JPS6065565A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPS6065565A
JPS6065565A JP58173507A JP17350783A JPS6065565A JP S6065565 A JPS6065565 A JP S6065565A JP 58173507 A JP58173507 A JP 58173507A JP 17350783 A JP17350783 A JP 17350783A JP S6065565 A JPS6065565 A JP S6065565A
Authority
JP
Japan
Prior art keywords
substrate
layer
charge
region
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173507A
Other languages
Japanese (ja)
Inventor
Kenichi Arakawa
賢一 荒川
Masayuki Matsunaga
誠之 松長
Tetsuo Yamada
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58173507A priority Critical patent/JPS6065565A/en
Publication of JPS6065565A publication Critical patent/JPS6065565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the generation of a local dark curent and the irregularity due to the dark current between photosensitive elements by superposing and providing the same conductive type diffused layer as a substrate on an electron storage layer. CONSTITUTION:A transparent electrode 21 is formed through an insulating film 2 on an N type diffused region, and a negative voltage s applied. Carrier of negative charge is generated in a semiconductor by a light (radiation) incident from a window of a light shielding film 7. Since the negative voltage is applid to the electrode 21, the negative electrode near the surface of the substrate 1 is remotely disposed, and a layer having many holes, i.e., an inverting layer 22 is formed instead as a depletion preventive layer on the surface of the substrate of a photosensitive element region A. Accordingly, the photoelectrically converter negative charge is stored in a charge storage region 20 surrounded by the P-N junction to the substrate 1 and the layer 22. In other words, the carrier which is photoelectrically converted does not exist near the boundary between the substrate 1 and the film 2, and is not affected by the influence of the surface level in the boundary.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電荷結合素子の組み込まれた固体撮像素子に関
する1、 〔発明の技術的背景とその問題点〕 近年、電荷結合素子を組み込んだ固体撮像素子が広く使
用されるようになった。第1図にそのような固体撮像素
子の概略的構成を示す。この図において、Cは1つの画
素を構成する単位セル領域で、この単位セル領域は大別
して光電変換機能を有する感光素子領域Aと電荷転送領
域Bとに分けられる。図でI′f、MOS形の感光素子
領域を有するものを示しており、p形の半導体基板1上
に例えばシリコン酸化膜等の絶縁膜2を介して、電荷転
送領域B側に2層構造の電荷転送電極3が形成され、こ
の電荷転送電極3直下の基板1の表面領域にn形の電荷
転送チャネル4が設けられている。そしてこの電荷転送
チャネル4の隣接した部位には、上記電荷転送チャネル
4内の電荷が隣接する単位セル内の電荷と混合しないよ
うに宍ルを分離するp形の障壁領域5が設けられている
。また、絶縁膜2上には、感光素子領域A以外の領域に
光が入射しないようにするための例えばアルミニウム膜
からなる光シールド膜7が設けられ、感光素子領域Aの
光シールド膜7に開口された窓部分下には透明電極8が
設けられている。そして、この透明電極8と電荷転送電
極3との間の電荷転送領域BKは、感光素子領域Aで一
時的に蓄えられた電荷を電荷転送チャネル4へ移すため
の電荷読み出し電極6が設けられている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a solid-state imaging device incorporating a charge-coupled device.1. [Technical background of the invention and problems thereof] In recent years, solid-state imaging devices incorporating a charge-coupled device have been developed. devices have become widely used. FIG. 1 shows a schematic configuration of such a solid-state image sensor. In this figure, C is a unit cell region constituting one pixel, and this unit cell region is roughly divided into a photosensitive element region A having a photoelectric conversion function and a charge transfer region B. The figure shows I'f, which has a MOS type photosensitive element region, and has a two-layer structure on the charge transfer region B side, which is placed on a p-type semiconductor substrate 1 with an insulating film 2 such as a silicon oxide film interposed therebetween. A charge transfer electrode 3 is formed, and an n-type charge transfer channel 4 is provided in the surface region of the substrate 1 directly under the charge transfer electrode 3. A p-type barrier region 5 is provided at an adjacent portion of the charge transfer channel 4 to separate the circuits so that the charge in the charge transfer channel 4 does not mix with the charge in an adjacent unit cell. . Further, a light shield film 7 made of, for example, an aluminum film is provided on the insulating film 2 to prevent light from entering areas other than the photosensitive element area A, and an opening is provided in the light shield film 7 in the photosensitive element area A. A transparent electrode 8 is provided under the window portion. The charge transfer region BK between the transparent electrode 8 and the charge transfer electrode 3 is provided with a charge readout electrode 6 for transferring the charge temporarily stored in the photosensitive element region A to the charge transfer channel 4. There is.

