JP2005311211A - Horizontal semiconductor device - Google Patents

Horizontal semiconductor device Download PDF

Info

Publication number
JP2005311211A
JP2005311211A JP2004129199A JP2004129199A JP2005311211A JP 2005311211 A JP2005311211 A JP 2005311211A JP 2004129199 A JP2004129199 A JP 2004129199A JP 2004129199 A JP2004129199 A JP 2004129199A JP 2005311211 A JP2005311211 A JP 2005311211A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
concentration diffusion
source
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004129199A
Other languages
Japanese (ja)
Other versions
JP4839578B2 (en
Inventor
Hitoshi Sumida
仁志 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2004129199A priority Critical patent/JP4839578B2/en
Publication of JP2005311211A publication Critical patent/JP2005311211A/en
Application granted granted Critical
Publication of JP4839578B2 publication Critical patent/JP4839578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal semiconductor device which is improved on the tradeoff characteristic between the on-state breakdown voltage and the current driving capability of the device. <P>SOLUTION: In a surface layer of an n-type semiconductor substrate 1, a p-type well layer 2 is formed. In a surface layer of the p-type well layer 2, an n-type source layer is formed. An n-type source layer 4a in the linear portion consists of a highly doped diffusion layer 44a while an n-type source layer 4b in the curved portion consists of a lightly doped diffusion layer 44b. In the surface layer of the p-type well layer 2, a p-type contact layer 3 is so formed as to be in contact with the n-type source layer 44a and 44b. Meanwhile, in the surface layer of the n-type semiconductor substrate 1, an n-type drain layer 10 is formed away from the p-type well layer 2. A source electrode is so formed that its end 77 may be in contact with the n-type source layer 4a in the linear portion while being away from the n-type source layer 4b in the curved portion. Due to this structure, resistance (Rn5 to Rn8) in the n-type source layer 4b becomes large, suppressing the concentration of an electron flow Ie in a drain corner 15. Since a channel is not eliminated, the on-state breakdown voltage can be increased without sacrificing the current driving capability. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、半導体層上に形成された横形半導体装置に関する。   The present invention relates to a lateral semiconductor device formed on a semiconductor layer.

近年、接合分離や誘電体分離などの分離技術の進歩により、横形構造のダイオードや絶縁ゲート型バイポーラトランジスタ(以下、IGBTと称す)、MOSFETなどの高耐圧デバイスと、その駆動回路、制御回路および保護回路を一枚のシリコン基板に集積した、高耐圧パワーICの開発が盛んに行われている。特に、貼り合わせ基板とトレンチ技術(溝堀り技術のこと)を組み合わせた、誘電体分離技術の進歩は、複数の高耐圧バイポーラデバイス(例えば、バイポーラトランジスタやIGBTなど)の集積化を可能とし、高耐圧パワーICの適用分野を大幅に拡げた。例えば、IGBTを適用したトーテムポール回路のワンチップ化や、ディスプレイ駆動用ICなどのマルチ出力を持った集積回路にIGBTが適用されている。
高耐圧パワーICの開発においては、負荷を直接駆動する高耐圧出力デバイスの性能向上とともに、この出力デバイスを含んだ出力回路の特性向上も必須となる。出力回路の構成においては、高耐圧MOSFETが必要不可欠なデバイスであるため、例え、MOSFETが出力デバイスとして、使用されない場合においても、負荷を駆動する出力デバイスの性能とともに、高耐圧MOSFETの性能は高耐圧パワーICの出力特性を大きく左右することになる。
In recent years, with the advancement of isolation technology such as junction isolation and dielectric isolation, high voltage devices such as lateral diodes, insulated gate bipolar transistors (hereinafter referred to as IGBTs), MOSFETs, their drive circuits, control circuits and protection Development of high voltage power ICs in which circuits are integrated on a single silicon substrate has been actively conducted. In particular, the progress of dielectric isolation technology that combines bonded substrates and trench technology (groove technology) enables the integration of multiple high-voltage bipolar devices (for example, bipolar transistors and IGBTs) The field of application of high voltage power ICs has been greatly expanded. For example, an IGBT is applied to an integrated circuit having a multi-output such as a one-chip totem pole circuit to which an IGBT is applied and a display driving IC.
In the development of a high-voltage power IC, it is essential to improve the performance of a high-voltage output device that directly drives a load, and to improve the characteristics of an output circuit including the output device. Since the high voltage MOSFET is an indispensable device in the configuration of the output circuit, even if the MOSFET is not used as an output device, the performance of the high voltage MOSFET is high as well as the performance of the output device that drives the load. This greatly affects the output characteristics of the withstand voltage power IC.

図15は高耐圧パワーICの出力回路例である。この回路はフラットパネルディスプレイを駆動する高耐圧パワーICに搭載されているものである。図中のVL、Vin1、Vin2、Vss、VH、Voutは、回路の各端子を示し、VLは低電圧源の高電位端子、Vin1、Vin2はシフトレジスタ21の入力端子、Vssは低電圧電源および高電圧電源の共通の低電位端子(グランド端子)、VHは高電圧電源の高電位端子、Voutは出力端子である。また、N1、N2は出力デバイスとなるIGBTである。D1、D2はダイオード、P1はpチャネル形MOSFET、N3はnチャネル形MOSFET、ZDはツェナーダイオード、R1、R2は抵抗である。また19はバッファ、20はレベルシフタである。
この回路の動作を説明する。出力デバイスN1、N2を駆動するための信号がVin1またはVin2からシフトレジスタ21に入力され、N2を駆動する信号はレベルシフタ20を介してP1のゲートに与えられる。P1がオンすることで、N2がオンし、そのとき、N1にはオフ信号がバッファ19を介して入力され、N1はオフする。つぎに、P1をオフさせ、N3をオンすることで、N2がオフし、N1がオンする。この回路では、IGBTであるN1、N2は、出力デバイスとして負荷を駆動するデバイスであり、N3、P1は共に高耐圧の横形MOSFETである。このN3とP1は負荷を直接駆動することはないが、出力デバイスであるN1とN2を駆動するという重要な役割を担っている。
FIG. 15 shows an example of an output circuit of a high voltage power IC. This circuit is mounted on a high voltage power IC that drives a flat panel display. In the figure, VL, Vin1, Vin2, Vss, VH, and Vout indicate respective terminals of the circuit, VL is a high potential terminal of a low voltage source, Vin1, Vin2 are input terminals of the shift register 21, Vss is a low voltage power source, and A common low potential terminal (ground terminal) of the high voltage power supply, VH is a high potential terminal of the high voltage power supply, and Vout is an output terminal. N1 and N2 are IGBTs serving as output devices. D1 and D2 are diodes, P1 is a p-channel MOSFET, N3 is an n-channel MOSFET, ZD is a Zener diode, and R1 and R2 are resistors. Reference numeral 19 denotes a buffer, and 20 denotes a level shifter.
The operation of this circuit will be described. A signal for driving the output devices N1 and N2 is inputted from the Vin1 or Vin2 to the shift register 21, and a signal for driving the N2 is given to the gate of P1 through the level shifter 20. When P1 is turned on, N2 is turned on. At that time, an off signal is input to N1 via the buffer 19, and N1 is turned off. Next, when P1 is turned off and N3 is turned on, N2 is turned off and N1 is turned on. In this circuit, IGBTs N1 and N2 are devices that drive a load as output devices, and N3 and P1 are both high breakdown voltage lateral MOSFETs. N3 and P1 do not directly drive the load, but play an important role of driving the output devices N1 and N2.

