, so the heating temperature needs to be in the range of 1,100 to 1,500°C. be. Also, if the degree of vacuum is greater than ^0-1, the decomposition and exhaust into CO gas will be slow, or 10-1.
If the temperature is lower than 5, heating will cause decomposition of 5i (3), so it is necessary to have a degree of vacuum of 10 to 10-3.

本発明の方法におけるβ−8iG粉末への炭素の添加法
としては、重分予重合物、例えば、ピッチタール、フラ
ン樹脂、フェノール樹脂、あるいはポリイミド系または
ポリアクリロニトリル系樹脂原料をアセトン、ベンゼン
、アルコール等の溶剤粉末表面に炭素を形成させること
によって含有させる。
In the method of the present invention, carbon is added to the β-8iG powder by adding a polyprepolymerized product such as pitch tar, furan resin, phenol resin, or polyimide or polyacrylonitrile resin raw material to acetone, benzene, alcohol, etc. It is incorporated by forming carbon on the surface of the solvent powder.

炭素添加量と得られる焼結体の密度の関係は図−1に示
すように、1重量%を超え3重量%(5in2の除去の
ため消費される)以下であることが好ましいことは前記
した通りである。
As mentioned above, the relationship between the amount of carbon added and the density of the obtained sintered body is preferably more than 1% by weight and less than 3% by weight (consumed for removal of 5in2), as shown in Figure 1. That's right.

硼素の添加量は、図−2に示すように、本発明における
真空前処理を行わない場合(1曲線)は硼素が消耗する
ため、密度を高めるためには0.4態量%と多量に必要
とするが、高密度のものは得られないが、真空前処理を
行うと(曲線2)硼素添加量は0.10−0.3重量%
であることが好ましい。
As shown in Figure 2, the amount of boron added is as large as 0.4% by mass in order to increase the density, since boron is consumed when vacuum pretreatment is not performed in the present invention (curve 1). However, when vacuum pretreatment is performed (curve 2), the amount of boron added is 0.10-0.3% by weight, although high density cannot be obtained.
It is preferable that

さらにほう素添加量と粒成長の関係であるが、図−3に
ほう素添加量と密度9粒成長の関係(焼成温度2050
 C)を示した。図中の黒丸は粒成長。
Furthermore, regarding the relationship between boron addition amount and grain growth, Figure 3 shows the relationship between boron addition amount and density 9 grain growth (firing temperature 2050
C) was shown. The black circles in the figure represent grain growth.

白丸は粒成長のないもので、数字は密度である。White circles are those without grain growth, and numbers are density.

図・よりiう素の最適添加量は0.1 i員%以上0.
3重量%未満であることがわかる。すなわち、はう素が
0.3%以上では粒成長が生じ、0.10%未満ではち
密化が不十分である。
Figure: The optimum amount of i-ion ion added is 0.1 i-member% or more.
It can be seen that the amount is less than 3% by weight. That is, if the boron content is 0.3% or more, grain growth occurs, and if it is less than 0.10%, densification is insufficient.

β−8iC粉末に前記量の炭素と硼素とを含ませたもの
を成形し、成形物を10−1〜1o−3の圧力下で11
00〜1500 ℃に加熱処理する。
The β-8iC powder containing the above amounts of carbon and boron is molded, and the molded product is heated to 11
Heat treatment at 00-1500°C.

得られた成形物を例えばアルゴンガス等の化学的に不活
性な雰囲気中で1900〜22oo℃で焼成する。19
00 ℃よシ低い温度では焼結が不十分で密度の高いも
のが得られず、2200 ’Cを超える温度は焼結に必
要でなく、経済的に不利である。
The obtained molded product is fired at 1900 to 22 oo<0>C in a chemically inert atmosphere such as argon gas. 19
Temperatures lower than 00° C. result in insufficient sintering and a high density product cannot be obtained, whereas temperatures higher than 2200° C. are not necessary for sintering and are economically disadvantageous.

以下実施例を挙げて本発明の特長を明らかにする。Examples are given below to clarify the features of the present invention.

実施例1 下表1に示すβ−8iO粉末を使用した。使用したβ−
8iO粉末は5i02と炭素を反応して作られたもので
ある。
Example 1 β-8iO powder shown in Table 1 below was used. β used
8iO powder is made by reacting 5i02 with carbon.