このような素子において、透明電極8に電圧を印加する
ことになシ、この透明電極θ下の基板領域に空乏層を形
成し、この空乏層に入射光により光電変換された電荷を
一時的に蓄積する。
In such an element, without applying a voltage to the transparent electrode 8, a depletion layer is formed in the substrate region under the transparent electrode θ, and charges photoelectrically converted by incident light are temporarily transferred to this depletion layer. accumulate.

そして、蓄積された電荷を読み出し電極6および転送電
極3に電気的操作を施すことにより検出する。
Then, the accumulated charge is detected by electrically operating the readout electrode 6 and the transfer electrode 3.

ところで、このような第1図に示す固体撮像素子では、
感光素子領域Aの絶縁膜2とこれに接する半導体基板1
との界面の半導体基板1側に空乏層10が生ずるがこの
ような基板1表面の界面では、界面の表面準位の影響を
受けやすく、局所的な暗電流が流れやすい。この局所的
な暗電流により、各単位セル間の暗電流のばらつきが大
きく、場合によっては、画像に白点を生じるなどの不都
合がみられた。
By the way, in the solid-state image sensor shown in FIG.
Insulating film 2 in photosensitive element area A and semiconductor substrate 1 in contact with it
A depletion layer 10 is formed on the semiconductor substrate 1 side at the interface with the substrate 1, but at such an interface on the surface of the substrate 1, it is easily influenced by the surface state of the interface, and a local dark current tends to flow. Due to this local dark current, there was a large variation in dark current between each unit cell, and in some cases, problems such as white spots were observed in the image.

第2図に示す装置は感光素子領域AがP−N接合を有す
るフォトダイオードからなるものを示している。すなわ
ち、基板1に対して逆導電形の不純物を多く含む拡散層
9と基板1との間にP−N接合が形成され、入射光によ
り光゛電変換された電荷はこのP−N接合部に形成され
る空乏層10のエネルギーの勾配によって拡散層9に蓄
積される。そして蓄積された電荷は読み出し電極6およ
び転送電極3に電気的操作を施すことによυ検出される
。尚、この場合には電荷蓄積−用の空乏層10を形成す
るために感光素子領域Aに電界を加えなくともよいため
、第1図のMOS形の素子と異なり透明電極8を形成す
る必要はない。
In the device shown in FIG. 2, the photosensitive element area A consists of a photodiode having a PN junction. That is, a P-N junction is formed between the substrate 1 and the diffusion layer 9 containing many impurities of the opposite conductivity type to the substrate 1, and the charges photoelectrically converted by the incident light are transferred to this P-N junction. The energy is accumulated in the diffusion layer 9 due to the energy gradient of the depletion layer 10 formed in the depletion layer 10 . The accumulated charge is detected by electrically operating the readout electrode 6 and the transfer electrode 3. In this case, since it is not necessary to apply an electric field to the photosensitive element region A to form the depletion layer 10 for charge storage, there is no need to form the transparent electrode 8, unlike the MOS type element shown in FIG. do not have.

しかし、このよりなP−N接合を有するフォトダイオー
ドが感光素子領域Aに形成された素子でも、拡散層9の
濃度が低い場合には、この拡散層9が基板1と基板1上
の絶縁膜2との界面まで空乏化する。従って上述のMO
S形の素子の場合と同様に上記界面の表面準位の影響に
より局所的な暗電流の発生を招くものでめった。
However, even in an element in which a photodiode having such a strong P-N junction is formed in the photosensitive element area A, if the concentration of the diffusion layer 9 is low, the diffusion layer 9 is connected to the substrate 1 and the insulating film on the substrate 1. Depletion occurs up to the interface with 2. Therefore, the above MO
As in the case of the S-type element, local dark current was generated due to the influence of the surface state at the interface.