従って、両デバイスの特性、例えば、耐圧特性などが不十分であると、N1とN2の特性が良好であっても、その特性を十分に引き出すことができなくなり、高耐圧パワーICの出力特性が満足できないものになってしまう。このように、高耐圧パワーICにおいては、出力デバイスの特性と同様に、出力回路を構成するN3、P1などの高耐圧横形MOSFETの耐圧特性も重要になる。
図16は、横形MOSFETを半導体領域上に形成した場合の要部断面図である。この図のデバイスは、第1導電形半導体層として、n形半導体基板1を考えており、MOSFETのチャネルの導電形はn形である。
このn形半導体基板1の表面層にp形ウェル層2、p形コンタクト層3、n形ソース層4を形成する。p形ウェル層2から所定の距離を離して、n形半導体基板1の表面層にn形ドレイン層10を形成する。p形ウェル層2とn形ドレイン層10に挟まれたn形半導体領域1はn形ドリフト領域13となる。p形ウェル層2上にゲート酸化膜6を介してゲート電極8を形成する。n形ソース層4とp形コンタクト層3上にソース電極7を形成し、n形ドレイン層10上にドレイン電極11を形成する。ソース電極7、ゲート電極8およびドレイン電極11上にソース端子S、ゲート端子Gおよびドレイン端子Dをそれぞれ接続する。
Therefore, if the characteristics of both devices, such as the withstand voltage characteristics, are insufficient, even if the characteristics of N1 and N2 are good, the characteristics cannot be fully obtained, and the output characteristics of the high withstand voltage power IC are It will be unsatisfactory. As described above, in the high breakdown voltage power IC, the breakdown voltage characteristics of the high breakdown voltage lateral MOSFETs such as N3 and P1 constituting the output circuit are important as well as the characteristics of the output device.
FIG. 16 is a cross-sectional view of a principal part when a lateral MOSFET is formed on a semiconductor region. In the device of this figure, an n-type semiconductor substrate 1 is considered as the first conductivity type semiconductor layer, and the conductivity type of the channel of the MOSFET is n-type.
A p-type well layer 2, a p-type contact layer 3, and an n-type source layer 4 are formed on the surface layer of the n-type semiconductor substrate 1. An n-type drain layer 10 is formed on the surface layer of the n-type semiconductor substrate 1 at a predetermined distance from the p-type well layer 2. The n-type semiconductor region 1 sandwiched between the p-type well layer 2 and the n-type drain layer 10 becomes an n-type drift region 13. A gate electrode 8 is formed on the p-type well layer 2 via a gate oxide film 6. A source electrode 7 is formed on the n-type source layer 4 and the p-type contact layer 3, and a drain electrode 11 is formed on the n-type drain layer 10. A source terminal S, a gate terminal G, and a drain terminal D are connected to the source electrode 7, the gate electrode 8, and the drain electrode 11, respectively.

この断面図に示すように、横形構造のMOSFETはソース電極7、ゲート電極8およびドレイン電極11の全ての電極が同一表面側に形成される。電流の担い手となる電子はn形ソース層4からn形チャネル領域5を介してn形ドリフト領域13に注入され、n形ドレイン層10に入る。
図17は、図16の断面構造をもった横形MOSFETの要部平面図であり、図19ハドレインコーナー15を拡大した詳細図である。この図では表面電極のパターンは省略している。通常、横形MOSFETの表面パターンには、この図に示すようなソース・ゲート領域9とドレイン領域12が櫛の歯形に配置されたパターンが一般に用いられる。ここでソース・ゲート領域9とは、n形ソース層4とゲート電極8とソース電極7が形成される箇所で、ドレイン領域12とはn形ドレイン層10とドレイン電極11が形成される箇所である。n形ソース層4、p形ウェル層2、n形ドリフト領域13およびn形ドレイン層10の組合せをユニットセルと呼ぶと、デバイスの表面パターンはこのユニットセルの配列となる。配列するユニットセルの数はデバイスに要求される電流の大きさで決まる。また、n形ドリフト領域13の幅はデバイスの要求耐圧で決まる。
As shown in this cross-sectional view, in the lateral MOSFET, all of the source electrode 7, the gate electrode 8, and the drain electrode 11 are formed on the same surface side. Electrons that carry current are injected from the n-type source layer 4 into the n-type drift region 13 through the n-type channel region 5 and enter the n-type drain layer 10.
FIG. 17 is a plan view of an essential part of the lateral MOSFET having the cross-sectional structure of FIG. 16, and is an enlarged detailed view of FIG. In this figure, the surface electrode pattern is omitted. Usually, a pattern in which source / gate regions 9 and drain regions 12 are arranged in a comb-teeth shape as shown in FIG. Here, the source / gate region 9 is a place where the n-type source layer 4, the gate electrode 8 and the source electrode 7 are formed, and the drain region 12 is a place where the n-type drain layer 10 and the drain electrode 11 are formed. is there. When the combination of the n-type source layer 4, the p-type well layer 2, the n-type drift region 13 and the n-type drain layer 10 is called a unit cell, the surface pattern of the device is an arrangement of the unit cells. The number of unit cells to be arranged is determined by the amount of current required for the device. The width of the n-type drift region 13 is determined by the required breakdown voltage of the device.

