JPS62192632A - Microscope photometer - Google Patents

Microscope photometer

Info

Publication number
JPS62192632A
JPS62192632A JP62031660A JP3166087A JPS62192632A JP S62192632 A JPS62192632 A JP S62192632A JP 62031660 A JP62031660 A JP 62031660A JP 3166087 A JP3166087 A JP 3166087A JP S62192632 A JPS62192632 A JP S62192632A
Authority
JP
Japan
Prior art keywords
photometer
microscope
chopper wheel
filters
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62031660A
Other languages
Japanese (ja)
Inventor
ペーター・バウルシユミツト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Carl Zeiss AG
Original Assignee
Carl Zeiss SMT GmbH
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH, Carl Zeiss AG filed Critical Carl Zeiss SMT GmbH
Publication of JPS62192632A publication Critical patent/JPS62192632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0096Microscopes with photometer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • G01N2021/174Optionally different kinds of measurements; Method being valid for different kinds of measurement either absorption-reflection or emission-fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2つの異なる波長で試料の螢光または吸収を
測定するための顕微鏡測光器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a microscopic photometer for measuring the fluorescence or absorption of a sample at two different wavelengths.

従来の技術 細胞生物学的研究に関しては、試料を標識するために、
極めて特殊な細胞特性もしくは試料特性の測定を許す生
物色素物質が次第に多く使用されている。標識の作用方
式は、化学的/生物学的反応の作用下で生物色素物質の
スペクトル挙動に変化が起ることを基礎としている。こ
れは第4図で略示しである。
Conventional techniques for labeling samples for cell biological research include:
Biological pigments are increasingly being used that allow the measurement of very specific cellular or sample properties. The mode of action of the label is based on the fact that a change occurs in the spectral behavior of the biological pigment substance under the action of a chemical/biological reaction. This is shown schematically in FIG.

例えば標識物質FURA−2は、被検細胞試料中の遊離
Caイオンの濃度の変化に暴露さねている場合には、第
3図で略示した形で同物質の螢光挙動を変化させる。従
って細胞中の遊離カルシウムイオンの濃度を、顕微鏡測
光器で2つの励起波長を用いて螢光測光による測定によ
って特定することができる。
For example, when the labeling substance FURA-2 is exposed to changes in the concentration of free Ca ions in a sample of cells to be tested, the fluorescent behavior of the substance changes in the manner shown schematically in FIG. The concentration of free calcium ions in cells can therefore be determined by fluorophotometric measurements using two excitation wavelengths in a microphotometer.

絶対強度のみ変化するが、スペクトル挙動は変らない従
来使用された標識に対して、最近の標識は相対測定の利
点を有する。従って例えば照明の装置特性および安定性
が省略される(係6(1985)、145〜157頁に
は、ライエン(Tsien)等によって、2つの異なる
波長で試料を励起するために2個の光源および光源の後
に接続された2個の可変モノクロメータ−を有する顕微
鏡測光器が記載されている。両モノクロ)−9−+7)
光はチヨツA −(Zerhacker )を介して顕
微鏡の照明光路に順次入力される。
In contrast to traditionally used labels, where only the absolute intensity changes, but the spectral behavior remains unchanged, modern labels have the advantage of relative measurements. Thus, for example, the device characteristics and stability of the illumination are omitted (Tsien et al. 6 (1985), pp. 145-157). A microscope photometer is described with two variable monochromators connected after the light source.
The light is sequentially input into the illumination optical path of the microscope via the Zerhacker.

この公知の装置は浪費的で高価であり、す↑に存在する
顕微鏡もしくは顕微鏡測光器にそのままあとから取付け
ることができない。
This known device is tedious and expensive and cannot be directly retrofitted to existing microscopes or microphotometers.

また、モノクロメータ−およびチョツパーホイー/l/
 (Zerhackerrad) o代りに1対の回転
干渉フイルタ−を使用することも提案された。このよう
な照明装置は例えば米国特許第3497690号1他の
目的に関して記載されている。
Also, monochromator and chopper wheel/l/
(Zerhackerrad) It has also been proposed to use a pair of rotating interference filters instead. Such a lighting device is described, for example, in US Pat. No. 3,497,690 1 for other purposes.