また、拡散層9の不純物濃度が高い場合には、空乏層の
広がシが小さいため、感光素子領域A全体の上記界面付
近が空乏化されることはないものの、拡散l1i9に沿
ったP−N接合面が基板10表面にまで及んでいるため
、このP−N接合面に沿って形成される空乏層10のう
ち図の破線1ノで示す付近の空乏層部分では、やはり界
面の表面準位の影響を受ける。従って、この場合も暗電
流のばらつきを避けることができなかったO 〔発明の目的〕 本発明は、上記のような点に鑑みなされたもので、局所
的な暗電流の発生や各感光素子間の暗電流によるばらつ
きの防止された固体撮像素子を提供しようとするもので
ある。
Furthermore, when the impurity concentration of the diffusion layer 9 is high, the spread of the depletion layer is small, so although the vicinity of the interface in the entire photosensitive element region A is not depleted, the P- Since the N junction surface extends to the surface of the substrate 10, the depletion layer portion near the broken line 1 in the figure out of the depletion layer 10 formed along this P-N junction surface is also located near the surface of the interface. Affected by position. Therefore, in this case as well, variations in dark current could not be avoided. An object of the present invention is to provide a solid-state imaging device in which variations due to dark current are prevented.

〔発明の概要〕[Summary of the invention]

すなわち本発明による固体撮像素子では、感光素子領域
の半導体基板とこれに接する絶縁膜との界面な空乏化さ
せないようにしπもので、単位セル内に電荷転送チャネ
ルおよび電荷転送電極、電荷読み出し電極を形成して所
定の電荷転送部を形成するとともに、感光素子部として
上記電荷転送部に隣接した半導体基板に基板とは逆形の
電荷蓄積領域と、この電荷蓄積領域上の半導体基板の表
面領域に転送キャリアとは逆形のキャリアの多数存在す
る空乏化防止層とを設けたものである。
That is, in the solid-state imaging device according to the present invention, a charge transfer channel, a charge transfer electrode, and a charge readout electrode are provided in a unit cell in order to prevent depletion at the interface between the semiconductor substrate in the photosensitive element region and the insulating film in contact therewith. In addition to forming a predetermined charge transfer portion, a charge storage region having an opposite shape to the substrate is formed on the semiconductor substrate adjacent to the charge transfer portion as a photosensitive element portion, and a surface region of the semiconductor substrate above the charge storage region is formed. Transfer carriers are provided with a depletion prevention layer in which a large number of carriers having the opposite shape exist.

この空乏化防止層とじてに、例えば上記電荷蓄積領域上
に絶縁膜を介して、上記転送キャリアを排斥する向きの
電圧の印加された透明電極、あるいは上記電荷蓄積領域
上を覆うように形成されたこの電荷蓄積領域とに逆形の
不純物層を設けることにより形成する。
This depletion prevention layer may be formed, for example, on the charge storage region via an insulating film, by a transparent electrode to which a voltage is applied in a direction that excludes the transferred carriers, or so as to cover the charge storage region. It is formed by providing an impurity layer having the opposite shape to the charge storage region of the octopus.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例につき説明する
An embodiment of the present invention will be described below with reference to the drawings.

第3図は、MOS形の感光素子領域Aを有する固体撮像
素子の一例を示す図で、電荷転送領域Bの構成は従来と
同様であるので、第1図と同一構成部分には同一符号を
付してその説明を省略する。
FIG. 3 is a diagram showing an example of a solid-state image sensor having a MOS-type photosensitive element area A. The structure of the charge transfer area B is the same as the conventional one, so the same components as in FIG. The explanation will be omitted.

第3図において、感光素子領域Aの半導体基板1に電荷
蓄積領域20として半導体基板1と逆導電形の拡散領域
を形成する。そして、このN形の拡散領域上に絶縁膜2
を介して例えばポリシリコンからなる透明電極21を形
成し、この透明電極には負電圧を印加しておく。
In FIG. 3, a diffusion region having a conductivity type opposite to that of the semiconductor substrate 1 is formed as a charge storage region 20 in the semiconductor substrate 1 in the photosensitive element region A. Then, an insulating film 2 is placed on this N-type diffusion region.
A transparent electrode 21 made of polysilicon, for example, is formed through the transparent electrode 21, and a negative voltage is applied to this transparent electrode.