図17に示すセルパターンは3つの部分から構成されている。第1の領域はソース・ゲート領域9とドレイン領域12が平行に配置された部分(n形ソース層の直線部4aが配置される部分)である。第2の領域はドレイン領域12のエッジ部(櫛歯パターンの歯の先端部分)が、ソース・ゲート領域9で囲まれた部分(n形ソース層の曲線部4bが配置される部分)である。第3の領域はソース・ゲート領域9のエッジ部(櫛歯パターンの歯の先端部分)が、ドレイン領域12で囲まれた部分(n形ソース層4の凸部が配置される部分)である。ここでは、第2の領域をドレインコーナー15と呼び、第3の領域をソースコーナー14と呼ぶ。本発明は、このドレインコーナー15に関係している。
多数のユニットセルによって、1つのデバイスを構成する場合、上記で述べた3つの部分からデバイスの表面パターンが形成される。しかし、デバイスの定格電流が小さい場合では、n形ドリフト領域13をリング状になるように配置し、ソース・ゲート領域9あるいはドレイン領域12が、一方の領域によって完全に囲まれ、ドレインコーナー15あるいはソースコーナー14の一方のみが存在し、他方は存在しないものもある。
The cell pattern shown in FIG. 17 is composed of three parts. The first region is a portion where the source / gate region 9 and the drain region 12 are arranged in parallel (the portion where the straight portion 4a of the n-type source layer is arranged). The second region is a portion where the edge portion of the drain region 12 (the tip portion of the teeth of the comb pattern) is surrounded by the source / gate region 9 (the portion where the curved portion 4b of the n-type source layer is disposed). . The third region is a portion where the edge portion of the source / gate region 9 (the tip portion of the teeth of the comb pattern) is surrounded by the drain region 12 (the portion where the convex portion of the n-type source layer 4 is disposed). . Here, the second region is called a drain corner 15, and the third region is called a source corner 14. The present invention relates to this drain corner 15.
When one device is constituted by a large number of unit cells, the surface pattern of the device is formed from the three portions described above. However, when the rated current of the device is small, the n-type drift region 13 is arranged in a ring shape, the source / gate region 9 or the drain region 12 is completely surrounded by one region, and the drain corner 15 or In some cases, only one of the source corners 14 exists and the other does not exist.

例えば、図18に示すように、ドレイン領域12がソース・ゲート領域9によって完全に囲まれた表面パターンを持つ素子では、ソースコーナー14は存在しない。逆に、ソース・ゲート領域9がドレイン領域12で囲まれた表面パターンにおいては、ドレインコーナー15が存在しない。一般的には、図18のように、ドレインコーナー15のみ存在する場合が多い。
さて、横形MOSFETにおいては、オフ耐圧と共に、オン耐圧すなわちFBSOA(順方向安全動作領域)の特性が重要である。ここで述べるオン耐圧とは、所定のゲート電圧を印加してオン電流を流し、このオン電流を流したまま電圧を上昇させて、MOSFETが導通流状態でアバランシェに突入し、アバランシェ増倍で破壊が起こる寸前の電圧と定義付けることとする。また、オフ耐圧は、一般的に知られているように、ゲート電圧を印加せず、漏れ電流が流れている状態で、アバランシェ増倍を引き起こすアバランシェ電圧のことである。
For example, as shown in FIG. 18, the source corner 14 does not exist in an element having a surface pattern in which the drain region 12 is completely surrounded by the source / gate region 9. Conversely, in the surface pattern in which the source / gate region 9 is surrounded by the drain region 12, the drain corner 15 does not exist. In general, only the drain corner 15 is often present as shown in FIG.
In the lateral MOSFET, the on-breakdown voltage, that is, the FBSOA (forward safe operating region) characteristics are important as well as the off-breakdown voltage. The on-state breakdown voltage described here refers to the application of a predetermined gate voltage to flow an on-current, the voltage is increased while the on-current is flowing, and the MOSFET enters the avalanche in a conductive state, and is destroyed by avalanche multiplication. It is defined as the voltage just before the occurrence. The off breakdown voltage is an avalanche voltage that causes avalanche multiplication in a state where a leakage current flows without applying a gate voltage, as is generally known.

通常は、オン耐圧は、大きなオン電流からアバランシェ増倍が起こるために、漏れ電流の状態からアバランシェ増倍が起こるオフ耐圧に比べて低い。従って、横形MOSFETでは如何にオフ耐圧並みのオン耐圧を確保することが課題となる。
ここで、横形MOSFETのオン耐圧に対するウィークポイントについて考えてみる。図17、図18の表面パターンにおいてドレインコーナー15ではドレイン領域12が凸状態となっているため電界が高い。この図17、図18のドレインコーナー15を拡大した詳細図が図19である。図19に示すように、ドレインコーナー15のn形ドレイン層10は、n形ソース層44aから注入された多数キャリアである電子流Ieが集中するところである。従って、このドレインコーナー15はオン耐圧に対して最も弱い領域となる。
Normally, the on-breakdown voltage is lower than the off-breakdown voltage at which avalanche multiplication occurs from the leakage current state because avalanche multiplication occurs from a large on-current. Therefore, in the lateral MOSFET, it becomes a problem how to secure an on-breakdown voltage comparable to the off-breakdown voltage.
Here, consider the weak point with respect to the ON breakdown voltage of the lateral MOSFET. In the surface patterns of FIGS. 17 and 18, the drain region 12 is in a convex state at the drain corner 15, so the electric field is high. FIG. 19 is a detailed view in which the drain corner 15 of FIGS. 17 and 18 is enlarged. As shown in FIG. 19, the n-type drain layer 10 at the drain corner 15 is where the electron stream Ie, which is majority carriers injected from the n-type source layer 44a, is concentrated. Therefore, the drain corner 15 is the weakest region with respect to the ON breakdown voltage.

オン耐圧がドレインコーナー15で制限されるため、オン耐圧向上を狙いとしたドレインコーナー15の構造改良が必要となる。ドレインコーナー15の構造改良例として、
(1)ドレインコーナー15での電界緩和を目的としたオフセット領域の導入(例えば、特許文献1)
(2)電子流eの流入阻止を目的とした、n形ソース層4のドレインコーナー15からの削除(例えば、特許文献2) などの手法が提案されている。
しかし、(1)の手法ではオフセット領域の導入によるデバイス面積の増加、また(2)では駆動電流の低下といった犠牲を強いることなになる。このように、オン耐圧改善のために電流駆動能力を犠牲にしているのが現状である。
Since the ON breakdown voltage is limited by the drain corner 15, it is necessary to improve the structure of the drain corner 15 with the aim of improving the ON breakdown voltage. As an example of improving the structure of the drain corner 15,
(1) Introduction of an offset region for the purpose of electric field relaxation at the drain corner 15 (for example, Patent Document 1)
(2) A method of deleting the n-type source layer 4 from the drain corner 15 for the purpose of preventing the inflow of the electron flow e (for example, Patent Document 2) has been proposed.
However, the method (1) imposes sacrifices such as an increase in device area due to the introduction of an offset region and a decrease in drive current in (2). As described above, the current driving capability is sacrificed to improve the ON breakdown voltage.

