JPS606485B2 - Epi-fluorescence photometric microscope - Google Patents
Epi-fluorescence photometric microscopeInfo
- Publication number
- JPS606485B2 JPS606485B2 JP15944877A JP15944877A JPS606485B2 JP S606485 B2 JPS606485 B2 JP S606485B2 JP 15944877 A JP15944877 A JP 15944877A JP 15944877 A JP15944877 A JP 15944877A JP S606485 B2 JPS606485 B2 JP S606485B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- excitation
- sample
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Microscoopes, Condenser (AREA)
Description
【発明の詳細な説明】
本発明は落射型の蜜光側光顕微鏡に関し、特に試料の励
起波長スペクトルを求める際の装置関数を除去した落射
型蜜光側光顕微鏡に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epi-illuminated light microscope, and more particularly to an epi-illuminated light microscope in which an apparatus function for determining the excitation wavelength spectrum of a sample is removed.
蟹光顕微鏡が広く一般に行き渡った今日、マクロの分光
技術の発達と相まって、顕微鏡レベルでの蟹光の発光強
度や蟹光波長スペクトルあるいは励起波長スペクトルを
求め、物質や蟹光色素の同定判定、鱗折を行なう顕微綾
光側光技術が盛んに用いられるようになってきた。この
ような顕徴蟹光側光技術に用いられる落射型蟹光側光顕
微鏡を第1図によって説明する。第1図において、1は
光源、2は励起側モノクロメー夕、3はダィクロイック
ミラ−、4は対物レンズ、5はステージ、6は試料、7
は顕微鏡の光路中に挿脱できる観察用プリズム、8は後
眼レンズ、9は蜜光側モノクロメータ、10はフオトマ
ル等で構成される検知器「 11は記録計である。この
ような顕微鏡において試料6の励起波長スペクトルを求
めるには、観察用プリズム7を光路中に挿入して視野を
決め、その後観察用プリズム7を光路から取外し、蟹光
側モノクロ〆−夕9を試料6の最大蟹光波長近傍のある
波長入Fに設定し「励起側モノクロメータ2を走査する
。この時、検知器10から得られるスペクトルS,入は
、顕微鏡の各要素の有する波長特性の影響である装置関
数と試料6の蟹光波長スペクトルとの積で与えられる。
蟹光側モノクロメータ9は、試料6からの蟹光のうち波
長入Fの光東のみしか透過しないから、試料6からの蟹
光に対する対物レンズ4、ターーィクロィツクミラー3
、蟹光側モノクロメータ9、検知器10の波長特性は考
える必要がない。それ故、装置関数としては励起光東に
関係する光源1、励起側モノクロメー夕2、ダィクロィ
ックミラ−3、対物レンズ4の波長特性を考えればよい
。いま励起光東の波長入に対する光源1、励起側モノク
ロメー夕2、ダィクロィックミラー3、対物レンズ4の
波長特性をそれぞれL入、M,入トBX「 0入とすれ
ば、検知器10で得られるスペクトルS,入と試料6の
励起波長スペクトルST入F入との間には次式(1}が
成立する。SI入=L人■MI入・ST人F入川川”【
1)すなわち、上述の従来技術では検知器10から得ら
れるスペクトルS,入は「試料6の励起波長スペクトル
STふ入の外に光源亀〜励起側モノクロメータ2、ダィ
クロイックミラー3、対物レンズ4の波長特性を含んだ
値となってしまう。Nowadays, crab light microscopes are widely used, and along with the development of macro spectroscopic technology, the emission intensity of crab light, the crab light wavelength spectrum, or the excitation wavelength spectrum can be determined at the microscopic level, and it is possible to determine the identification of substances and crab photopigments, and to determine the identity of crab light pigments and scales. Microscopic twilling technology that performs folding has come to be widely used. An epi-illuminated side light microscope used in such a revealing side light technique will be explained with reference to FIG. In Figure 1, 1 is a light source, 2 is an excitation side monochromator, 3 is a dichroic mirror, 4 is an objective lens, 5 is a stage, 6 is a sample, and 7
is an observation prism that can be inserted into and removed from the optical path of the microscope, 8 is a rear eye lens, 9 is a monochromator on the honeycomb side, 10 is a detector consisting of a photo mark, etc. 11 is a recorder. In such a microscope, To obtain the excitation wavelength spectrum of the sample 6, insert the observation prism 7 into the optical path to determine the field of view, then remove the observation prism 7 from the optical path, and place the monochrome light side 9 on the largest crab of the sample 6. The excitation side monochromator 2 is scanned by setting a certain wavelength input F near the optical wavelength.At this time, the spectrum S, input obtained from the detector 10 is an instrument function that is affected by the wavelength characteristics of each element of the microscope. and the crab light wavelength spectrum of sample 6.
