JPS6064471A - High voltage insulated gate type field-effect transistor - Google Patents

High voltage insulated gate type field-effect transistor

Info

Publication number
JPS6064471A
JPS6064471A JP58172555A JP17255583A JPS6064471A JP S6064471 A JPS6064471 A JP S6064471A JP 58172555 A JP58172555 A JP 58172555A JP 17255583 A JP17255583 A JP 17255583A JP S6064471 A JPS6064471 A JP S6064471A
Authority
JP
Japan
Prior art keywords
region
source
drain
drain region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58172555A
Other languages
Japanese (ja)
Inventor
Mikiko Saito
美紀子 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58172555A priority Critical patent/JPS6064471A/en
Publication of JPS6064471A publication Critical patent/JPS6064471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent the permanent breakdown generating on the titled transistor by a method wherein the region, to be turned to the source region 13 opposing to the corner part of a drain region 12, is converted to an earth lead-out region 22, thereby enabling to stop the injection of electrons to a substrate from the above-mentioned part. CONSTITUTION:A high voltage insulated gate type FET is constituted in such a manner that the plane shape wherein the region to be turned to a source region 13 opposing to the corner part of a drain region 12 will be included is an earth lead-out region 22, and that the high withstand voltage drain region opposing to the corner part of the drain region 12 will be pushed out in the direction of the end part on the source region side of an offset gate region 14. As a result, the injection of carrier from the source region opposing to the corner part of the drain region is completely stopped, the source substrate junction is brought in the state where it is hardly forward-biased, and the current concentration in the high voltage drain region is relieved.

Description

【発明の詳細な説明】 本発明はドレイン耐圧の高い高電圧絶縁ゲート型電界効
果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage insulated gate field effect transistor with high drain breakdown voltage.

一般に、絶縁ゲート型電界効果トランジスタ(以下、M
OSトランジスタで代表して説明する。)は多数キャリ
ア素子なので高速動作が可能、熱暴走がない、などの優
れた特徴を持っており、高速パワー素子として期待でき
る、 しかし、通常のMOS )ランジスタのドレイン耐圧は
高々数10VLかなく、パワー素子として使うためには
、ドレイン耐圧を向上させる必要があり、このために種
々の構造が提案されている。
In general, an insulated gate field effect transistor (hereinafter referred to as M
This will be explained using an OS transistor as a representative. ) is a majority carrier element, so it has excellent characteristics such as high-speed operation and no thermal runaway, and can be expected as a high-speed power device. However, the drain breakdown voltage of a normal MOS () transistor is only several tens of VL at most. In order to use it as a power device, it is necessary to improve the drain breakdown voltage, and various structures have been proposed for this purpose.

中でもオフセットゲート形のMOS )ランジスタは、
低電圧動作の論理回路と同一テップに集積化するのが容
易なので、集積回路用の高耐圧素子としても有望である
Among them, offset gate type MOS) transistors are
Since it is easy to integrate on the same chip as logic circuits that operate at low voltages, it is also promising as a high-voltage device for integrated circuits.

第1図に従来のオフセットゲート形MO8トランジスタ
の断面図を示す。
FIG. 1 shows a cross-sectional view of a conventional offset gate type MO8 transistor.

同図において、1は低不純物濃度(例えば6x1014
/cffl)のP形シリコンよシなる半導体基板、2は
高濃度N型領域からなるドレイン領域、3は高濃度N型
領域よりなるソース領域、4はN型の低不純物濃度のオ
フセットゲート領域、5はチャネル領域、6は低抵抗の
多結晶シリコンよシなるゲート電極、7はアルミニウム
よりなるドレイン電極、同じく8はソース電極%9はゲ
ートシリコン酸化膜、10はフィールドシリコン酸化膜
である。
In the same figure, 1 indicates a low impurity concentration (for example, 6x1014
2 is a drain region made of a highly doped N-type region, 3 is a source region made of a heavily doped N-type region, 4 is an N-type offset gate region with a low impurity concentration; 5 is a channel region, 6 is a gate electrode made of low resistance polycrystalline silicon, 7 is a drain electrode made of aluminum, 8 is a source electrode, 9 is a gate silicon oxide film, and 10 is a field silicon oxide film.

第1図のMOS )ランジスタにおいて、ドレインをコ
レクタ、基板をベース、ソースをエミッタとする寄生バ
イポーラトランジスタが存在し、この寄生バイポーラト
ランジスタがターンオンすることにより負性抵抗や永久
破壊を起こしたりする欠点があった。
In the MOS transistor shown in Figure 1, there is a parasitic bipolar transistor with the drain as the collector, the substrate as the base, and the source as the emitter, and when this parasitic bipolar transistor is turned on, it has the disadvantage of causing negative resistance or permanent damage. there were.