また、アバランシェ耐量を向上させ、二次降伏の発生を抑えるために、n形ソース層のチャネル側を低濃度拡散層で形成して、寄生トランジスタをオンしにくくした例が報告されている(例えば、特許文献3)。
特開平6−244412号公報 特開2000−156495号公報 特開平8−186254号公報、図1、図12
In addition, in order to improve the avalanche resistance and suppress the occurrence of secondary breakdown, an example in which the channel side of the n-type source layer is formed with a low concentration diffusion layer to make it difficult to turn on the parasitic transistor has been reported (for example, Patent Document 3).
Japanese Patent Laid-Open No. 6-244412 JP 2000-156495 A JP-A-8-186254, FIGS. 1 and 12

前記したように、横形MOSFETではオフ耐圧並みのオン耐圧を確保することが課題となり、オン耐圧の特性を制限するドレインコーナー15に対する改善が必要となる。
しかし、従来技術ではオフセット領域の導入によるデバイス面積の増加、あるいはドレインコーナー15のチャネル削除を目的とした曲線部4bの未形成(n形ソース層4を形成しないこと)など、素子の電流駆動能力低下を犠牲にしてオン耐圧の改善を図っている。
よって、横形MOSFETの開発ではオン耐圧と電流駆動能力のトレードオフ特性改善が大きな課題となっている。
この発明では、上記課題に鑑み、オン耐圧と素子の電流駆動能力のトレードオフ特性を改善した高耐圧横形MOSFETなどの横型半導体装置を提供することにある。
As described above, the lateral MOSFET has a problem of securing an on-breakdown voltage that is about the same as the off-breakdown voltage, and it is necessary to improve the drain corner 15 that limits the on-breakdown voltage characteristics.
However, in the prior art, the current drive capability of the element, such as an increase in device area due to the introduction of the offset region, or the non-formation of the curved portion 4b for the purpose of channel deletion of the drain corner 15 (not forming the n-type source layer 4). The ON breakdown voltage is improved at the expense of lowering.
Therefore, in the development of the lateral MOSFET, improvement of the trade-off characteristics between the on-breakdown voltage and the current drive capability has become a major issue.
In view of the above problems, an object of the present invention is to provide a lateral semiconductor device such as a high breakdown voltage lateral MOSFET having improved trade-off characteristics between on breakdown voltage and current drive capability of the element.

前記の目的を達成するために、第1半導体層の表面層に選択的に形成された第2導電形ウェル層と、該第2導電形ウェル層の表面層に選択的に形成された高濃度の第2導電形コンタクト層と、前記第2導電形ウェル層の表面層に選択的に形成された第1導電形ソース層と、該第1導電形ソース層と前記第1半導体層に挟まれた第2導電形ウェル層上にゲート絶縁膜を介して形成されたゲート電極と、前記第2導電形コンタクト層上と前記第1導電形ソース層上に形成されたソース電極と、前記第1半導体層の表面層に前記第2導電形ウェル層と離して、選択的に形成された高濃度の第1導電形ドレイン層と、該第1導電形ドレイン層上に形成されたドレイン電極を具備する横形半導体装置において、前記第2導電形ウェル層と前記第1導電形ドレイン層の表面パターンが、前記第2導電形ウェル層端線と、前記第1導電形ドレイン層端線とが対向し、該対向する前記第2導電形ウェル層端線の長さが、前記第1導電形ドレイン層端線の長さより長くなるコーナー箇所を備え、該コーナー箇所で前記第1導電形ソース層が前記ソース電極と接触しない構成とする。   To achieve the above object, a second conductivity type well layer selectively formed on the surface layer of the first semiconductor layer, and a high concentration selectively formed on the surface layer of the second conductivity type well layer. A second conductivity type contact layer, a first conductivity type source layer selectively formed on a surface layer of the second conductivity type well layer, and the first conductivity type source layer and the first semiconductor layer. A gate electrode formed on the second conductivity type well layer via a gate insulating film; a source electrode formed on the second conductivity type contact layer; and the first conductivity type source layer; A high-concentration first conductivity type drain layer formed on the surface layer of the semiconductor layer apart from the second conductivity type well layer and a drain electrode formed on the first conductivity type drain layer are provided. In the lateral semiconductor device, the second conductivity type well layer and the first conductivity type The surface pattern of the rain layer is such that the second conductivity type well layer end line and the first conductivity type drain layer end line face each other, and the length of the opposing second conductivity type well layer end line is A corner portion longer than the length of the end line of the first conductivity type drain layer is provided, and the first conductivity type source layer is not in contact with the source electrode at the corner portion.

また、前記コーナー箇所の前記第1導電形ソース層を他の箇所のソース層より不純物濃度の低い低濃度拡散層で形成するとよい。
また、前記コーナー箇所で、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層が形成され、前記コーナー箇所の内側に前記低濃度拡散層が形成されるとよい。
また、前記コーナー箇所で、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層が形成され、該高濃度拡散層は前記コーナー箇所の内側方向に向かって張出し箇所が形成され、該張出し箇所を挟むように前記低濃度拡散層が形成されるとよい。
The first conductivity type source layer at the corner may be formed of a low-concentration diffusion layer having a lower impurity concentration than the other source layers.
The first conductivity type source layer is formed of two diffusion layers of a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer at the corner portion, and the outside of the corner portion A high concentration diffusion layer may be formed, and the low concentration diffusion layer may be formed inside the corner portion.
The first conductivity type source layer is formed of two diffusion layers of a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer at the corner portion, and the outside of the corner portion A high-concentration diffusion layer is formed, the high-concentration diffusion layer is preferably formed with an overhanging portion inward of the corner portion, and the low-concentration diffusion layer is formed so as to sandwich the overhanging portion.

また、前記張出し箇所の先端部は前記第2導電形コンタクト層内に形成されるとよい。 また、前記張出し箇所の先端部は前記第2導電形コンタクト層と離れた第2導電形高濃度拡散層内に形成されるとよい。
また、第1半導体層の表面層に選択的に形成された第2導電形ウェル層と、該第2導電形ウェル層の表面層に選択的に形成された高濃度の第2導電形コンタクト層と、前記第2導電形ウェル層の表面層に選択的に形成された第1導電形ソース層と、該第1導電形ソース層と前記第1半導体層に挟まれた第2導電形ウェル層上にゲート絶縁膜を介して形成されたゲート電極と、前記第2導電形コンタクト層上と前記第1導電形ソース層上に形成されたソース電極と、前記第1半導体層の表面層に前記第2導電形ウェル層と離して、選択的に形成された高濃度の第1導電形ドレイン層と、該第1導電形ドレイン層上に形成されたドレイン電極を具備する横形半導体装置において、前記第2導電形ウェル層と前記第1導電形ドレイン層の表面パターンが、前記第2導電形ウェル層端線と、前記第1導電形ドレイン層端線とが対向し、該対向する前記第2導電形ウェル層端線の長さが、前記第1導電形ドレイン層端線の長さより長くなるコーナー箇所を備え、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層を形成し、前記コーナー箇所の内側に前記低濃度拡散層が形成され、前記ソース層の内前記高濃度拡散層にのみ前記ソース電極が接触される構成とする。
The tip of the overhanging portion may be formed in the second conductivity type contact layer. The tip of the overhanging portion may be formed in a second conductivity type high concentration diffusion layer separated from the second conductivity type contact layer.
Also, a second conductivity type well layer selectively formed on the surface layer of the first semiconductor layer, and a high concentration second conductivity type contact layer selectively formed on the surface layer of the second conductivity type well layer A first conductivity type source layer selectively formed on a surface layer of the second conductivity type well layer, and a second conductivity type well layer sandwiched between the first conductivity type source layer and the first semiconductor layer A gate electrode formed on a gate insulating film, a source electrode formed on the second conductivity type contact layer and the first conductivity type source layer, and a surface layer of the first semiconductor layer; In the lateral semiconductor device, comprising a first conductivity type drain layer of high concentration selectively formed apart from the second conductivity type well layer, and a drain electrode formed on the first conductivity type drain layer. Surface pattern of the second conductivity type well layer and the first conductivity type drain layer However, the second conductivity type well layer end line and the first conductivity type drain layer end line are opposed to each other, and the length of the opposed second conductivity type well layer end line is equal to the first conductivity type drain layer. A corner portion that is longer than the length of the layer end line, and the first conductivity type source layer is formed of two diffusion layers, a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer, The high concentration diffusion layer is formed outside the corner portion, the low concentration diffusion layer is formed inside the corner portion, and the source electrode is in contact with only the high concentration diffusion layer in the source layer. To do.