Since the crab light side monochromator 9 transmits only the light of the wavelength F of the crab light from the sample 6, the objective lens 4 and the turquoise mirror 3 for the crab light from the sample 6 are used.
There is no need to consider the wavelength characteristics of the crab light side monochromator 9 and detector 10. Therefore, as device functions, it is sufficient to consider the wavelength characteristics of the light source 1, excitation side monochromator 2, dichroic mirror 3, and objective lens 4 related to the excitation light. Now, if the wavelength characteristics of the light source 1, the excitation side monochromator 2, the dichroic mirror 3, and the objective lens 4 are L input, M, and BX 0 input for the wavelength input of the excitation light east, then the detector The following formula (1) holds between the spectrum S, obtained in step 10, and the excitation wavelength spectrum of sample 6, ST input, F input. SI input = L person ■ MI input, ST person F
1) In other words, in the above-mentioned conventional technology, the spectrum S obtained from the detector 10 is "in addition to the excitation wavelength spectrum ST of the sample 6, there are The value will include the wavelength characteristics of the lens 4.
本発明は「試料の励起波長スペクトルを求める際に、検
知器からの信号に含まれる装置関数を除去し、試料の励
起波長スペクトルのみを取り出すことのできる落射型の
蟹光側光顕微鏡の提供を目的とする。The present invention aims to provide an epi-illumination type crab-light side light microscope that is capable of removing the device function included in the signal from the detector and extracting only the excitation wavelength spectrum of the sample when determining the excitation wavelength spectrum of the sample. purpose.
以下第2図に基づいて本発明の実施例を説明する。An embodiment of the present invention will be described below based on FIG.
クセノソランプ等の光源2黄からの光東は励起側モノク
ロ〆山夕22へ入射する。Light from a light source 2 such as a xenosol lamp enters the excitation side monochrome end 22.
励起側モノクロメータ22は光源21からの入射光東の
うち「あらかじめ設定した波長の光東のみを選択して射
出する。励起側モノクロメータ22から射出した光東は
、ダィクロィックミラー23で反射され、対物レンズ2
4を透過してステ−ジ25上の被測定物26を照明する
。被測定物26からの光東は、対物レンズ24、によっ
てダィクロィックミラ−23を透過してスリット27上
に集光する。スリット27に設けたピンホールを透過し
た光東は蟹光側モノクロメータ29に入射する。蟹光側
モノクロメータ29はあらかじめ設定した波長の光東の
みを選択して射出する。蟹光側モノクロメータ29を射
出した光東は検知器3川こよって、その光強度に比例し
た電気信号に変えられる。スイッチSWは検知器30か
らの信号を割算回路31の一方の入力端子aもしくは記
憶回路32の入力端子bに選択的に印加する。割算回路
31の他方の入力端子cには記憶回路32から読み出さ
れた信号が印加される。記憶回路32からの信号の読み
出し‘ま、同期手段33からの信号によって行なわれる
。割算回路31は両入力信号の比をとり、記録計34を
駆動する。測定は以下のように行なう。The excitation side monochromator 22 selects and emits only the light having a preset wavelength out of the incident light from the light source 21. reflected, objective lens 2
4 to illuminate the object 26 on the stage 25. Light from the object to be measured 26 is transmitted through the dichroic mirror 23 by the objective lens 24 and focused onto the slit 27 . The light transmitted through the pinhole provided in the slit 27 enters the crab light side monochromator 29. The monochromator 29 on the crab light side selects and emits only light having a preset wavelength. The light emitted from the monochromator 29 on the crab light side is converted into an electrical signal proportional to the light intensity by three detectors. The switch SW selectively applies the signal from the detector 30 to one input terminal a of the divider circuit 31 or the input terminal b of the memory circuit 32. A signal read from the storage circuit 32 is applied to the other input terminal c of the division circuit 31. Reading of signals from the storage circuit 32 is performed by signals from the synchronizing means 33. A divider circuit 31 takes the ratio of both input signals and drives a recorder 34. The measurement is carried out as follows.