しかし前記両手段は根本的に、2つの異なる波長に従う
信号が測光器の検出器によって順次(二検出されるとい
う欠点を有する。この検出方式は、信号形が十分に保存
されていなければならず、従って広い増幅帯域幅の要求
される純粋な切換方法である。しかし広い増幅帯域幅に
よって測定系が環境光の障害および検出器ならびに増幅
器の雑音に対して敏感になる。従ってこのような方法の
検出範囲は限定されている。
However, both said means fundamentally have the disadvantage that signals following two different wavelengths are detected sequentially by the detector of the photometer. This detection method requires that the signal shape be well preserved. , thus requiring a wide amplification bandwidth, is a pure switching method.However, a wide amplification bandwidth makes the measurement system sensitive to ambient light disturbances and detector and amplifier noise. Detection range is limited.

本発明の課題は、2つの異なる波長で極めて鋭敏な測定
を許し、この際このよう、な測定に必要な照明装置を大
きな費用なしにかつ容易に、すfに存在する顕微鏡(=
あとから適合させることのできる顕微鏡測光器を提供す
ること〕ある。
The object of the invention is to allow extremely sensitive measurements at two different wavelengths, and to easily and without great expense provide the illumination equipment necessary for such measurements, which are present in the microscope (=
It is an object of the present invention to provide a microscope photometer that can be adapted later.

問題点を解決するための手段 前記課題は本発明により、ランプ(ランジノ1ウジング
)の代りに顕微鏡に取付は可能の照明ブロックが設けら
れていて、同照明ブロックが少なくとも2個のフイルタ
−およびこれらの2個のフィルタ′−を透過する光を異
なる周波数フ同時に変調する装置を包含しかつ試料から
放射する光の強度測定のために使用される検出器(光電
子増倍管)の後の検出チャンネルに、変調−装置の周波
数に同調される2個の狭帯域増幅器が並列接続で配置さ
れていることによって解決される。
Means for Solving the Problems According to the present invention, an illumination block that can be attached to a microscope is provided instead of a lamp (a one-piece housing), and the illumination block is connected to at least two filters and the like. a detection channel after the detector (photomultiplier tube) which contains a device for simultaneously modulating the light transmitted through two filters to different frequencies and is used for measuring the intensity of the light emitted by the sample; This is achieved by arranging two narrowband amplifiers in parallel, which are tuned to the frequency of the modulator.

前記手段によって、異なる波長での励起(二対応する信
号が測光器の検出装置によって同時に検出され、並行的
に評価される。検出エレクトロニクスの2個の並行分岐
における狭帯域の信号処理(二より高い信号/雑音比が
得られ、その結果検出感度が著しく改善される。
By said means, excitation at different wavelengths (two corresponding signals are detected simultaneously by the detection device of the photometer and evaluated in parallel; narrowband signal processing in two parallel branches of the detection electronics (two higher A signal/noise ratio is obtained, resulting in a significantly improved detection sensitivity.

さらに照明装置は変調可能な構成群として従来常用のラ
ンプハウジングの代りに顕微鏡測光器に容易に取付ける
ことができる。分割の異なる数列の孔路(Spur)を
有するチョツ・ぐ−ホイールまたは2つの異なる周波数
を有する両波長の光を同時に変調するための別個に制御
可能の元シャッターを設けるのが有利である。
Furthermore, the illumination device can be easily mounted as a modulator on the microscope photometer instead of the conventional lamp housing. It is advantageous to provide a separately controllable source shutter for simultaneously modulating the light of both wavelengths with two different frequencies or a double wheel with a number of rows of holes of different divisions.

照明ブロックには、異なる波長の光を分離するために使
用されるフイルタ−、例えば干渉フイルターが有利には
交換可能に配置されており、これによって励起波長を種
々の標識物質のスペクトル挙動に適合させることができ
る。
Filters, for example interference filters, which are used to separate light of different wavelengths are advantageously arranged interchangeably in the illumination block, thereby adapting the excitation wavelength to the spectral behavior of the various labeling substances. be able to.

本発明の他の利点は、次の実施例の説明から明らか(=
なる。
Other advantages of the invention are apparent from the following description of the embodiments (=
Become.