また、前記コーナー箇所で、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層を形成し、該高濃度拡散層が前記コーナー箇所の内側方向に向かって張出箇所が形成され、該張出箇所を挟むように前記低濃度拡散層を形成し、前記ソース層の内前記高濃度拡散層にのみ前記ソース電極が接触される構成とする。
また、第1半導体層の表面層に選択的に形成された第2導電形ウェル層と、該第2導電形ウェル層の表面層に選択的に形成された高濃度の第2導電形コンタクト層と、前記第2導電形ウェル層の表面層に選択的に形成された第1導電形ソース層と、該第1導電形ソース層と前記第1半導体層に挟まれた第2導電形ウェル層上にゲート絶縁膜を介して形成されたゲート電極と、前記第2導電形コンタクト層上と前記第1導電形ソース層上に形成されたソース電極と、前記第1半導体層の表面層に前記第2導電形ウェル層と離して、選択的に形成された高濃度の第1導電形ドレイン層と、該第1導電形ドレイン層上に形成されたドレイン電極を具備する横形半導体装置において、前記第2導電形ウェル層と前記第1導電形ドレイン層の表面パターンが、前記第2導電形ウェル層端線と、前記第1導電形ドレイン層端線とが対向し、該対向する前記第2導電形ウェル層端線の長さが、前記第1導電形ドレイン層端線の長さより長くなるコーナー箇所を備え、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層で交互に接するように形成され、前記ソース層の内前記高濃度拡散層にのみ前記ソース電極が接触される構成とする。
The first conductivity type source layer is formed of two diffusion layers of a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer at the corner portion, and the outside of the corner portion Forming a high-concentration diffusion layer, wherein the high-concentration diffusion layer has an overhanging portion formed in an inward direction of the corner portion, and the low-concentration diffusion layer is formed so as to sandwich the overhanging portion; The source electrode is in contact with only the high concentration diffusion layer.
Also, a second conductivity type well layer selectively formed on the surface layer of the first semiconductor layer, and a high concentration second conductivity type contact layer selectively formed on the surface layer of the second conductivity type well layer A first conductivity type source layer selectively formed on a surface layer of the second conductivity type well layer, and a second conductivity type well layer sandwiched between the first conductivity type source layer and the first semiconductor layer A gate electrode formed on a gate insulating film, a source electrode formed on the second conductivity type contact layer and the first conductivity type source layer, and a surface layer of the first semiconductor layer; In the lateral semiconductor device, comprising a first conductivity type drain layer of high concentration selectively formed apart from the second conductivity type well layer, and a drain electrode formed on the first conductivity type drain layer. Surface pattern of the second conductivity type well layer and the first conductivity type drain layer However, the second conductivity type well layer end line and the first conductivity type drain layer end line are opposed to each other, and the length of the opposed second conductivity type well layer end line is equal to the first conductivity type drain layer. A corner portion that is longer than the length of the layer end line is provided, and the first conductivity type source layer is alternately in contact with two diffusion layers of a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer. The source electrode is in contact with only the high-concentration diffusion layer in the source layer.

また、前記高濃度拡散層の先端部が前記第2導電形コンタクト層内に形成されるとよい。
また、前記高濃度拡散層の先端部が前記第2導電形コンタクト層と離れた第2導電形反転防止層内に隣接して形成されるとよい。
The tip of the high concentration diffusion layer may be formed in the second conductivity type contact layer.
The tip of the high-concentration diffusion layer may be formed adjacent to the second conductivity type inversion prevention layer separated from the second conductivity type contact layer.

この発明によれば、
(1)ドレインコーナーのn形ソース層をソース電極と接触させない。
(2)ドレインコーナーのn形ソース層を低濃度拡散層で形成し、この低濃度拡散層とソース電極とを接触させない。
(3)ドレインコーナーのn形ソース層を高濃度拡散層と低濃度拡散層で形成し、高濃度拡散層部のみソース電極と接触させる。
(4)低濃度拡散層を複数個に分割し、その分割した隙間に高濃度拡散層を形成し、この高濃度拡散層をn形コンタクト層内に形成し、この分割された低濃度拡散層とソース電極とを接触させない。
この低濃度拡散層を形成することにより、チャネルを介してn形ソース層からn形ドレイン層へ流れる電子流が抑えられ、ドレインコーナーでの電子流の集中が回避されて、オン耐圧を向上させることができる。
According to this invention,
(1) The n-type source layer at the drain corner is not brought into contact with the source electrode.
(2) The n-type source layer at the drain corner is formed of a low concentration diffusion layer, and the low concentration diffusion layer and the source electrode are not brought into contact with each other.
(3) An n-type source layer at the drain corner is formed of a high-concentration diffusion layer and a low-concentration diffusion layer, and only the high-concentration diffusion layer portion is brought into contact with the source electrode.
(4) The low concentration diffusion layer is divided into a plurality of portions, a high concentration diffusion layer is formed in the divided gap, and the high concentration diffusion layer is formed in the n-type contact layer. And source electrode are not in contact.
By forming this low-concentration diffusion layer, the electron flow flowing from the n-type source layer to the n-type drain layer through the channel is suppressed, and the concentration of the electron flow at the drain corner is avoided, thereby improving the on-breakdown voltage. be able to.