寄生バイポーラトランジスタのターンオンヲ防止する方
法として、エミッ°り接合(ソース−基板間接合)が順
バイアスされないように、ソース直下に基板と同じ導電
型の高濃度層を設け、これをソースと等電位にする方法
が特願昭和58−130143により提案されている。
As a method to prevent turn-on of a parasitic bipolar transistor, a highly concentrated layer of the same conductivity type as the substrate is provided directly under the source so that the emitter junction (source-substrate junction) is not forward biased, and this layer is made to have the same potential as the source. A method for doing this has been proposed in Japanese Patent Application No. 130143/1983.

このような原理に基づいた高電圧MO8)ランジスタの
構造を第2図に示す。
The structure of a high voltage MO8) transistor based on this principle is shown in FIG.

この高電圧MO8トランジスタは、同図に示すように、
ソース領域13の直下に高濃度P型領域よりなる埋込み
アース領域21と、この埋込みアース領域21.ソース
領域13及び半導体基板11の表面に接する高濃度P型
領域よりなるアース引出し領域22を設け、更にアース
引出し領域22とソース領域13と全電気的に接続して
ソース電極18としたものである。なおllI/′i、
P型シリコンよシなる半導体基板、12はドレイン領域
、13はソース領域、14はオフセットゲート領域、1
5はチャネル領域、16はゲート電極、17はドレイン
電極、19はゲートシリコン酸化膜、20はフィールド
シリコン酸化膜でるる。
This high voltage MO8 transistor, as shown in the figure,
Immediately below the source region 13 is a buried ground region 21 made of a highly doped P-type region, and this buried ground region 21 . A ground lead-out region 22 made of a highly doped P-type region is provided in contact with the source region 13 and the surface of the semiconductor substrate 11, and the ground lead-out region 22 and the source region 13 are electrically connected to form a source electrode 18. . Furthermore, llI/'i,
A semiconductor substrate made of P-type silicon, 12 a drain region, 13 a source region, 14 an offset gate region, 1
5 is a channel region, 16 is a gate electrode, 17 is a drain electrode, 19 is a gate silicon oxide film, and 20 is a field silicon oxide film.

この構造の高電圧MOSトランジスタは、ドレインの平
面形状を例えば、半径100μm以上の円形状にすれば
、使用動作範囲内で実用上問題となる負性抵抗や永久破
壊は全く起こらない。
In a high voltage MOS transistor having this structure, if the planar shape of the drain is, for example, a circular shape with a radius of 100 μm or more, negative resistance and permanent breakdown, which are problems in practical use, will not occur at all within the operating range of use.

一方、パワー素子として応用していくには、ドレイン電
流を大きくする必要がありこのためゲート幅は大きく設
計される。ゲート幅を大きくする構造として第3図のよ
うに平面形状を櫛形構造にすることが知られている。同
図において、31はドレイン領域、32はオフセットゲ
ート領域、3:3はチャネル領域、34はソース領域、
35はアース引出し領域である。このような構造にする
とチャネル幅は、大きく設計できる。
On the other hand, in order to apply it as a power device, it is necessary to increase the drain current, and therefore the gate width is designed to be large. As a structure for increasing the gate width, it is known to have a comb-shaped planar structure as shown in FIG. In the figure, 31 is a drain region, 32 is an offset gate region, 3:3 is a channel region, 34 is a source region,
35 is a ground drawer area. With such a structure, the channel width can be designed to be large.

第3図の櫛形構造のMOS トランジスタの櫛の歯部分
のドレイン領域のコーナ部分の形状は、矩形、多角形あ
るいは円形が用いられる。そして、矩形や多角形の形状
が用いられた場合は、角の部分で強い電界集中が起きた
り、円形状の場合でもドレイン領域のコ一す部分曲率半
径Rが小さくなるとドレイン領域のコーナ部分での電界
集中が強くなる。この電界集中は第2図の高電圧MOS
トランジスタの負性抵抗や破壊に対する強さを弱める働
きをする。第4図にドレイン領域のコーナ部分曲率半径
几と破壊電流IBLの関係を実験的にめた例を示す。た
だし、ここでのIBLは、ドレイン電流−ドレイン電圧
特性において、負性抵抗、あるいは永久破壊を起こす電
流値である。この占うに曲率半径が小さくなると負性抵
抗、永久破壊を起こしやすくなる。
The shape of the corner portion of the drain region of the comb tooth portion of the comb-shaped MOS transistor shown in FIG. 3 is rectangular, polygonal, or circular. If a rectangular or polygonal shape is used, strong electric field concentration will occur at the corners, and even if the drain region has a circular shape, if the radius of curvature R of the drain region becomes small, the corner region of the drain region will The electric field concentration becomes stronger. This electric field concentration occurs in the high voltage MOS shown in Figure 2.
It works to weaken the negative resistance of the transistor and its resistance to destruction. FIG. 4 shows an example of the relationship between the radius of curvature of the corner portion of the drain region and the breakdown current IBL determined experimentally. However, IBL here is a current value that causes negative resistance or permanent breakdown in drain current-drain voltage characteristics. As the radius of curvature becomes smaller, negative resistance and permanent destruction become more likely to occur.