実施例 第6図で全構造を略示した測光器は、試料3から放射す
る、例えば螢光光束の検出のための検出器として光電子
増倍管2を有する従来の型の顕微鏡1から成る。試料3
を2つの異なる波長を有する光を励起するためには、変
調装置5を包含する照明ブロック生が用いられる。照明
ブロック生は第1・〜3図につい工さらに詳細に記載す
る。
Embodiment The photometer, the complete structure of which is shown schematically in FIG. 6, consists of a microscope 1 of conventional type with a photomultiplier tube 2 as a detector for the detection of e.g. a fluorescent light flux emitted by a sample 3. Sample 3
In order to excite light with two different wavelengths, an illumination block generator containing a modulator 5 is used. The construction of the lighting block is described in more detail in Figures 1 to 3.

変調装置5は制御装置6によって制御され、2つの異な
る周波数f1およびf2を有する照明光の2つの部分光
束の強度を変調する。2つの周波数はまたrefl’お
よびref 2を付した導線を介して参照周波数として
2個の並列狭帯域増幅器PSDlおよびPSD2に伝送
されるが、これら増幅器のインプットは光電子増倍管2
の後に接続された前増幅器7のアウトプットに結合され
ている。
A modulation device 5 is controlled by a control device 6 and modulates the intensity of two partial beams of illumination light with two different frequencies f1 and f2. The two frequencies are also transmitted as reference frequencies via conductors labeled refl' and ref 2 to two parallel narrowband amplifiers PSDl and PSD2, whose inputs are connected to photomultiplier tube 2.
is coupled to the output of a preamplifier 7 connected after the preamplifier 7.

狭帯域増幅器PSDIおよびPSD2は、その都度の参
照周波数ref lおよびref 2で動作する(ロッ
クイン法= 1ock −in −Technik)位
相選択整流器を包含する。この場合には、光電子増倍管
2から送出された信号E(その時間的経過を第7図で示
す)から、2つの異なる励起波長1の試料3の螢光光束
の強度に相応する2つの別々の信号A1およびA2が、
狭帯域増幅器PSD1およびPSD2のアウトプットに
発生する。信号A1およびA2は多重装量(Multi
plexer ) 8 ニよツーic受信され、lf−
ログ−デジタル変換器9での変換後に、例えば試料3中
に含有されたCa  イオンの濃度を引算するためにコ
ンピュータ1oに伝送される。
The narrowband amplifiers PSDI and PSD2 include phase-selective rectifiers operating at the respective reference frequencies ref l and ref 2 (lock-in method = 1ock-in-Technik). In this case, from the signal E sent out from the photomultiplier tube 2 (its time course is shown in FIG. 7), two signals corresponding to the intensities of the fluorescent light beams of the sample 3 at two different excitation wavelengths 1 are obtained. Separate signals A1 and A2 are
occurs at the outputs of narrowband amplifiers PSD1 and PSD2. Signals A1 and A2 are multiplexed (Multi
plexer) 8 Niyo two IC received, lf-
After the conversion in the log-to-digital converter 9, it is transmitted to the computer 1o, for example in order to subtract the concentration of Ca 2 contained in the sample 3.

変調装置5の制御装置6と多重装置8およびコンピュー
ター10の動作周波数との間の同期化は本発明(−よる
この装置の場合には必要ない。
Synchronization between the control device 6 of the modulator 5 and the operating frequencies of the multiplexer 8 and the computer 10 is not necessary in the case of this device according to the invention.

第1a図には、使用される照明ブロック手が詳細に図示
しである。同ブロックは密閉ハウジング26から成る。
FIG. 1a shows a detailed illustration of the lighting blocks used. The block consists of a closed housing 26.

このハウジングは従来そこに取付けられた顕微鏡ランプ
の代りに、慣用の支持部材(Aufnameschwa
 Ibe )11によって顕微鏡測光器のスタンド25
に取付けられている。ハウジング26の内部には、高出
力光源12、例えば相互に正反対側で対向している2個
のランプコレクター13および14を有する水銀高圧ラ
ンプが存在している。ランプ12から放射する2つの光
束は、変向鏡15および16によって異なるスにクトル
透過率を有する各1個の励起フイルタ−17および18
に送られる。フイルタ−17および18は例えば、第3
図でA1およびA2で示しである2つの波長の近傍、例
えば340 nmおよび380 nmにその透過領域を
有する干渉フイルタ−fある。
This housing is equipped with a conventional supporting member (Aufnameschwa) instead of the microscope lamp previously mounted thereon.
Microscope photometer stand 25 by Ibe) 11
installed on. Inside the housing 26 there is a high-power light source 12, for example a mercury high-pressure lamp with two lamp collectors 13 and 14 diametrically opposed to each other. The two beams emanating from the lamp 12 are passed through deflection mirrors 15 and 16 into excitation filters 17 and 18 each having a different transmittance.
sent to. Filters 17 and 18 are, for example, third
There is an interference filter f having its transmission region in the vicinity of two wavelengths, for example 340 nm and 380 nm, denoted A1 and A2 in the figure.