表1 用いたβ−8iO粉末 真 比 重 3.19〜3.22 タ/α3結 晶 形
 立方晶(3G) 平均粒径 0.25〜0.28 μm 1μm以下の粒 95〜98 % 比表面積 15.1〜18.7 m2/r不純物量 A
t O,03〜0.06%Fe O,03〜0.07 
# 5in2 0.22〜0.33// C0834〜0.47// 炭素源としてフェノール樹脂を用いた。フェノール樹脂
をアセトンに溶解し、この溶液で残留炭素として2重量
1%になる量をβ−3iO粉末に付着させ、真空乾燥器
中で約100℃で24時間保ち十分乾燥し、アルゴンガ
ス雰囲気の炉中で400〜550℃になるまで毎分3℃
で昇温し、β−8iO粉末の表面に炭素を均一に形成さ
せた。これにほう素を0.2重量%添加し、十分に混合
し、ラバープレスで理論密度の約60%に成形した。
Table 1 β-8iO powder used True specific gravity 3.19-3.22 Ta/α3 Crystal shape Cubic crystal (3G) Average particle size 0.25-0.28 μm Particles of 1 μm or less 95-98% Specific surface area 15.1-18.7 m2/r impurity amount A
tO,03~0.06%FeO,03~0.07
#5in2 0.22-0.33// C0834-0.47// Phenol resin was used as a carbon source. Phenol resin was dissolved in acetone, and with this solution, an amount of 2% by weight of residual carbon was attached to β-3iO powder, kept in a vacuum dryer at about 100°C for 24 hours, dried thoroughly, and dried in an argon gas atmosphere. 3℃ per minute until it reaches 400-550℃ in the furnace
The temperature was raised to uniformly form carbon on the surface of the β-8iO powder. 0.2% by weight of boron was added to this, thoroughly mixed, and molded to about 60% of the theoretical density using a rubber press.

この成形物を1400℃に加熱して10 に丸ヤ笛f/
32100℃で15分間焼成した。
This molded product was heated to 1400°C and heated to 10°C.
It was baked at 32,100°C for 15 minutes.

得られた焼結体は約3〜10μm程度の粒子から成り異
常な粒成長は認められず、密度も3.08f/儂’ (
理論密度の96%)に達し、高密な焼結体が得られた。
The obtained sintered body consisted of particles of about 3 to 10 μm, no abnormal grain growth was observed, and the density was 3.08 f/儂' (
The density reached 96% of the theoretical density, and a highly dense sintered body was obtained.

焼結体の特性を表2に、組織の83M写真を図4に示す
。図(a)は破面図(b)はエツチング面を示す。
The characteristics of the sintered body are shown in Table 2, and an 83M photograph of the structure is shown in FIG. Figure (a) shows a broken surface and (b) shows an etched surface.

表2 β−8iO焼結体の特性 C添加量 2重量% f3〃0.2// 密度 3.15 f/儒3 粒径 3〜10μm 強度 室温 600 MPa 1500℃ 650 MPa 牝較例1 実施例1の方法で成形物の真空加熱の前処理を哲わずほ
か同様な方法で焼結した。得られた焼結一体は下記のも
のであった。
Table 2 Characteristics of β-8iO sintered body C Added amount 2% by weight f3〃0.2// Density 3.15 f/F3 Particle size 3 to 10 μm Strength Room temperature 600 MPa 1500°C 650 MPa Female comparative example 1 Example The molded product was sintered in the same manner as in Method 1 except for the pretreatment of vacuum heating. The obtained sintered body was as follows.

密度 240 f/♂ 強度 室温 370 MPa 1500℃410 MPa 以上のように、本発明の方法によると、従来の方法にお
ける少ないほう素の使用量で、炭化けい素の製法に余シ
左右されることなく、高密度の焼結体が容易に得られる
優れた効果を奏し得られる。
Density: 240 f/♂ Strength: Room temperature: 370 MPa 1500°C: 410 MPa As described above, according to the method of the present invention, the amount of boron used in the conventional method is small and is not influenced by the manufacturing method of silicon carbide. , the excellent effect of easily obtaining a high-density sintered body can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は炭素添加量と得られる焼結体の密度との関係図
1図−2はほう素添加量と得られる焼結体の密度との関
係図で 1曲線;真空加熱の予備処理を行なった場合、2曲線:
真空加熱の予備処理を行なわなかった場合 を示す。図−3はほう素添加量と粒成長の関係。 図−4は本発明焼結体の83M写真で(a)は破断面。
Figure 1 shows the relationship between the amount of carbon added and the density of the sintered body obtained. Figure 2 shows the relationship between the amount of boron added and the density of the sintered body obtained. One curve; If done, 2 curves:
This shows the case where no pretreatment of vacuum heating was performed. Figure 3 shows the relationship between boron addition amount and grain growth. Figure 4 is an 83M photograph of the sintered body of the present invention, and (a) is a fractured surface.