第5図は高電圧MO8トランジスタのもう一つの問題で
あるドレイン耐圧を高めた従来の高電圧MO8)ランジ
スタの一例を示す断面図である。
FIG. 5 is a cross-sectional view showing an example of a conventional high-voltage MO8 transistor with increased drain breakdown voltage, which is another problem with high-voltage MO8 transistors.

このMOS トランジスタの特徴は、第1図の従来例の
MOS )ランジスタに対して、同図に示すようにオフ
セットゲート領域4の一部分とドレイン領域2に接して
ドレイン領域2よりは低不純物濃度のN型領域からなる
高耐圧化ドレイン領域23を設けたことにある。この高
耐圧化ドレイン領域23はドレイン領域表面における電
流集中によるなだれ降伏を防止してドレイン耐圧の向上
を図るためのものであるが、電流集中が激しいドレイン
領域のコーナ部分においては、その効果はなお十分でな
いとも見られる。
The feature of this MOS transistor is that, in contrast to the conventional MOS transistor shown in FIG. This is because a high voltage drain region 23 consisting of a mold region is provided. This high-voltage drain region 23 is intended to improve drain breakdown voltage by preventing avalanche breakdown due to current concentration on the surface of the drain region, but this effect is still less effective at the corner portions of the drain region where current concentration is severe. It seems that it is not enough.

以上、説明したとおり、従来の高電圧MO8)ランジス
タには、なお、ドレイン領域のコーナ部分に起因して、
負性抵抗現象の発生とそれに伴う永久破壊、ドレイン耐
圧の低下等がもたらされるという欠点がある。
As explained above, in the conventional high voltage MO8) transistor, due to the corner part of the drain region,
There are disadvantages in that a negative resistance phenomenon occurs, resulting in permanent destruction and a decrease in drain withstand voltage.

本発明の目的は、上記の欠点を除去することにより、負
性抵抗や永久破壊を起さない、かつゲート耐圧の高い高
電圧絶縁ゲー)を界効果トランジスタを提供することに
ある。
An object of the present invention is to provide a field effect transistor (high voltage insulated gate) which does not cause negative resistance or permanent breakdown and has a high gate withstand voltage by eliminating the above-mentioned drawbacks.

本第1の発明の高電圧MO8トランジスタは、−導電型
の半導体基板の一生面に設けられた逆導電型のソース領
域及びドレイン領域と、該ドレイン領域に接して設けら
れた逆導電型のオフセットゲート領域と、該オフセット
ゲート領域と前記ソース領域間に形成されるチャネル領
域と、前記ソース領域の底面に接して設けられた高不純
物濃度の一導電の埋込みアース領域と、該埋込みアース
領域と前記ソース領域と前記半導体基板の一生面に接し
て設けられた高不純物濃度の一導電型のアース引出し領
域と、該アース引出し領域と前記ソース領域とを電気的
に接続するソース電極とを備える高電圧絶縁ゲート型電
界効果トランジスタにおいて、前記ドレイン領域のコー
ナ部分に対向する前記ソース領域となるべき領域を前記
アース引出し領域に包含された形状の平面形状を有する
ことから構成される。
The high voltage MO8 transistor of the first invention includes a source region and a drain region of opposite conductivity type provided on the entire surface of a semiconductor substrate of negative conductivity type, and an offset of opposite conductivity type provided in contact with the drain region. a gate region, a channel region formed between the offset gate region and the source region, a highly impurity-concentrated, monoconductive buried ground region provided in contact with the bottom surface of the source region; A high voltage comprising: a source region and a highly impurity-concentrated ground lead-out region of one conductivity type provided in contact with the entire surface of the semiconductor substrate; and a source electrode electrically connecting the ground lead-out region and the source region. The insulated gate field effect transistor has a planar shape in which a region to become the source region, which is opposite to a corner portion of the drain region, is included in the ground lead-out region.