フイルタ−17および18を透過する、波長の異なる部
分光は、モーター20によって駆動されるチョッパ−ホ
イール19によって、周期的にではあるが異なる波長を
もって変調される。
The partial lights of different wavelengths passing through the filters 17 and 18 are periodically modulated with different wavelengths by a chopper wheel 19 driven by a motor 20.

第1b図は該チョッパ−ホイールの拡大部分を示す。同
図から分割の異なる2列の孔路23および24が認めら
れる。2本の部分光はチョッパ−ホイール19による変
調後にビームスプリッタ−21を介して顕微鏡測光器の
照明光路に一緒に入力される。       城励起光
の方形変調の場合には、狭帯増幅器PSDIおよびPS
D2による基本周波数f1およびf2に基く信号の検出
を妨害する可能性のある調波信号が発生する。このよう
な妨害現象は、チョッ・ぐ−ホイールの両孔跡(23お
よび24)の分割比、ひいては周波数fl/f2の比を
奇数的に選択することによって減少させることができる
。この手段によって、例えば周波数f1の調波が周波数
f2に対する検出に影響を与えることが妨止される。ま
た、励起光の強度を少なくともほぼ正弦波状に変調する
操作C二液えると、調波は初めから閉止される。正弦波
変調は、チョッパーホイールの平面における照明光路の
光束断面をチョツ・ξ−ホイールの孔の寸法に適当(二
適合させることによって得られる。
Figure 1b shows an enlarged section of the chopper wheel. From the figure, two rows of holes 23 and 24 with different divisions can be seen. After modulation by the chopper wheel 19, the two partial beams are input together via a beam splitter 21 into the illumination beam path of the microscope photometer. In the case of square modulation of the pump light, narrowband amplifiers PSDI and PS
Harmonic signals are generated that can interfere with D2's detection of signals based on fundamental frequencies f1 and f2. Such disturbance phenomena can be reduced by an odd selection of the division ratio of the two hole traces (23 and 24) of the chopping wheel and thus of the frequency fl/f2. By this measure, for example, harmonics of frequency f1 are prevented from influencing the detection for frequency f2. Moreover, when the intensity of the excitation light is modulated at least approximately sinusoidally in the operation C, the harmonics are closed from the beginning. The sinusoidal modulation is obtained by suitably adapting the beam cross-section of the illumination beam path in the plane of the chopper wheel to the size of the hole in the chopper wheel.

また第2図のによる実施例の照明ブロックは、焦点距離
の異なる2個のコレクター(33および34)を有して
おり、これらのコレクターは、チョッパーホイールの2
種類の孔路上の孔の大きさに応じて異なる直径を有する
2つの円形領域が形成されるように、ランプ32の光を
チョッパーホイール29の平面(=収束させる。
Furthermore, the illumination block of the embodiment shown in FIG. 2 has two collectors (33 and 34) with different focal lengths, and these collectors
The light of the lamp 32 is focused on the plane of the chopper wheel 29 (=convergent) so that two circular areas with different diameters are formed on the different hole tops.

チョッノξ−ホイール29の後の元の方向における2個
のレン!:35および36は、2つの異なる部分光路を
照明ブロック内で再び相互に調整するのに役立つ。残り
の構成部材は第1図による実施例の同部材と同様なので
ここで記載するのを省く。
Chono ξ - two lenses in the original direction after the wheel 29! :35 and 36 serve to mutually align the two different partial beam paths again within the illumination block. The remaining components are similar to those of the embodiment according to FIG. 1 and will not be described here.