まずステージ25上の被測定物としてローダミンB3g
′そエチレングリコール溶液を用いる。ローダミンB3
g′そエチレングリコール溶液は励起光東の波長(ほぼ
30価m〜60仇m)にかかわらず蟹光の発光効率の一
定な蟹光物質である。このローダミンB聡/そエチレン
グリコール溶液は、周知のマイクロセルに入れてステー
ジ上に教壇される。この状態で蟹光側モノクロメーク2
9を試料の最大蟹光波長近傍のある値入Fに設定しト励
起側モノクロメータ22を走査する。この時、スイッチ
SWは端子bに接続されている。励起側モノクロメー夕
22の設定波長を入.とし光源21、励起側モノクロメ
ータ22「ダィクロィックミラ−23、対物レンズ24
の波長特性をそれぞれL^,,M人・,B入・,0入・
とすれば、検知器30で得られるスペクトル強度S2人
,はローダミンBの蟹光スペクトルをkとして次式‘2
}で与えられる。S2^・ =L入1・MI入1・B入
1 。First, as an object to be measured on the stage 25, Rhodamine B3g
'Use an ethylene glycol solution. Rhodamine B3
G' The ethylene glycol solution is a light-emitting substance that has a constant luminous efficiency regardless of the wavelength of the excitation light (approximately 30 m to 60 m). This rhodamine B/so ethylene glycol solution is placed in a well-known microcell and placed on a stage. In this state, crab light side monochrome makeup 2
9 is set to a certain value F near the maximum light wavelength of the sample, and the excitation side monochromator 22 is scanned. At this time, switch SW is connected to terminal b. Enter the set wavelength of the excitation side monochromator 22. A light source 21, an excitation side monochromator 22, a dichroic mirror 23, an objective lens 24
The wavelength characteristics of L^, , M people, B input, 0 input, respectively.
Then, the spectrum intensity S2 obtained by the detector 30 is calculated by the following formula '2, where k is the crab light spectrum of Rhodamine B.
} is given. S2^・ = 1 in L, 1 in MI, 1 in B.
。入1 0k ……{21スペクト
ル強度S2入i は励起側モノクロメータ22で設定さ
れる波長に従って順次記憶回路32へ記憶される。次に
ステージ25上に試料を教壇する。この時「蟹光側モノ
クロメー夕29は波長入Fに設定されたままであり、ス
イッチSWは端子aに接続されるように切換えられる。
このとき励起側モノクロ〆−夕22を走査すると励起側
モノクロメータ22の設定波長が入2の時、検知器30
からは次式(3}で与えられるスペクトル強度S3入2
が生ずる。S3入2 =L^2 ・MI^2 ・B^2
・。入2・ST人F入2……(3,ただしST入F入
2は励起側モノクロメータの設定波長^2のときの試料
の励起波長スペクトルである。. Input 1 0k . Next, the sample is placed on the stage 25. At this time, the light-side monochromator 29 remains set to wavelength input F, and the switch SW is switched to be connected to terminal a.
At this time, when the excitation side monochromator 22 is scanned, when the set wavelength of the excitation side monochromator 22 is on 2, the detector 30
From, the spectral intensity S3 input 2 given by the following equation (3)
occurs. S3 input 2 = L^2 ・MI^2 ・B^2
・. Input 2・ST person F input 2...(3, However, ST input F input 2 is the excitation wavelength spectrum of the sample when the set wavelength of the excitation side monochromator is ^2.