また、ドレインコーナーでの電子流を完全に取り除くわけではないため、n形ソース層をドレインコーナーで完全に取り除いた場合に比べて電流駆動能力を大きくすることができる。
さらに、ドレインコーナーの平面構造は従来と同じであるため、素子面積の増加はなく、単位素子面積当たり電流(電流密度)を犠牲にすることはない。
以上のことから、横形MOSFETのオン耐圧と電流駆動能力のトレードオフ特性改善を達成することができる。
また、ドレインコーナーに低濃度拡散層を形成することで、この低濃度拡散層を流れる電子流で電圧降下を発生させ、n形ソース層とp形ウェル層のpn接合に加わる電圧の上昇を抑えて、n形ソース層からp形ウェル層への電子の注入を抑制し、n形ソース層−p形ウェル層−n形半導体基板で構成されるnpnトランジスタの二次降伏が防止され、オン耐圧の向上を図ることができる。
Further, since the electron current at the drain corner is not completely removed, the current driving capability can be increased as compared with the case where the n-type source layer is completely removed at the drain corner.
Furthermore, since the planar structure of the drain corner is the same as the conventional one, there is no increase in device area, and current (current density) per unit device area is not sacrificed.
From the above, it is possible to achieve an improvement in the trade-off characteristics between the on-breakdown voltage and current drive capability of the lateral MOSFET.
Further, by forming a low concentration diffusion layer at the drain corner, a voltage drop is generated by an electron flow flowing through the low concentration diffusion layer, and an increase in voltage applied to the pn junction between the n-type source layer and the p-type well layer is suppressed. Thus, the injection of electrons from the n-type source layer to the p-type well layer is suppressed, and the secondary breakdown of the npn transistor composed of the n-type source layer-p-type well layer-n-type semiconductor substrate is prevented, and the ON breakdown voltage Can be improved.

この発明の実施の形態は、ドリフト領域の平面パターンが櫛の歯状またはリング状である高耐圧横型半導体装置において、ソース層でドレイン層が囲まれるドレインコーナーでの電流(例えば、電子流)集中を抑制することで、オン耐圧の向上を図ることである。
以下に説明する図において、従来構造と同一部位には同一の符号を付した。また、ここではnチャネル形MOSFETについて説明しているが、pチャネル形MOSFETに対しては、導電形を逆にすることによって、同様の説明が成り立つ。
According to the embodiment of the present invention, in a high breakdown voltage lateral semiconductor device in which a planar pattern of a drift region is a comb tooth shape or a ring shape, current (for example, electron current) concentration at a drain corner surrounded by a drain layer by a source layer This is to improve the ON breakdown voltage.
In the drawings described below, the same parts as those in the conventional structure are denoted by the same reference numerals. Further, although an n-channel type MOSFET is described here, the same explanation is valid for a p-channel type MOSFET by reversing the conductivity type.

図1は、この発明の第1実施例の横形半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のa−a線で切断した要部断面図、同図(c)は同図(a)のb−b線で切断した要部断面図である。この図は横形MOSFETのドレインコーナーの平面図であり、nチャネル形MOSFETを考慮して描いたものである。図1(a)は図18に相当する図である。ドレインコーナー15は、pウェル層2端線の長さがn形ドレイン層10端線の長さより長い箇所である。
n形半導体基板1の表面層にp形ウェル層2を形成し、p形ウェル層2の表面層にp形コンタクト層3を形成する。つぎにp形ウェル層2の表面層にn形ソース層4の直線部四aと曲線部4bとを同じ不純物濃度からなる高濃度拡散層44aで形成する。つぎにp形ウェル層2から離して、n形半導体基板1の表面層にn形ドレイン層10を形成する。p形ウェル層2とn形ドレイン層10に挟まれたn形半導体領域1はn形ドリフト領域13となる。p形ウェル層2上にゲート酸化膜6を介してゲート電極8を形成する。n形ソース層4とp形コンタクト層3上にソース電極7を形成し、n形ドレイン層10上にドレイン電極11を形成する。ソース電極7、ゲート電極8およびドレイン電極11上にソース端子S、ゲート端子Gおよびドレイン端子Dをそれぞれ接続する。図中の5はn形チャネル領域である。
FIG. 1 is a block diagram of a horizontal semiconductor device according to a first embodiment of the present invention, in which FIG. 1 (a) is a plan view of an essential part, and FIG. 1 (b) is cut along a line aa in FIG. The principal part sectional drawing and the figure (c) are principal part sectional drawings cut | disconnected by the bb line | wire of the figure (a). This figure is a plan view of the drain corner of the lateral MOSFET, and is drawn in consideration of the n-channel MOSFET. FIG. 1A corresponds to FIG. The drain corner 15 is a place where the length of the end line of the p-well layer 2 is longer than the length of the end line of the n-type drain layer 10.
A p-type well layer 2 is formed on the surface layer of the n-type semiconductor substrate 1, and a p-type contact layer 3 is formed on the surface layer of the p-type well layer 2. Next, the straight portion 4a and the curved portion 4b of the n-type source layer 4 are formed on the surface layer of the p-type well layer 2 by the high concentration diffusion layer 44a having the same impurity concentration. Next, apart from the p-type well layer 2, an n-type drain layer 10 is formed on the surface layer of the n-type semiconductor substrate 1. The n-type semiconductor region 1 sandwiched between the p-type well layer 2 and the n-type drain layer 10 becomes an n-type drift region 13. A gate electrode 8 is formed on the p-type well layer 2 via a gate oxide film 6. A source electrode 7 is formed on the n-type source layer 4 and the p-type contact layer 3, and a drain electrode 11 is formed on the n-type drain layer 10. A source terminal S, a gate terminal G, and a drain terminal D are connected to the source electrode 7, the gate electrode 8, and the drain electrode 11, respectively. In the figure, 5 is an n-type channel region.

平面パターンにおいて、n形ドレイン層10をn形ドリフト領域13が取り囲み、n形ドリフト領域13をp形ウェル層2が取り囲み、p形ウェル層2内にn形ソース層4と図示されないp形コンタクト層3が形成されている。直線部4aとソース電極端77は接触しているが、曲線部のn形ソース層4bとソース電極端77は離れている。
図1(a)において、n形ソース層4を形成する高濃度拡散層44aには抵抗(Rn1〜Rn4)があり、曲線部4bとソース電極7とが接触していないため、曲線部4bに流れる電子流Ieは直線部4aから流れて来る。このn形ソース層4bの円弧に沿っての抵抗は、直線部4aから離れるほど増加する。すなわち、図1(a)の場合であれば、A点での抵抗が最も大きくなる。
従って、電子流Ieはこの抵抗を介して流れるため、ドレインコーナー15では電子流Ieが制限される。また、電子流Ieが増加する程、抵抗で発生する電圧(電圧降下)が益々大きくなり、電流制限機能が作用する程度が大きくなり、ドレインコーナー15での電子流Ieの集中を抑制し、オン耐圧を向上できる。
In the planar pattern, the n-type drain layer 10 is surrounded by the n-type drift region 13, the n-type drift region 13 is surrounded by the p-type well layer 2, and the n-type source layer 4 and a p-type contact not shown in the p-type well layer 2. Layer 3 is formed. The straight portion 4a and the source electrode end 77 are in contact with each other, but the n-type source layer 4b and the source electrode end 77 in the curved portion are separated.
In FIG. 1A, the high-concentration diffusion layer 44a forming the n-type source layer 4 has resistors (Rn1 to Rn4), and the curved portion 4b and the source electrode 7 are not in contact with each other. The flowing electron stream Ie flows from the straight line portion 4a. The resistance along the arc of the n-type source layer 4b increases as the distance from the straight portion 4a increases. That is, in the case of FIG. 1A, the resistance at the point A is the largest.
Accordingly, since the electron flow Ie flows through this resistance, the electron flow Ie is limited at the drain corner 15. In addition, as the electron current Ie increases, the voltage (voltage drop) generated by the resistance increases and the current limiting function increases, and the concentration of the electron current Ie at the drain corner 15 is suppressed, and the ON The breakdown voltage can be improved.