第3図には、第1図および第2図の照明ブロックとは別
の実施例を図示しである。第3図の照明ブロック104
は、そのハウジング124内:ニモーターによって駆動
されるチョッパ−ホイールの代りに、2個の別々に制御
可能の電気光学的光シヤツター119および120から
形成された変調装置105を包含する。該元シャッター
はフイルタ−117および118を透過する2つの部分
光を相互に独立的に変調する。
FIG. 3 shows a different embodiment from the illumination block shown in FIGS. 1 and 2. Lighting block 104 in FIG.
contains in its housing 124 a modulation device 105 formed from two separately controllable electro-optic light shutters 119 and 120 instead of a chopper wheel driven by a motor. The original shutter modulates the two partial lights transmitted through filters 117 and 118 independently of each other.

でき、るだけ高い変調周波数を得ることができるために
、光シヤツターとして例えばカールセルが使用されてい
る。
In order to obtain a modulation frequency as high as possible, a Karl cell, for example, is used as an optical shutter.

2個の元シャッターを有する前記手段は、シャッター開
放時間もしくは変調周波数が自由(二選択可能であって
、2本の照明光路に関して相互に独立的に調整可能であ
るという利点を提供する。この場合には変調周波数は検
出チャンネルで信号/雑音比に関して最適化されうる。
Said means with two original shutters offers the advantage that the shutter opening time or the modulation frequency is freely selectable and can be adjusted independently of each other with respect to the two illumination beam paths. The modulation frequency can be optimized with respect to signal/noise ratio in the detection channel.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図は、本発明による測光器の照明ブロックの第一
実施例の略示断面図、第1b図は第1a図におけるチョ
ッパ−ホイール19の拡大部分上面図、第2図は該照明
ブロックの第二実施例の略示断面図、第3図は該照明ブ
ロックの第三実施例の略示断面、第奎図は化学的−生物
学的反応の作用下での標識物質の吸光度のスペクトル変
化を示すグラフ、第3図は2種類のCa2+濃度に対す
る生物色素標識物質FURA−2の励起スペクトルを示
すグラフ、第6図は検出チャンネルを含む全測光器の構
成系統図、第7図は検出器2のアウトプットにおける信
号Eの時間的経過を示すグラフtある: 1・・・顕微鏡、2・・・検出器、3・・・試料、牛、
104・・・照明ブロック、5,105・・・変調装置
、17.18 ; 117.118・・・フイルタ−、
19・・・チョッノξ−ホイール、23.24・・・孔
路、119.120・・・光シヤツター、PSDI。 PSD2・・・狭帯域増幅器 4゛′明7’ u ′’/ Fig、2 Fig、7
FIG. 1a is a schematic cross-sectional view of a first embodiment of the illumination block of a photometer according to the invention, FIG. 1b is an enlarged top view of a chopper wheel 19 in FIG. 1a, and FIG. FIG. 3 is a schematic cross-sectional view of the third embodiment of the illumination block; FIG. Figure 3 is a graph showing the excitation spectrum of the biological dye labeling substance FURA-2 for two types of Ca2+ concentrations, Figure 6 is a diagram of the entire photometer including the detection channel, and Figure 7 is the detector. There is a graph t showing the time course of the signal E at the output of 2: 1...microscope, 2...detector, 3...sample, cow,
104... Lighting block, 5, 105... Modulator, 17.18; 117.118... Filter,
19... Chonno ξ-wheel, 23.24... Hole path, 119.120... Optical shutter, PSDI. PSD2...Narrowband amplifier 4''u''/ Fig, 2 Fig, 7

Claims (1)