同期手段33は、ステージ25上に試料を戦置した時、
励起側モノクロメー夕22の設定波長入2 に同期した
波長における記憶回路32の記憶内容を読み出して割算
回路31に印加する。すなわち割算回路31は、ステー
ジ25上に試料を戦層した時とローダミンB3g/〆エ
チレングリコール溶液を敷遣した時の励起側モノクロメ
ータ22の設定波長の等しい場合、すなわち入,=入2
=^におけるスペクトル強度の間で比をとる。よって割
算回路31の出力は次式{4}で与えられる。幹−S学
入肌【4)式{4}‘こおいてk!ま既知の定数である
から、試料の励起波長スペクトルST入F入は容易に求
めることができる。When the sample is placed on the stage 25, the synchronization means 33
The contents stored in the storage circuit 32 at a wavelength synchronized with the set wavelength input 2 of the excitation side monochromator 22 are read out and applied to the division circuit 31. In other words, the dividing circuit 31 operates when the set wavelength of the excitation side monochromator 22 is the same when the sample is placed on the stage 25 and when the Rhodamine B3g/〆ethylene glycol solution is spread, that is, ON, = ON2.
Take the ratio between the spectral intensities at =^. Therefore, the output of the division circuit 31 is given by the following equation {4}. Trunk-S Gakuenhada [4) Formula {4}' Koitek! Since it is a known constant, the excitation wavelength spectrum ST and F of the sample can be easily determined.
なお、以上の実施例においていくつかの変形が可能であ
る。Note that some modifications are possible in the above embodiments.
例えば、先にステージ25上に試料を戦層して測定を行
ない、この結果を記憶回路32に記憶させ、後にローダ
ミンB3g′そエチレングリコール溶液をステージ25
上に載直して測定を行なっても同様の結果が得られる。
また、励起側モノクロメータ22の設定波長毎にローダ
ミンB3g′クェチレングリコール溶液と試料を交換し
て試料の励起波長スペクトルを求めるようにもできる。
以上述べたように本発明によれば、滋射型の蟹光側光顕
微鏡によって試料の励起波長スペクトルを求める際に、
検知器からの信号に含まれる装置関数を除去できる。For example, first, a sample is placed on the stage 25 for measurement, the results are stored in the memory circuit 32, and then a rhodamine B3g' and ethylene glycol solution is placed on the stage 25.
Similar results can be obtained even if the measurement is carried out by remounting the sample on top.
Furthermore, the excitation wavelength spectrum of the sample can be determined by replacing the sample with the rhodamine B3g' quetylene glycol solution for each set wavelength of the excitation side monochromator 22.
As described above, according to the present invention, when determining the excitation wavelength spectrum of a sample using a radiation type crab light side light microscope,
Instrument functions contained in the signal from the detector can be removed.
【図面の簡単な説明】
第1図は従来の頭徴蟹光額9光技術に用いられる蕗射型
蟹光側光顕微鏡の説明図、第2図は本発明の実施例の説
明図である。
主要部分の符号の説明、SW・・・・・・スイッチ、3
0…・・・検知器、31…・・・割算回路、32…・・
・記憶回路、33・・…・同期手段、34・・・・・・
記録計、25..・・・・ステージ、26・・・・・・
被測定物。
フャへ 図フャ2図[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is an explanatory diagram of a side-light microscope of a brush type used in the conventional 9-light technology, and Fig. 2 is an explanatory diagram of an embodiment of the present invention. . Explanation of symbols of main parts, SW...Switch, 3
0...detector, 31...divider circuit, 32...
・Memory circuit, 33... Synchronization means, 34...
Recorder, 25. .. ...Stage, 26...