このような構成の素子において、光シールド膜7の窓部
から入射した光(放射線)により半導体内には負電荷の
キャリアが発生する。ここで、上記したように透明電極
21にに負電圧が印加されているため、基板1表面付近
の負電荷は遠ざけられ、代わって正孔を多数有する層す
なわち反転層22が空乏化防止層としてこの感光素子領
域Aの基板表面に形成される。
In an element having such a configuration, negative charge carriers are generated within the semiconductor due to light (radiation) incident through the window portion of the light shield film 7. Here, since a negative voltage is applied to the transparent electrode 21 as described above, the negative charges near the surface of the substrate 1 are moved away, and the layer having a large number of holes, that is, the inversion layer 22, acts as a depletion prevention layer instead. It is formed on the substrate surface of this photosensitive element area A.

従って、光電変換された負電荷は基板1との間のP−N
接合面と反転層22により囲まれた電荷蓄積領域20円
に蓄積される。すなわち、基板1と絶縁膜2との界面付
近には光電変換され−たキャリアが存在しなくなり、上
記界面における表面準位の影響を受けることがない。
Therefore, the photoelectrically converted negative charge is transferred to the P-N between the substrate 1
The charge is accumulated in a charge accumulation region 20 yen surrounded by the junction surface and the inversion layer 22 . That is, photoelectrically converted carriers no longer exist near the interface between the substrate 1 and the insulating film 2, and are not affected by the surface states at the interface.

第4図は、本発明の第2の実施例を示すもので、感光菓
子領域AiC,基板1と逆導電形のN20よりも拡散深
さの浅いP膨拡散層23を空乏化防止層として形成する
 ここでこのP膨拡散層23を、上記電荷蓄積領域2θ
と基板1とのP−N接合面が基板1上に達することがな
いように十分な不純物濃度で上記電荷蓄積領域20上に
この蓄積領域20よりもやや広い領域に渡って形成する
FIG. 4 shows a second embodiment of the present invention, in which a P expansion diffusion layer 23 having a shallower diffusion depth than N20 of the opposite conductivity type to the photosensitive confectionery region AiC and the substrate 1 is formed as a depletion prevention layer. Here, this P swelling diffusion layer 23 is connected to the charge storage region 2θ
It is formed on the charge storage region 20 over an area slightly wider than this storage region 20 with sufficient impurity concentration so that the PN junction surface between the substrate 1 and the substrate 1 does not reach the top of the substrate 1.

このような素子では感光素子領域Aを基板1に対し垂直
方向に見た場合、P−N−Pの順に領域が接合している
。これらの領域の接合を負電荷を基準としたエネルギー
レベルで考えると、N領域はP領域に比べ低いため、N
形の電荷蓄積領域20で光電変換された負電荷はこの電
荷蓄積領域20内に残る。また、P形の基板1円および
P膨拡散層23内で生成された負電荷も、P−N接合の
空乏層まで拡散により移動して空乏層内に入るとエネル
ギーレベルの低いN影領域すなわち電荷蓄積領域20内
に蓄積される。
In such an element, when the photosensitive element area A is viewed in a direction perpendicular to the substrate 1, the areas are joined in the order of PNP. Considering the junction of these regions in terms of the energy level based on the negative charge, the N region is lower than the P region, so the N
The negative charges photoelectrically converted in the shaped charge storage region 20 remain within the charge storage region 20 . In addition, the negative charges generated in the P type substrate and the P expansion diffusion layer 23 also move to the depletion layer of the P-N junction by diffusion and enter the depletion layer, where the energy level is low in the N shadow region. Accumulated within the charge storage region 20 .