【特許請求の範囲】 1、2つの異なる波長で試料の螢光または吸収を測定す
るための顕微鏡測光器において、 −ランプ(ランプハウジング)の代りに顕微鏡に取付け
可能の照明ブロック(4、104)が設けられており、 −照明ブロックが少なくとも2個のフイルタ−(17、
18;117、118)および2個のフイルターを透過
し、同時に異なる周波数を有する光を変調する装置(5
、105)を包含し、 −かつ試料から放射する光の強度測定のために使用され
る検出器(光電子増倍管2)の後の検出チャンネルに、
変調装置(5、10 5)の周波数に同調された2個の狭帯域増幅器(PSD
1、PSD2)が並列接続で配置されていることを特徴
とする前記顕微鏡測光器。 2、フイルター(17、18;117、118)が交換
可能である特許請求の範囲第1項記載の測光器。 3、変調装置(5)が分割の異なる数列の孔跡(23、
24)を有するチョッパーホイール(19)である特許
請求の範囲第1項記載の測光器。 4、照明ブロックが、光をチョッパーホイールの平面に
集束する2本の結像光路を有する特許請求の範囲第3項
記載の測光器。 5、チョッパーホイールの平面における2本の光路の光
束直径が異つている特許請求の範囲第4項記載の測光器
。 6、変調装置(105)が別個に制御可能の2個の光シ
ャッター(119、120)から成る特許請求の範囲第
1項記載の測光器。
[Claims] 1. In a microscope photometer for measuring the fluorescence or absorption of a sample at two different wavelengths: - an illumination block (4, 104) attachable to the microscope in place of the lamp (lamp housing); - the lighting block comprises at least two filters (17,
18; 117, 118) and a device (5) that transmits through two filters and simultaneously modulates light having different frequencies.
, 105) - and in the detection channel after the detector (photomultiplier tube 2) used for measuring the intensity of the light emitted by the sample,
Two narrowband amplifiers (PSD) tuned to the frequency of the modulator (5, 10 5)
1. The microscope photometer characterized in that PSDs (2) are arranged in parallel connection. 2. The photometer according to claim 1, wherein the filters (17, 18; 117, 118) are replaceable. 3. The modulator (5) creates hole traces (23,
24) A photometer according to claim 1, wherein the photometer is a chopper wheel (19) having a chopper wheel (19). 4. A photometer according to claim 3, wherein the illumination block has two imaging optical paths that focus the light onto the plane of the chopper wheel. 5. The photometer according to claim 4, wherein the two optical paths in the plane of the chopper wheel have different luminous flux diameters. 6. Photometer according to claim 1, wherein the modulator (105) comprises two separately controllable optical shutters (119, 120).
JP62031660A 1986-02-15 1987-02-16 Microscope photometer Pending JPS62192632A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3604815.1 1986-02-15
DE19863604815 DE3604815A1 (en) 1986-02-15 1986-02-15 Microscope photometer

Publications (1)

Publication Number Publication Date
JPS62192632A true JPS62192632A (en) 1987-08-24

Family

ID=6294162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031660A Pending JPS62192632A (en) 1986-02-15 1987-02-16 Microscope photometer

Country Status (2)

Country Link
JP (1) JPS62192632A (en)
DE (1) DE3604815A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120056U (en) * 1989-03-15 1990-09-27
JPH0372238A (en) * 1989-08-12 1991-03-27 Res Dev Corp Of Japan Highly sensitive microscopic multi-wavelength spectroscope
JP2003501615A (en) * 1998-11-04 2003-01-14 ザ リサーチ ファウンデーション オブ ステイト ユニヴァーシティ オブ ニューヨーク Sample analysis with continuous quantum timing code
JP2004132760A (en) * 2002-10-09 2004-04-30 Shimadzu Corp Method and device for analyzing sample containing a plurality of fluorescent materials
JP2011107160A (en) * 2007-06-21 2011-06-02 Gen-Probe Inc Multichannel optical measuring apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3915421C2 (en) * 1989-05-11 1995-03-02 Bayer Ag Device for measuring the fluorescence excitation of biological cells at two different wavelengths
DE4115401C2 (en) * 1991-05-10 1994-04-14 Rainer Dr Uhl Fluorescence measuring device for determining the ion concentration of an examination object, which is colored with a fluorescent dye, the excitation maximum of which changes as a function of the ion concentration to be determined
DE4228366C2 (en) * 1992-08-26 1995-05-24 Rainer Dr Uhl Fluorescence measuring device
DE4338531A1 (en) * 1993-11-11 1995-05-18 Leica Lasertechnik Device for multi-color illumination of preparations
US5672515A (en) * 1995-09-12 1997-09-30 Optical Sensors Incorporated Simultaneous dual excitation/single emission fluorescent sensing method for PH and pCO2
DE10231667A1 (en) 2002-07-12 2004-01-22 Olympus Biosystems Gmbh Lighting device and optical object inspection device
JP2004163413A (en) 2002-08-28 2004-06-10 Carl-Zeiss-Stiftung Trading As Carl Zeiss Microscope system and microscope inspection method
GB0525072D0 (en) 2005-12-09 2006-01-18 Enigma Diagnostics Ltd Fluorescence-based detection methods and apparatus
US20150049328A1 (en) * 2012-06-11 2015-02-19 Protectlife International Biomedical Inc. Biochemical analyzing system and light module thereof
CN111398230A (en) * 2019-03-27 2020-07-10 上海交通大学 Time-gated fluorescence imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106382A (en) * 1973-02-09 1974-10-08
JPS5340541A (en) * 1976-09-25 1978-04-13 Olympus Optical Co Ltd Quantitative detecting microscope
JPS53149088A (en) * 1977-06-01 1978-12-26 Hitachi Ltd Optical absorption measuring system
JPS56501174A (en) * 1979-08-23 1981-08-20