また、曲線部4bの電位が抵抗により上昇するため、p形ウェル層2と曲線部4bの接合電位の上昇も抑えられ、この箇所(ドレインコーナー15)での二次降伏が起こりにくくなる。よって、素子のオン耐圧向上を図ることができる。しかも、ドレインコーナー15でチャネルを削除しないため、電流駆動能力を犠牲にすることなく、オン耐圧向上が達成可能である。
しかし、ドレインコーナー15の曲線部4bは直線部4aと同一の不純物濃度が高い高濃度拡散層44aであるため、抵抗(Rn1〜Rn4)が小さく、電圧降下の程度が小さくなるために効果は小さい。この効果を大きくした実施例をつぎに説明する。
Further, since the potential of the curved portion 4b rises due to the resistance, the rise of the junction potential between the p-type well layer 2 and the curved portion 4b is also suppressed, and secondary breakdown at this location (drain corner 15) is difficult to occur. Therefore, the on-breakdown voltage of the element can be improved. In addition, since the channel is not deleted at the drain corner 15, the ON breakdown voltage can be improved without sacrificing the current driving capability.
However, since the curved portion 4b of the drain corner 15 is a high-concentration diffusion layer 44a having the same high impurity concentration as the straight portion 4a, the resistance (Rn1 to Rn4) is small and the effect of the voltage drop is small. . An embodiment in which this effect is increased will be described below.

図2は、この発明の第2実施例の横形半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のa−a線で切断した要部断面図、同図(c)は同図(a)のb−b線で切断した要部断面図である。これらは図1に相当する図である。
図1との違いは、曲線部4bは直線部4aに比べ不純物濃度の低い低濃度拡散層44bで形成されている点である。図1(a)と同様に、曲線部4bはソース電極7と接触していない。
曲線部4bは低濃度拡散層44bで形成されるため、この抵抗(Rn5〜Rn8)は、図1(a)で示す抵抗(Rn1〜Rn4)と比べて大きい。ドレインコーナー15の電子流Ieはこの大きな抵抗(Rn5〜Rn8)を介して流れるため、電流制限効果が図1の場合より大きい。そのため、電子流Ieが増加すれば電流制限機能が益々作用し、ドレインコーナー15での電子流Ieの集中を図1の場合より抑制することができる。
2A and 2B are configuration diagrams of a horizontal semiconductor device according to a second embodiment of the present invention, in which FIG. 2A is a plan view of an essential part, and FIG. 2B is cut along a line aa in FIG. The principal part sectional drawing and the figure (c) are principal part sectional drawings cut | disconnected by the bb line | wire of the figure (a). These are diagrams corresponding to FIG.
The difference from FIG. 1 is that the curved portion 4b is formed of a low concentration diffusion layer 44b having a lower impurity concentration than the straight portion 4a. Similar to FIG. 1A, the curved portion 4 b is not in contact with the source electrode 7.
Since the curved portion 4b is formed by the low concentration diffusion layer 44b, the resistance (Rn5 to Rn8) is larger than the resistance (Rn1 to Rn4) shown in FIG. Since the electron current Ie in the drain corner 15 flows through this large resistance (Rn5 to Rn8), the current limiting effect is greater than in the case of FIG. Therefore, if the electron current Ie increases, the current limiting function works more and more, and the concentration of the electron current Ie at the drain corner 15 can be suppressed than in the case of FIG.

また、曲線部4bの電位が図1より上昇するため、p形ウェル層2と曲線部4bの接合電位の上昇も図1より抑えられ、二次降伏が図1の場合より起こりにくくなる。これは、低濃度拡散層44bを流れる電子流Ieで生じた電位降下と、n形ドレイン層10とn形ドリフト領域13の接合がアバランシェに突入することで発生した正孔電流がp形ウェル層2を流れることで発生する電位降下とが共に打ち消しあって、p形ウェル層2と曲線部4bの接合電位の上昇が抑えられる。そのために、素子のオン耐圧向上を一層図ることができる。しかも、ドレインコーナ15でチャネルを削除しないため、電流駆動能力を犠牲にすることなく、オン耐圧向上が達成可能である。
なお、低濃度拡散層44bを形成するためのイオン注入工程は高濃度拡散層44aを形成するイオン注入工程の直前に導入すれば良い。そして、熱処理工程は高濃度拡散層44aと同一で良い。あるいは、この低濃度拡散層44bに、制御回路を構成するCMOS(Complimentaly MOS)のLDD(Light Doped Drain)層を適用することも可能である。
Further, since the potential of the curved portion 4b is higher than that in FIG. 1, the increase in the junction potential between the p-type well layer 2 and the curved portion 4b is also suppressed as compared with FIG. 1, and secondary breakdown is less likely to occur than in the case of FIG. This is because the potential drop caused by the electron flow Ie flowing through the low-concentration diffusion layer 44b and the hole current generated by the junction of the n-type drain layer 10 and the n-type drift region 13 entering the avalanche are generated by the p-type well layer. The potential drop generated by flowing through 2 cancels out, and the rise in junction potential between the p-type well layer 2 and the curved portion 4b is suppressed. Therefore, the on-breakdown voltage of the element can be further improved. In addition, since the drain corner 15 does not delete the channel, the ON breakdown voltage can be improved without sacrificing the current driving capability.
The ion implantation process for forming the low concentration diffusion layer 44b may be introduced immediately before the ion implantation process for forming the high concentration diffusion layer 44a. The heat treatment step may be the same as that of the high concentration diffusion layer 44a. Alternatively, it is also possible to apply a CMOS (Complementary MOS) LDD (Light Doped Drain) layer constituting the control circuit to the low concentration diffusion layer 44b.