従ってこの場合も転送キャリアとなる負電荷が基板1内
部の電荷蓄積領域20内に蓄えられ、基板1と絶縁膜2
との界面の影響を殆んど受けずに済む。
Therefore, in this case as well, negative charges serving as transfer carriers are accumulated in the charge storage region 20 inside the substrate 1, and the substrate 1 and the insulating film 2 are
It is almost unaffected by the interface with the

尚、上記実施例ではP形基板1を用いて素子を形成する
場合につき述べたが、勿論N形基板を用い、各領域の導
電形および透明電極に印加する電圧の向きを逆にしても
よい。
Incidentally, in the above embodiment, a case has been described in which an element is formed using a P-type substrate 1, but it is of course possible to use an N-type substrate and reverse the conductivity type of each region and the direction of the voltage applied to the transparent electrode. .

〔発明の効果〕〔Effect of the invention〕

以上のように本発明による固体撮像素子でに、感光素子
領域に基板と逆導電形の拡散層を電荷蓄積領域として形
成し、この拡散層の上面に絶縁膜を介して転送キャリア
と同一導電形の電圧(転送キャリアを排斥する向きの電
圧)を印加する或いは、基板と同一導電形で上記拡散層
よりも広くかつ拡散深さの浅い拡散層を上記電荷蓄積層
上に重ねて設けることにより、基板と逆形の電荷蓄積領
域の表面領域に転送キャリアと逆形のキャリアの多数存
在する空乏化防止層を形成するようにしたものである。
As described above, in the solid-state image sensor according to the present invention, a diffusion layer of the opposite conductivity type to that of the substrate is formed in the photosensitive element region as a charge storage region, and an insulating film is placed on the upper surface of this diffusion layer to form a diffusion layer of the same conductivity type as the transfer carrier. By applying a voltage (voltage in a direction that excludes transferred carriers), or by providing a diffusion layer of the same conductivity type as the substrate, which is wider than the diffusion layer and has a shallower diffusion depth, over the charge storage layer, A depletion prevention layer in which a large number of carriers having a shape opposite to that of the transfer carriers exists is formed in a surface region of a charge storage region having a shape opposite to that of the substrate.

これにより、感光素子領域の半導体基板と絶縁膜との界
面付近に空乏層が形成されず、入射光(放射線)によっ
て光電変換されたキャリアは上記界面の表面準位(5u
rface 5tate )やいわゆ6fixedax
ide charge等の影響を受けにくくなり、上記
界面の影響による局所的な暗電流や感光素子間の暗電流
のばらつきの抑制された固体撮像素子を提供することが
できる。
As a result, a depletion layer is not formed near the interface between the semiconductor substrate and the insulating film in the photosensitive element region, and carriers photoelectrically converted by incident light (radiation) are transferred to the surface level (5u
rface 5tate) Yaiwaiyu 6fixedax
It is possible to provide a solid-state imaging device that is less susceptible to effects such as ide charge and suppresses local dark current due to the influence of the interface and variations in dark current between photosensitive elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来の固体撮像索子の断
面構造を示す図、第3図は本発明の一実施例による固体
撮像索子の断面構造を示す図、第4図は本発明の他の実
施例による固体撮像索子の断面構造を示す図である。 1・・・半導体基板、2・・・絶縁膜、3・・・電荷転
送電極、4・・・電荷転送チャネル、5・・・障壁領域
、6・・・電荷読み出し電極、7・・・光シールド膜、
10・・・空乏層、20・・・電荷蓄積領域、2ノ・・
・透明電極、22・・・反転層(空乏化防止層)、23
・・・P膨拡散層(空乏化防止層)、A・・・感光素子
領域、B・・・電荷転送領域、C・・・単位セル。
1 and 2 are diagrams showing the cross-sectional structure of a conventional solid-state imaging probe, respectively. FIG. 3 is a diagram showing a cross-sectional structure of a solid-state imaging probe according to an embodiment of the present invention. FIG. 4 is a diagram showing the cross-sectional structure of a solid-state imaging probe according to an embodiment of the present invention. FIG. 3 is a diagram showing a cross-sectional structure of a solid-state imaging probe according to another embodiment. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Insulating film, 3... Charge transfer electrode, 4... Charge transfer channel, 5... Barrier region, 6... Charge readout electrode, 7... Light shield membrane,
10... Depletion layer, 20... Charge storage region, 2...
・Transparent electrode, 22... Inversion layer (depletion prevention layer), 23
... P swelling diffusion layer (depletion prevention layer), A... photosensitive element region, B... charge transfer region, C... unit cell.