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419263B2 (en) * 1973-10-17 1979-07-13
DE2614181C3 (en) * 1976-04-02 1981-08-20 Leybold-Heraeus Gmbh, 5000 Koeln Method for measuring the optical absorbance of samples and device for carrying out the method
US4100416A (en) * 1977-03-02 1978-07-11 Block Engineering, Inc. Serum fluorescence suppression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106382A (en) * 1973-02-09 1974-10-08
JPS5340541A (en) * 1976-09-25 1978-04-13 Olympus Optical Co Ltd Quantitative detecting microscope
JPS53149088A (en) * 1977-06-01 1978-12-26 Hitachi Ltd Optical absorption measuring system
JPS56501174A (en) * 1979-08-23 1981-08-20

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120056U (en) * 1989-03-15 1990-09-27
JPH0372238A (en) * 1989-08-12 1991-03-27 Res Dev Corp Of Japan Highly sensitive microscopic multi-wavelength spectroscope
JP2003501615A (en) * 1998-11-04 2003-01-14 ザ リサーチ ファウンデーション オブ ステイト ユニヴァーシティ オブ ニューヨーク Sample analysis with continuous quantum timing code
JP2004132760A (en) * 2002-10-09 2004-04-30 Shimadzu Corp Method and device for analyzing sample containing a plurality of fluorescent materials
JP2011107160A (en) * 2007-06-21 2011-06-02 Gen-Probe Inc Multichannel optical measuring apparatus
US9458451B2 (en) 2007-06-21 2016-10-04 Gen-Probe Incorporated Multi-channel optical measurement instrument
US10086342B2 (en) 2007-06-21 2018-10-02 Gen-Probe Incorporated Multi-channel optical measurement instrument

Also Published As

Publication number Publication date
DE3604815C2 (en) 1988-12-08
DE3604815A1 (en) 1987-08-20

Similar Documents

Publication Publication Date Title
JPS62192632A (en) Microscope photometer
US4900934A (en) Apparatus for simultaneous visualization and measurement of fluorescence from fluorescent dye-treated cell preparations and solutions
US5591981A (en) Tunable excitation and/or tunable emission fluorescence imaging
US5784152A (en) Tunable excitation and/or tunable detection microplate reader
US6108082A (en) Spectral imaging apparatus and methodology
EP1830174B1 (en) Multi-channel fluorescence sample analyzer
US3971951A (en) Apparatus for measuring two different fluorescences of a sample
CA2407296C (en) An imaging fluorometer for time resolved fluorescence
US4255053A (en) Photometer including auxiliary indicator means
US5151603A (en) Method for optical determination of concentration of substance and apparatus for the determination
US4795256A (en) Dual-wavelength spectrophotometry system
US4053229A (en) 2°/90° Laboratory scattering photometer
US20030062485A1 (en) Compact multiwavelength phase fluorometer
JP2008536092A (en) Fluorescence detection system
JPS61251724A (en) Spectrophotometer
US5838435A (en) Calibration method for spectroscopic systems
US6985225B2 (en) Fluorescence-measuring system
Kricka et al. 9 Optical Techniques
US3832555A (en) Fluorescence spectrophotometer
JPH03503454A (en) Optical reader for immunoassays
JP2006519364A (en) Spectrophotometer
US7474403B2 (en) Device and method for measuring the optical properties of an object
ES2690570T3 (en) Procedure and device for the determination of the fluorescence of a sample as well as its use
US4017191A (en) Two-beam photometer with rotatable graded interference filter
US7301637B2 (en) Dark field imaging device for the spatially-resolved dark field imaging of a sample and examination method