本第2の発明の高電圧MO8)ランジスタは、−導電型
の半導体基板の一生面に設けられた逆導電型のソース領
域及びドレイン領域と、該ドレイン領域に接して設けら
れた逆導電型のオフセットゲート領域と、該オフセット
ゲート領域と前記ソース領域間に形成されるチャネル領
域と、前記ソース領域の底面に接して設けられた高不純
物濃度の一導電の埋込みアース領域と、該埋込みアース
領域と前記ソース領域と前記半導体基板の一生面に接し
て設けられた高不純物濃度の一導電型のアース引出し領
域と、該アース引出し領域と前記ソース領域とを電気的
に接続するソース電極とを備える高電圧絶縁ゲート型電
界効果トランジスタにおいて、前記オフセットゲート領
域の一部分と前記ドレイン領域に接して低不純物濃度の
逆導電型の高耐圧化ドレイン領域を設け、かつ、前記ド
レイン領域のコーナ部分に対向する前記ソース領域とな
るべき領域が前記アース引出し領域に包含され、前記ド
レイン領域のコーナ部分に対向する前記高耐圧化ドレイ
/領域が前記オフセットゲート領域のソース領域側の端
部の方へ押し出された形状の平面形状を有することから
構成される、以下、本発明の実施例について図面を診照
して説明する。
The high voltage MO8) transistor of the second invention comprises a source region and a drain region of opposite conductivity type provided on the entire surface of a semiconductor substrate of negative conductivity type, and a source region and drain region of opposite conductivity type provided in contact with the drain region. an offset gate region, a channel region formed between the offset gate region and the source region, a highly impurity-concentrated, monoconductive buried ground region provided in contact with the bottom surface of the source region, and the buried ground region. A highly impurity-concentrated ground lead-out region of one conductivity type provided in contact with the source region and the entire surface of the semiconductor substrate, and a source electrode that electrically connects the ground lead-out region and the source region. In the voltage insulated gate field effect transistor, a high breakdown voltage drain region of a low impurity concentration and an opposite conductivity type is provided in contact with a portion of the offset gate region and the drain region, and the A region to become a source region is included in the ground lead-out region, and the high voltage drain/region facing the corner portion of the drain region is pushed out toward the end of the offset gate region on the source region side. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第6図は本第1の発明の第1の実施例の要部を示す半導
体基板表面における平面図である。
FIG. 6 is a plan view of the surface of a semiconductor substrate showing essential parts of the first embodiment of the first invention.

本実施例の高電圧MO8トランジスタは、第2図に示し
た高電圧MO8)ランジスタ、すなわち、P−型のシリ
コンからなる半導体基板11の−生面上に設けられたN
+型のソース領域13及びドレイン領域12と、このド
レイン領域12に接して設けられたN−型のオフセット
ゲート領域14と、このオフセットゲート領域14とソ
ース領域13間に形成されるチャネル領域15と、ソー
ス領域13の底面に接して設けられたP+型の埋込みア
ース領域21と、この埋込みアース領域21とソース領
域13と半導体基板11の一生面に接シ、設けられたP
+型のアース引出し領域22と、このアース引出し領域
22とソース領域13とを電気的に接続するソース電極
18とを備える高電圧MO8)ランジスタにおいて、第
6図に示すように、ドレイン領域12のコーナ部分に対
向するソース領域13となるべき同図でaで示す部分に
当る122個所領域をアース引出し領域22に包含され
た形状の平面形状を有することから構成される。なお、
同図で14はオフセットゲート領域、15はチャネル領
域である。
The high voltage MO8 transistor of this embodiment is the high voltage MO8 transistor shown in FIG.
+ type source region 13 and drain region 12, N- type offset gate region 14 provided in contact with this drain region 12, and channel region 15 formed between this offset gate region 14 and source region 13. , a P+ type buried grounding region 21 provided in contact with the bottom surface of the source region 13;
As shown in FIG. It has a planar shape in which 122 regions corresponding to the portions indicated by a in the figure, which are to become source regions 13 facing the corner portions, are included in the ground lead-out region 22. In addition,
In the figure, 14 is an offset gate region, and 15 is a channel region.

本実施例は、第6図に示されているように電界が集中し
て負性抵抗が起きやすいaで示したドレイン領域I2の
122個所コーナ部分に対向するソース領域13となる
べき領域をアース引出し領域22に替えることにより、
この部分から基板への電子の注入がなくなり負性抵抗は
発生せず、従って永久破壊は起きないことになる。
In this embodiment, as shown in FIG. 6, the region to become the source region 13 facing the 122 corner portions of the drain region I2, indicated by a, where the electric field is concentrated and negative resistance is likely to occur, is grounded. By changing to the drawer area 22,
Electrons are no longer injected into the substrate from this portion, and no negative resistance occurs, so permanent destruction will not occur.

又、このa部分がアース引出し領域22に包含されたこ
とにより、これと接したソース−基板接合は、順バイア
スされにくくなるので、アース引出し領域及び埋込みア
ース領域からなるアース領域近4労の動作領域の負性抵
抗防止、耐破壊性向上にも効果がある。
Also, since this part a is included in the ground lead-out region 22, the source-substrate junction in contact with it is less likely to be forward biased, so the operation of the ground region consisting of the ground lead-out region and the buried ground region is reduced. It is also effective in preventing negative resistance in the area and improving fracture resistance.