Claims (3)

【特許請求の範囲】[Claims] (1) 入射光を光電変喚し転送キャリアを生成する感
光素子部と、電荷転送チャネル、電荷転送電極、電荷読
み出し電極とを含み上記転送キャリアを転送する電荷転
送部とを同一半導体基板に具備する固体撮像素子におい
て、上記感光素子部が1.上記基板内に形成されたこの
基板とは逆形の電荷蓄積領域と、この電荷蓄積領域の上
部領域に上記転送キャリアとは逆形のキャリアを多数含
む空乏化防止層とを具備することを特徴とする固体撮像
素子。
(1) A photosensitive element section that photoelectrically transforms incident light to generate transfer carriers, and a charge transfer section that transfers the transfer carriers and includes a charge transfer channel, a charge transfer electrode, and a charge readout electrode are provided on the same semiconductor substrate. In the solid-state imaging device, the photosensitive element portion has 1. It is characterized by comprising a charge storage region formed in the substrate and having a shape opposite to that of the substrate, and a depletion prevention layer containing a large number of carriers having a shape opposite to that of the transfer carriers in an upper region of the charge storage region. A solid-state image sensor.
(2)上記空乏化防止層は、上記電荷蓄積領域上に絶縁
膜を介して設けられ、上記転送キャリアを排斥する向き
の電圧の印加された透明電極により形成されることを特
徴とする特許請求の範囲第1項記載の固体撮像素す。
(2) A patent claim characterized in that the depletion prevention layer is formed by a transparent electrode provided on the charge storage region via an insulating film and to which a voltage is applied in a direction to exclude the transferred carriers. The solid-state image sensor according to the range 1 above.
(3)上記空乏化防止層は、上記電荷蓄積領域上を覆う
ようにこの電荷蓄積領域とは逆形の不純物を多数含む不
純物層により形成されることを特徴とする特許請求の範
囲第1項記載の固体撮像素子。
(3) The depletion prevention layer is formed of an impurity layer containing a large number of impurities having a shape opposite to that of the charge storage region so as to cover the charge storage region. The solid-state imaging device described.
JP58173507A 1983-09-20 1983-09-20 Solid-state image sensor Pending JPS6065565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173507A JPS6065565A (en) 1983-09-20 1983-09-20 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173507A JPS6065565A (en) 1983-09-20 1983-09-20 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPS6065565A true JPS6065565A (en) 1985-04-15