Object to be measured. Figure 2
Claims (1)
段と、所定の波長の光を検出し、該検出した光を光電変
換する検知手段と、前記光源手段からの励起光にて試料
を落射照明し、該試料からの螢光を前記検知手段に入射
せしめる光学手段とを有する落射型の螢光測光顕微鏡に
おいて、入力端子からの光電変換信号を前記励起光の波
長に対応せしめて記憶する記憶手段と、2つの入力端子
を有し、そのうちの一方が前記記憶手段の出力端子に接
続される割算手段と、前記検知手段の出力を前記記憶手
段の入力端子と前記割算手段の他方の入力端子とに選択
的に入力せしめる選択手段と、前記記憶手段の記憶値か
ら前記光源手段の波長設定に同期せしめて、該設定波長
に対応する記憶値を呼び出す同期手段と、を有し、 前記割算手段の出力によって試料の励起波長スペクトル
を求めることを特徴とする螢光測光顕微鏡。[Scope of Claims] 1. Light source means for sequentially setting and emitting excitation light of different wavelengths, detection means for detecting light of a predetermined wavelength and photoelectrically converting the detected light, and excitation from the light source means. In an epi-illumination type fluorescence photometric microscope having an optical means for epi-illuminating a sample with light and making the fluorescent light from the sample enter the detection means, a photoelectric conversion signal from an input terminal is converted to the wavelength of the excitation light. a storage means for storing data in a corresponding manner; a dividing means having two input terminals, one of which is connected to the output terminal of the storage means; a selection means for selectively inputting an input to the other input terminal of the dividing means; and a synchronization means for calling a stored value corresponding to the set wavelength from the stored value of the storage means in synchronization with the wavelength setting of the light source means. A fluorescence photometric microscope characterized in that the excitation wavelength spectrum of the sample is determined by the output of the dividing means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15944877A JPS606485B2 (en) | 1977-12-28 | 1977-12-28 | Epi-fluorescence photometric microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15944877A JPS606485B2 (en) | 1977-12-28 | 1977-12-28 | Epi-fluorescence photometric microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5491345A JPS5491345A (en) | 1979-07-19 |
JPS606485B2 true JPS606485B2 (en) | 1985-02-19 |
Family
ID=15693967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15944877A Expired JPS606485B2 (en) | 1977-12-28 | 1977-12-28 | Epi-fluorescence photometric microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS606485B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61153585U (en) * | 1985-03-16 | 1986-09-24 | ||
JPS61153584U (en) * | 1985-03-16 | 1986-09-24 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6148353U (en) * | 1984-09-01 | 1986-04-01 |
-
1977
- 1977-12-28 JP JP15944877A patent/JPS606485B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61153585U (en) * | 1985-03-16 | 1986-09-24 | ||
JPS61153584U (en) * | 1985-03-16 | 1986-09-24 |
Also Published As
Publication number | Publication date |
---|---|
JPS5491345A (en) | 1979-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6051835A (en) | Spectral imaging apparatus and methodology | |
KR101260051B1 (en) | Apparatus and method to perform bright-field microscopy and fluorescence microscopy simultaneously for the live-cell imaging | |
US20130126755A1 (en) | Method and device for simultaneous multi-channel and multi-method acquisition of synchronized parameters in cross-system fluorescence lifetime applications | |
JPH0915171A (en) | Fluorescent image formation system and fluorescent image formation method | |
US20070057198A1 (en) | Apparatus for and method of measuring flourescence lifetime | |
Mossberg et al. | Detection of doubly stained fluorescent specimens using confocal microscopy | |
JP2002543378A (en) | Apparatus for optically evaluating an object array | |
US20220236109A1 (en) | System and method for hyperspectral imaging in highly scattering media by the spectral phasor approach using two filters | |
JPH0843739A (en) | Scanning optical microscope | |
US7474403B2 (en) | Device and method for measuring the optical properties of an object | |
Cardullo | Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy | |
JPS62192632A (en) | Microscope photometer | |
JPS606485B2 (en) | Epi-fluorescence photometric microscope | |
US11698301B2 (en) | Multiplexed sensor network using swept source Raman spectroscopy | |
US20230204510A1 (en) | Optical detector | |
JP6599018B2 (en) | Image acquisition system and image acquisition method | |
Williams et al. | High speed spectral fluorescence lifetime imaging for life science applications | |
JPH01188816A (en) | Spectral type scanning microscope | |
JPS606486B2 (en) | Transmission type fluorescence photometric microscope | |
JP2009058405A (en) | Optical analysis apparatus | |
JP2017036925A (en) | Optical measurement device and optical measurement method | |
JP2004354346A (en) | Measuring device | |
JP2683407B2 (en) | Photoelectric colorimeter | |
JP3855419B2 (en) | Laser microscope | |
JPS57147039A (en) | Data discriminating device for photometer |