第7図及び第8図はそれぞれ本第1の発明の第2及び第
3の実施例の要部を示す半導体基板表面における平面図
である。
FIGS. 7 and 8 are plan views of the surface of a semiconductor substrate showing essential parts of second and third embodiments of the first invention, respectively.

第7図の本第2の実施例は、ドレイン領域12’のコー
ナ部分が円形状の場合に本第1の発明を適用したもので
、ドレイン領域12’のコーナ部分に対向するソース領
域13’ となるべき同図のa′で示す部分の領域がア
ース引出し領域22′に包含されている。なお14’は
オフセットゲート領域、15′はチャネル領域である。
In the second embodiment shown in FIG. 7, the first invention is applied when the corner part of the drain region 12' is circular, and the source region 13' opposite to the corner part of the drain region 12' The area indicated by a' in the same figure, which should be the same, is included in the ground lead-out area 22'. Note that 14' is an offset gate region, and 15' is a channel region.

第8図の本第3の実施例は、ドレイン領域12’のコー
ナ部分が多角形状の°場合に、本第1の発明を適用した
もので、ドレイン領域12’のコーナ部分に対向するソ
ース領域13’となるべき同図a′で示す4個所の部分
の領域を、アース引出し領域22′に包含されている。
In the third embodiment shown in FIG. 8, the first invention is applied when the corner part of the drain region 12' is polygonal, and the source region facing the corner part of the drain region 12' is The four areas indicated by a' in the same figure, which should be 13', are included in the ground pull-out area 22'.

なお14“はオフセットゲート領域、15′はチャネル
領域である。
Note that 14'' is an offset gate region, and 15' is a channel region.

本第2及び第3の実施例は上記の説明から明らかなよう
に、その基本的構成は第1の実施例と同じであり、それ
と同様の効果が得られることはもち論である。
As is clear from the above description, the basic configuration of the second and third embodiments is the same as that of the first embodiment, and it is a matter of course that the same effects can be obtained.

第9図は本第2の発明の一実施例の半導体基板表面にお
ける平面図、第1θ図はそのAA’断面図である。
FIG. 9 is a plan view of the surface of a semiconductor substrate of an embodiment of the second invention, and FIG. 1θ is a cross-sectional view taken along the line AA'.

本実施例は上記の第1の発明の第2の実施例の高電圧M
O8)ランジスタに、更にオフセットゲート領域44の
一部分とドレイン領域42に接して、ドレイン耐圧を高
めるためのN−型の高耐圧化ドレイン領域53を設け、
そのドレイ/領域42のコーナ部分に対向する領域がオ
フセットゲート領域44のソース領域43側の端部の方
へ埋し出された形状(第9図中のbで示す部分)とした
ことから構成される。なお、4itiP−型シリコンか
らなる半導体基板、45はチャネル領域、46はゲート
電極、47はドレイン電極、48はソース電極、49は
ゲートシリコン酸化膜、50はフィールドシリコン酸化
膜、51は埋込みアース領域でiる。そしてa″′はド
レイン領域42のコーナ部分に対向して本来ソース領域
43となるべき領域でアース引出し領域52に包含され
た部分を指す。
This embodiment is a high voltage M of the second embodiment of the first invention described above.
O8) Further, in the transistor, an N-type high breakdown voltage drain region 53 is provided in contact with a part of the offset gate region 44 and the drain region 42 for increasing the drain breakdown voltage,
The configuration is such that the region facing the corner portion of the drain/region 42 is buried toward the end of the offset gate region 44 on the source region 43 side (the portion indicated by b in FIG. 9). be done. The semiconductor substrate is made of 4itiP-type silicon, 45 is a channel region, 46 is a gate electrode, 47 is a drain electrode, 48 is a source electrode, 49 is a gate silicon oxide film, 50 is a field silicon oxide film, and 51 is a buried ground region. I'm here. Further, a''' refers to a region opposite to the corner portion of the drain region 42 that should originally become the source region 43 and is included in the ground lead-out region 52.

本実施例によると、高耐圧化ドレイン領域53が電流集
中の激しいドレイン領域42のコーナ部分において広け
られているために、電流集中が緩和されドレイン耐圧が
向上し、負性抵抗を引起す破壊電流(IBL)も大きく
なる。
According to this embodiment, since the high voltage drain region 53 is widened at the corner portion of the drain region 42 where current concentration is severe, current concentration is alleviated and the drain breakdown voltage is improved, thereby preventing breakdown that causes negative resistance. The current (IBL) also increases.

なお、上記の説明はnチャネル型MOSトランジスタに
ついて行ったけれども、pチャネル型MO8)ランジス
タについても同様である。
Note that, although the above explanation has been made regarding the n-channel type MOS transistor, the same applies to the p-channel type MO8) transistor.