Claims (1)

【特許請求の範囲】[Claims] 立方晶炭化けい素粉末に1重量%を超え3重量%以下の
炭素及び0.10〜0.3重量%のほう素を含ませた混
合物を成形し、この成形物を10−1〜化けい素粉末の
焼結法。
A mixture of cubic silicon carbide powder containing more than 1% by weight and less than 3% by weight of carbon and 0.10 to 0.3% by weight of boron is molded, and this molded product is Sintering method of raw powder.
JP58174680A 1983-04-14 1983-09-21 Process for sintering cubic silicon carbide powder Granted JPS6065765A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58174680A JPS6065765A (en) 1983-09-21 1983-09-21 Process for sintering cubic silicon carbide powder
US06/583,236 US4579704A (en) 1983-04-14 1984-02-24 Process for sintering cubic system silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174680A JPS6065765A (en) 1983-09-21 1983-09-21 Process for sintering cubic silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS6065765A true JPS6065765A (en) 1985-04-15
JPS613303B2 JPS613303B2 (en) 1986-01-31

Family

ID=15982812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174680A Granted JPS6065765A (en) 1983-04-14 1983-09-21 Process for sintering cubic silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS6065765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256371A (en) * 1985-09-06 1987-03-12 株式会社東芝 Manufacture of silicon carbide sintered body
JPS62288168A (en) * 1986-06-05 1987-12-15 株式会社ブリヂストン Manufacture of cubic silicon carbide sintered body
JPS6360157A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Beta silicon carbide sintered body and manufacture
JPS6360158A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6414175A (en) * 1987-07-08 1989-01-18 Toshiba Corp Production of silicon carbide ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546996A (en) * 1978-09-30 1980-04-02 Pentel Kk Pencil
JPS55116664A (en) * 1979-02-27 1980-09-08 Tokyo Shibaura Electric Co Manufacture of silicon carbide ceramics
US4295890A (en) * 1975-12-03 1981-10-20 Ppg Industries, Inc. Submicron beta silicon carbide powder and sintered articles of high density prepared therefrom
JPS56169181A (en) * 1980-05-30 1981-12-25 Ibigawa Electric Ind Co Ltd Manufacture of high strength silicon carbide sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295890A (en) * 1975-12-03 1981-10-20 Ppg Industries, Inc. Submicron beta silicon carbide powder and sintered articles of high density prepared therefrom
JPS5546996A (en) * 1978-09-30 1980-04-02 Pentel Kk Pencil
JPS55116664A (en) * 1979-02-27 1980-09-08 Tokyo Shibaura Electric Co Manufacture of silicon carbide ceramics
JPS56169181A (en) * 1980-05-30 1981-12-25 Ibigawa Electric Ind Co Ltd Manufacture of high strength silicon carbide sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256371A (en) * 1985-09-06 1987-03-12 株式会社東芝 Manufacture of silicon carbide sintered body
JPS62288168A (en) * 1986-06-05 1987-12-15 株式会社ブリヂストン Manufacture of cubic silicon carbide sintered body
JPS6360157A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Beta silicon carbide sintered body and manufacture
JPS6360158A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS6414175A (en) * 1987-07-08 1989-01-18 Toshiba Corp Production of silicon carbide ceramic

Also Published As

Publication number Publication date
JPS613303B2 (en) 1986-01-31

Similar Documents

Publication Publication Date Title
JPS6350312B2 (en)
JPH1161394A (en) Sputtering target board
JPH02175660A (en) Silicon-penetrated silicon carbide member with porous surface and preparation of said silicone carbide
JPS6065765A (en) Process for sintering cubic silicon carbide powder
JPS5813491B2 (en) Method for manufacturing silicon carbide articles
JPS63236763A (en) Boron carbide sintered body and manufacture
JP2919901B2 (en) Melting crucible equipment
JPS6152106B2 (en)
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JPH04500497A (en) Improving thermal conductivity of aluminum nitride through pre-densification treatment
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH07216474A (en) Production of high purity metallic chromium
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JPS5891063A (en) Manufacture of sic ceramic sintered body
JPS59195585A (en) Method of sintering cubic silicon carbide powder
US4017577A (en) Hot pressing of reaction sintered CaB6
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS61201673A (en) Method of dewaxing injection formed body of ceramic powder or metal powder
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JPH0463028B2 (en)
JPS5823344B2 (en) Manufacturing method of silicon carbide sintered body
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPS6126514B2 (en)
JPS6153166A (en) Manufacture of non-pressure silicon carbide sintered body