Family

ID=15961805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173507A Pending JPS6065565A (en) 1983-09-20 1983-09-20 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS6065565A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276669A (en) * 1985-09-30 1987-04-08 Toshiba Corp Solid-state image pickup device
JPS63114255A (en) * 1986-10-31 1988-05-19 Hamamatsu Photonics Kk Solid-state image sensing device
JPH01133359A (en) * 1987-11-18 1989-05-25 Hamamatsu Photonics Kk Solid-state image sensing device
JPH01227470A (en) * 1988-03-08 1989-09-11 Toshiba Corp Solid-state image sensing device
JPH02218162A (en) * 1989-02-20 1990-08-30 Nec Corp Solid-state image sensing element
JPH02280377A (en) * 1989-04-20 1990-11-16 Matsushita Electron Corp Solid-state image pickup device and driving method for same
JPH04245679A (en) * 1991-01-31 1992-09-02 Toshiba Corp Solid-state imaging device
JPH11121729A (en) * 1997-08-20 1999-04-30 Internatl Business Mach Corp <Ibm> Band gap designed active pickcell cell
JP2007088305A (en) * 2005-09-22 2007-04-05 Sony Corp Solid-state imaging device, manufacturing method thereof and camera
JP2007225254A (en) * 2006-02-27 2007-09-06 Fujitsu General Ltd Outdoor unit for air conditioner
JP2009278129A (en) * 2009-08-17 2009-11-26 Sony Corp Solid-state imaging device and manufacturing method thereof
US8349638B2 (en) 2004-08-10 2013-01-08 Sony Corporation Method of manufacturing back illuminated solid-state imaging device with improved transmittance of visible light
WO2016013227A1 (en) * 2014-07-25 2016-01-28 株式会社ブルックマンテクノロジ Optical detection element and solid-state image pickup device
JP2018160858A (en) * 2017-03-23 2018-10-11 池上通信機株式会社 Imaging device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276669A (en) * 1985-09-30 1987-04-08 Toshiba Corp Solid-state image pickup device
JPH0521351B2 (en) * 1985-09-30 1993-03-24 Tokyo Shibaura Electric Co
JPS63114255A (en) * 1986-10-31 1988-05-19 Hamamatsu Photonics Kk Solid-state image sensing device
JPH01133359A (en) * 1987-11-18 1989-05-25 Hamamatsu Photonics Kk Solid-state image sensing device
JPH01227470A (en) * 1988-03-08 1989-09-11 Toshiba Corp Solid-state image sensing device
JPH02218162A (en) * 1989-02-20 1990-08-30 Nec Corp Solid-state image sensing element
JPH02280377A (en) * 1989-04-20 1990-11-16 Matsushita Electron Corp Solid-state image pickup device and driving method for same
JPH04245679A (en) * 1991-01-31 1992-09-02 Toshiba Corp Solid-state imaging device
JPH11121729A (en) * 1997-08-20 1999-04-30 Internatl Business Mach Corp <Ibm> Band gap designed active pickcell cell
US6278102B1 (en) 1997-08-20 2001-08-21 International Business Machines Corporation Method of detecting electromagnetic radiation with bandgap engineered active pixel cell design
US8349638B2 (en) 2004-08-10 2013-01-08 Sony Corporation Method of manufacturing back illuminated solid-state imaging device with improved transmittance of visible light
US8669634B2 (en) 2004-08-10 2014-03-11 Sony Corporation Solid-state imaging device with a hole storage layer
JP2007088305A (en) * 2005-09-22 2007-04-05 Sony Corp Solid-state imaging device, manufacturing method thereof and camera
JP2007225254A (en) * 2006-02-27 2007-09-06 Fujitsu General Ltd Outdoor unit for air conditioner
JP2009278129A (en) * 2009-08-17 2009-11-26 Sony Corp Solid-state imaging device and manufacturing method thereof
WO2016013227A1 (en) * 2014-07-25 2016-01-28 株式会社ブルックマンテクノロジ Optical detection element and solid-state image pickup device
JPWO2016013227A1 (en) * 2014-07-25 2017-04-27 株式会社ブルックマンテクノロジ Photodetector and solid-state imaging device
US9923006B2 (en) 2014-07-25 2018-03-20 Brookman Technology, Inc. Optical detection element and solid-state image pickup device
JP2018160858A (en) * 2017-03-23 2018-10-11 池上通信機株式会社 Imaging device

Similar Documents

Publication Publication Date Title
JP4309574B2 (en) Photodiode and sensor array
US5898195A (en) Solid-state imaging device of a vertical overflow drain system
JPS6065565A (en) Solid-state image sensor
JP2008060195A (en) Solid-state imaging device and method for manufacturing the same
US4748486A (en) Solid-state image sensor
JPH07107928B2 (en) Solid-state imaging device
JP2001060680A (en) Solid-state image pickup device and manufacture thereof
JPH0430192B2 (en)
JPS6286756A (en) Optoelectric transducer
JPS61229355A (en) Solid-state image pickup device
JPH0135546B2 (en)
JPH0438872A (en) Solid camera device
JPS6160592B2 (en)
JPH04329674A (en) Laminated type solid state image sensor
JP2901328B2 (en) Solid-state imaging device
WO2023281856A1 (en) Light-receiving device, x-ray imaging device, and electronic equipment
JPH01168059A (en) Solid state image sensor
JPH02304976A (en) Solid image-puckup element
JPS6320385B2 (en)
JPS6255960A (en) Solid state image pick-up device
JPH0794699A (en) Solid state image sensor
JPS59129463A (en) Solid-state image pickup device
JPS6255961A (en) Solid state image pick-up device
JPS62269355A (en) Solid-state image sensing element
JPH02218160A (en) Solid-state image sensing element