以上詳細に説明した通り、本発明の高電圧絶縁ゲート型
電界効果トランジスタは、ドレイン領域のコーナ部分に
対向するソース領域となるべき領域がアース引出し領域
に包含された形状の平面形状、更にはドレイン領域のコ
ーナ部分に対向する高耐圧化ドレイン領域がオフセット
ゲート領域のソース領域側の端部の方へ押し出された形
状の平面形状を有しているので、ドレイン領域のコーナ
部分に対向するソース領域からのキャリアの注入が無く
なること、ソースー基板接合が順バイアスされにくくな
ること、更には高耐圧化ドレイン領域における電流集中
の緩和等により、負性抵抗の発生及びそれに伴う永久破
壊が防止され、かつドレイン耐圧が高められるという効
果を有している。
As explained in detail above, the high voltage insulated gate field effect transistor of the present invention has a planar shape in which a region to become a source region facing a corner portion of a drain region is included in a ground lead-out region, and a drain region. Since the high voltage drain region facing the corner part of the region has a planar shape that is pushed out toward the end of the offset gate region on the source region side, the source region facing the corner part of the drain region The generation of negative resistance and associated permanent damage are prevented by eliminating the injection of carriers from the source, by making the source-substrate junction less likely to be forward biased, and by alleviating current concentration in the high-voltage drain region. This has the effect of increasing drain breakdown voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁ゲート型電界効果トラ/ジスタの一
例を示す断面図、第2図は従来の高電圧絶縁ゲート型電
界効果トランジスタの一例を示す断面図、第3図は第2
図のトランジスタの半導体基板表面における平面形状の
一例を示す平面図、第4図は第2図のトランジスタのド
レイ/領域のコーナ部分の曲率半径と破壊電流の関係を
示す特性図、第5図は従来の高電圧絶縁ゲート型電界効
果トランジスタの他の例を示す断面図、第6図。 第7図、第8図はそれぞれ本第1の発明の第1゜第2.
第3の実施例の要部を示す半導体基板表面における平面
図、第9図は本第2の発明の一実施例の要部を示す半導
体基板表面における平面図、第1O図はそのAA’断面
図である。 l・・・・・・半導体基板、2・・・・・・ドレイン領
域、3・・・・・・ソース領域、4・・・・・・オフセ
ットゲート領域、5・・・・・・チャネル領域、6・・
・・・・ゲーH任極、7・・・・・・ドレイン電極、8
・・・・・・ソース電極、9・・・・・・ゲートシリコ
ン&(tJ、I O・・・・・・フィールドシリコンM
化膜、11・・・・・・半導体基板、12.12’ 、
12“・・・・・・ドレイン領域、s 3 、13’ 
、 l 3’ −−−−−−ソース領域、14.14’
 、14”・・・・・・オフセットゲート領域、15.
15’ 、15’・・・・・・チャネル領域、16・・
・・・・ゲート電極、17・・・・・・ドレイン電極、
18・・印・ソース電極、19・川・・ゲートシリコン
酸化膜、20・・・・・・フィールドシリコン酸化膜、
21・・・・・・アース埋込み領域、22・・川・アー
ス引出し領域、23・・・・・・ドレイン領域、31・
・・・・・ドレイン領域、32・・・・・・オフセット
ゲート領域、33・・・・・・チャネル領域、34・・
・・・・ソース領域、35・・・・・・アース引出し領
域、41・・・・・・半導体基板、42・・・・・・ド
レイン領域、43・・・・・・ソース領域、44・・・
・・・オフセットゲート領域、45・・・・・・チャネ
ル領域、46・・・・・・ケート電極、47・川・・ド
レイン電極、48・・・・・・ソース電極、49・山・
・ゲートシリコンば化膜、50・・・・・・フィールド
シリコン酸化膜、51・旧・・アース埋込み領域、52
・・・・・・アース引出し領域、53・・・・・・高耐
圧化ドレイン領域、a、a’、a“、a′・・・・・・
ドレイン領域のコーナ部分に対向するソース領域となる
べき領域、b・−・・・・高耐圧化ドレイン領域の押し
出した領域。 0 70 20 トレイン傾J或コ一ナ部分の曲率ギ径(/1)ひm)第
6図 (イ)7図 蓋8図
FIG. 1 is a cross-sectional view showing an example of a conventional insulated gate field effect transistor, FIG. 2 is a cross-sectional view showing an example of a conventional high voltage insulated gate field effect transistor, and FIG.
FIG. 4 is a plan view showing an example of the planar shape of the semiconductor substrate surface of the transistor shown in FIG. 4. FIG. FIG. 6 is a sectional view showing another example of a conventional high voltage insulated gate field effect transistor. 7 and 8 are the first and second sections of the first invention, respectively.
FIG. 9 is a plan view on the surface of a semiconductor substrate showing the main part of the third embodiment, FIG. 9 is a plan view on the surface of the semiconductor substrate showing the main part of the second embodiment of the present invention, and FIG. It is a diagram. 1... Semiconductor substrate, 2... Drain region, 3... Source region, 4... Offset gate region, 5... Channel region , 6...
...Ge H electrode, 7...Drain electrode, 8
...Source electrode, 9...Gate silicon & (tJ, I O...Field silicon M
chemical film, 11...semiconductor substrate, 12.12',
12"...Drain region, s 3 , 13'
, l 3' ----- Source region, 14.14'
, 14''...Offset gate region, 15.
15', 15'...channel region, 16...
...Gate electrode, 17...Drain electrode,
18...mark source electrode, 19...gate silicon oxide film, 20...field silicon oxide film,
21... Earth embedded area, 22... River/earth extraction area, 23... Drain area, 31...
... Drain region, 32 ... Offset gate region, 33 ... Channel region, 34 ...
... Source region, 35 ... Earth lead-out region, 41 ... Semiconductor substrate, 42 ... Drain region, 43 ... Source region, 44.・・・
...offset gate region, 45...channel region, 46...gate electrode, 47.river...drain electrode, 48...source electrode, 49.mountain...
・Gate silicon oxide film, 50... Field silicon oxide film, 51 ・Old... Earth buried region, 52
...Earth lead-out region, 53...High voltage drain region, a, a', a'', a'...
A region that is to become a source region facing the corner portion of the drain region, b: an extruded region of the high-voltage drain region. 0 70 20 Curvature gear diameter of train inclination J or corner part (/1) mm) Figure 6 (A) Figure 7 Lid Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1) −導電型の半導体基板の一生面に設けられた逆
導電型のソース領域及びドレイン領域と、該ドレイン領
域に接して設けられた逆導電型のオフセットゲート領域
と、該オフセットゲート領域と前記ソース領域間に形成
されるチャネル領域と、前記ソース領域の底面に接して
設けられた高不純物濃度の一導電の埋込みアース領域と
、該埋込みアース領域と前記ソース領域と前記半導体基
板の一生面に接して設けられた高不純物濃度の一導電型
のアース引出し領域と、該アース引出し領域と前記ソー
ス領域とを電気的に接続するソース電極とを備える高電
圧絶縁ゲート型電界効果トランジスタにおいて、前記ド
レイン領域のコーナ部分に対向する前記ソース領域とな
るべき領域が前記アース引出し領域に包含された形状の
平面形状を有することを特徴とする高電圧絶縁ゲート型
電界効果トランジスタ。
(1) - A source region and a drain region of opposite conductivity type provided on the entire surface of a semiconductor substrate of conductivity type, an offset gate region of opposite conductivity type provided in contact with the drain region, and the offset gate region. a channel region formed between the source regions; a highly impurity-concentrated, monoconductive buried ground region provided in contact with the bottom surface of the source region; and a full surface of the buried ground region, the source region, and the semiconductor substrate. A high voltage insulated gate field effect transistor comprising: a highly impurity-concentrated ground lead-out region of one conductivity type provided in contact with the ground lead-out region; and a source electrode electrically connecting the ground lead-out region and the source region; A high voltage insulated gate field effect transistor, wherein a region to become the source region facing a corner portion of the drain region has a planar shape such that it is included in the ground lead-out region.
(2)−導電型の半導体基板の一生面に設けられた逆導
電型のソース領域及びドレイン領域と該ドレイン領域に
接して設けられた逆導電型のオフセットゲート領域と、
該オフセットゲート領域と前記ソース領域間に形成され
るチャネル領域と、前記ソース領域の底面に接して設け
られた高不純物濃度の一導電の埋込みアース領域と、該
埋込みアース領域と前記ソース領域と前記半導体基板の
一生面に接して設けられた高不純物濃度の一導電型のア
ース引出し領域と、該アース引出し領域と前記ソース領
域とを電気的に接続するソース電極とを備える高電圧絶
縁ゲート型電界効果トランジスタにおいて、前記オフセ
ットゲート領域の一部分と前記ドレイン領域に接して低
不純物製置の逆導電型の高耐圧化ドレイン領域を設け、
かつ、前記ドレイン領域のコーナ部分に対向する前記ソ
ース領域となるべき領域が前記アース引出し領域に包含
され、前記ドレイン領域のコーナ部分に対向する前記高
耐圧化ドレイ/領域が前記オフセットゲート領域のソー
ス領域側の端部の方へ押し出された形状の平面形状を有
することを特徴とする高電圧絶縁ゲート型電界効果トラ
ンジスタ。
(2) - a source region and a drain region of opposite conductivity type provided on the entire surface of a semiconductor substrate of conductivity type, and an offset gate region of opposite conductivity type provided in contact with the drain region;
a channel region formed between the offset gate region and the source region; a highly impurity-concentrated, monoconductive buried ground region provided in contact with the bottom surface of the source region; A high-voltage insulated gate type electric field comprising a highly impurity-concentrated ground lead-out region of one conductivity type provided in contact with the entire surface of a semiconductor substrate, and a source electrode that electrically connects the ground lead-out region and the source region. In the effect transistor, a high breakdown voltage drain region of an opposite conductivity type and low impurity is provided in contact with a part of the offset gate region and the drain region,
In addition, a region that is to become the source region facing the corner portion of the drain region is included in the ground lead-out region, and the high voltage drain/region facing the corner portion of the drain region is included in the source region of the offset gate region. A high-voltage insulated gate field effect transistor characterized in that it has a planar shape that is pushed out toward an end on a region side.
JP58172555A 1983-09-19 1983-09-19 High voltage insulated gate type field-effect transistor Pending JPS6064471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172555A JPS6064471A (en) 1983-09-19 1983-09-19 High voltage insulated gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172555A JPS6064471A (en) 1983-09-19 1983-09-19 High voltage insulated gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPS6064471A true JPS6064471A (en) 1985-04-13

Family

ID=15944024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172555A Pending JPS6064471A (en) 1983-09-19 1983-09-19 High voltage insulated gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS6064471A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501130B2 (en) 2001-01-24 2002-12-31 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6781198B2 (en) 2001-09-07 2004-08-24 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6815293B2 (en) 2001-09-07 2004-11-09 Power Intergrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
JP2005093696A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Lateral mos transistor
JP2005311211A (en) * 2004-04-26 2005-11-04 Fuji Electric Device Technology Co Ltd Horizontal semiconductor device
US7115958B2 (en) 2001-10-29 2006-10-03 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US9601613B2 (en) 2007-02-16 2017-03-21 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6504209B2 (en) 2001-01-24 2003-01-07 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6818490B2 (en) 2001-01-24 2004-11-16 Power Integrations, Inc. Method of fabricating complementary high-voltage field-effect transistors
US6501130B2 (en) 2001-01-24 2002-12-31 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6787847B2 (en) 2001-09-07 2004-09-07 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6987299B2 (en) 2001-09-07 2006-01-17 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6781198B2 (en) 2001-09-07 2004-08-24 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6667213B2 (en) 2001-09-07 2003-12-23 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6815293B2 (en) 2001-09-07 2004-11-09 Power Intergrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6838346B2 (en) 2001-09-07 2005-01-04 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6750105B2 (en) 2001-09-07 2004-06-15 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6882005B2 (en) 2001-09-07 2005-04-19 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7115958B2 (en) 2001-10-29 2006-10-03 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
JP2005093696A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Lateral mos transistor
JP2005311211A (en) * 2004-04-26 2005-11-04 Fuji Electric Device Technology Co Ltd Horizontal semiconductor device
US9601613B2 (en) 2007-02-16 2017-03-21 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates

Similar Documents

Publication Publication Date Title
US5146298A (en) Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
JP3971062B2 (en) High voltage semiconductor device
JP3262579B2 (en) Metal oxide semiconductor field effect transistor circuit
JP4087248B2 (en) Trench gate field effect transistor and method of manufacturing the same
JP4610786B2 (en) Semiconductor device
JP3346825B2 (en) Power semiconductor device and method of manufacturing the same
US5631483A (en) Power device integrated structure with low saturation voltage
JP2002528916A (en) Power semiconductor device with improved high-frequency switching and breakdown characteristics
JPH0766428A (en) Thin film soi device and its manufacture
JPS6237545B2 (en)
JP2003517200A (en) Lateral insulated gate bipolar transistor (ligbt) device using silicon-on-insulator (soi) technology
US9059329B2 (en) Power device with integrated Schottky diode and method for making the same
JPH0219630B2 (en)
JPS61154155A (en) Semiconductor device having combined lateral mos/bipolar transistor with increased conductivity
JPS6064471A (en) High voltage insulated gate type field-effect transistor
JPS62131580A (en) High speed switching lateral insulated gate transistor
JPH10294461A (en) Insulation gate type semiconductor element
JPH0624244B2 (en) Composite semiconductor device
JP3522887B2 (en) High voltage semiconductor device
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
JPS59151472A (en) Lateral dmos transistor
JP3163815B2 (en) Semiconductor device
JP3249891B2 (en) Semiconductor device and method of using the same
KR102392277B1 (en) Power Semiconductor Device
JPH0738434B2 (en) Integrated circuits with complementary circuit technology