図3は、この発明の第3実施例の横形半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のa−a線で切断した要部断面図、同図(c)は同図(a)のb−b線で切断した要部断面図である。この図は横形MOSFETのドレインコーナーの平面図であり、nチャネル形MOSFETを考慮して描いたものである。図3(a)は図2(a)に相当する図である。
図2との違いは、曲線部4bを低濃度拡散層44b単一ではなく、低濃度拡散層44bとその外側に低濃度拡散層44bより不純物濃度の高い高濃度拡散層44cを併設して形成した点である。この場合も曲線部4bとソース電極とは接触しないようにする。
この場合においても、低濃度拡散層44bで形成した曲線部4bの抵抗を利用することで、前記と同様の効果を得ることができる。
FIGS. 3A and 3B are configuration diagrams of a horizontal semiconductor device according to a third embodiment of the present invention. FIG. 3A is a plan view of the main part, and FIG. 3B is cut along the line aa in FIG. The principal part sectional drawing and the figure (c) are principal part sectional drawings cut | disconnected by the bb line | wire of the figure (a). This figure is a plan view of the drain corner of the lateral MOSFET, and is drawn in consideration of the n-channel MOSFET. FIG. 3A is a diagram corresponding to FIG.
The difference from FIG. 2 is that the curved portion 4b is not formed of a single low concentration diffusion layer 44b, but a low concentration diffusion layer 44b and a high concentration diffusion layer 44c having an impurity concentration higher than that of the low concentration diffusion layer 44b on the outside. This is the point. Also in this case, the curved portion 4b and the source electrode are prevented from contacting each other.
Even in this case, the same effect as described above can be obtained by using the resistance of the curved portion 4b formed by the low concentration diffusion layer 44b.

尚、ドレインコーナー15の高濃度拡散層44cで形成した曲線部4bと直線部の高濃度拡散層44aで形成した直線部4aとを同一の拡散条件で形成とすることで製造コストを低減することができる。
また、このドレインコーナー15の高濃度拡散層44cは、低濃度拡散層44bへの電子流Ieを円弧部で図2よりは均一化する働きをして、A点での電子流Ieを図2より大きくできて、オン抵抗を低減することができる。
Note that the manufacturing cost can be reduced by forming the curved portion 4b formed by the high concentration diffusion layer 44c in the drain corner 15 and the straight portion 4a formed by the high concentration diffusion layer 44a in the straight portion under the same diffusion conditions. Can do.
Further, the high concentration diffusion layer 44c at the drain corner 15 serves to make the electron flow Ie to the low concentration diffusion layer 44b more uniform in the arc portion than in FIG. 2, and the electron flow Ie at the point A is shown in FIG. It can be made larger and the on-resistance can be reduced.

図4、図5は、この発明の第4実施例の横形半導体装置の構成図であり、図4(a)は要部平面図、図4(b)は図4(a)のK部拡大図、図5(a)は図4(a)のa−a線で切断した要部断面図、図5(b)は図4(a)のb−b線で切断した要部断面図、図5(c)は図4(a)のc−c線で切断した要部断面図である。図4(a)は図3(a)に相当する図である。
図3との違いは、ドレインコーナー15の低濃度拡散層44bが分割され、その間に高濃度拡散層44cが張出している点である。この高濃度拡散層44cの張出し箇所Bの先端は同様に張り出したp形コンタクト層3内(p形コンタクト層端3aより内側)に形成されている。張出し箇所Bの先端と低濃度拡散層44bの端部とが同一円弧線上にあるため、p形コンタクト層端3aの張り出し箇所の先端部は、張出し箇所Bで確実にチャネルが形成されないように、高濃度拡散層44cの先端部よりさらに凸状に突出させる。p形コンタクト層端3aの張り出した箇所は、高濃度拡散層44cの幅より狭く形成し、高濃度拡散層44cを形成した際に、高濃度拡散層44cと低濃度拡散層44bが接続するようにする。また、高濃度拡散層44cの張り出した箇所の先端部を包むように、電位的に浮遊した島状のp形反転防止層を形成してもチャネルは形成されない。
4 and 5 are configuration diagrams of a horizontal semiconductor device according to a fourth embodiment of the present invention. FIG. 4 (a) is a plan view of an essential portion, and FIG. 4 (b) is an enlarged view of a portion K in FIG. 4 (a). FIG. 5 (a) is a cross-sectional view of a main part cut along a line aa in FIG. 4 (a), FIG. 5 (b) is a cross-sectional view of a main part cut along a line bb in FIG. FIG.5 (c) is principal part sectional drawing cut | disconnected by the cc line | wire of Fig.4 (a). FIG. 4A is a diagram corresponding to FIG.
The difference from FIG. 3 is that the low concentration diffusion layer 44b at the drain corner 15 is divided and the high concentration diffusion layer 44c projects between them. The tip of the protruding portion B of the high-concentration diffusion layer 44c is formed in the p-type contact layer 3 (inner side from the p-type contact layer end 3a) that is similarly extended. Since the tip of the overhanging portion B and the end of the low-concentration diffusion layer 44b are on the same circular arc line, the tip of the overhanging portion of the p-type contact layer end 3a is not reliably formed with a channel at the overhanging portion B. It protrudes more convexly than the tip of the high concentration diffusion layer 44c. The protruding portion of the p-type contact layer end 3a is formed to be narrower than the width of the high concentration diffusion layer 44c, and the high concentration diffusion layer 44c and the low concentration diffusion layer 44b are connected when the high concentration diffusion layer 44c is formed. To. Further, even if an island-like p-type inversion preventing layer floating in potential is formed so as to cover the tip of the protruding portion of the high concentration diffusion layer 44c, a channel is not formed.

この高濃度拡散層44cの張出し箇所Bからも低濃度拡散層44bへ電子流Ieが流れるため、図3より高濃度拡散層44cでの抵抗が増大し、ドレインコーナー15での電子流Ieの抑制効果が増大する。   Since the electron flow Ie flows from the projecting portion B of the high concentration diffusion layer 44c to the low concentration diffusion layer 44b, the resistance in the high concentration diffusion layer 44c increases from FIG. The effect is increased.

図6、図7は、この発明の第5実施例の高耐圧横型半導体装置の構成図であり、図6(a)は要部平面図、図6(b)は図6(a)のK部拡大図、図7(a)は図6(a)のa−a線で切断した要部断面図、図7(b)は図6(a)のb−b線で切断した要部断面図、図7(c)は図6(a)のc−c線で切断した要部断面図である。図6(a)は図4(a)に相当する図である。
図4、図5との違いは、高濃度拡散層44cの張出し箇所Bの先端が低濃度拡散層44b端より内側に入っている点である。このような構成であっても図4と同様の効果が得られる。
FIGS. 6 and 7 are configuration diagrams of a high breakdown voltage lateral semiconductor device according to a fifth embodiment of the present invention. FIG. 6 (a) is a plan view of an essential part, and FIG. 6 (b) is a diagram K of FIG. 6 (a). FIG. 7A is a cross-sectional view of a main part cut along a line aa in FIG. 6A, and FIG. 7B is a cross-sectional view of a main part cut along a line bb in FIG. 6A. FIG. 7 and FIG. 7C are cross-sectional views of relevant parts cut along the line cc in FIG. FIG. 6A is a view corresponding to FIG.
The difference from FIGS. 4 and 5 is that the tip of the overhanging portion B of the high concentration diffusion layer 44c is located inside the end of the low concentration diffusion layer 44b. Even if it is such a structure, the effect similar to FIG. 4 is acquired.

図8は、この発明の第6実施例の横形半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のa−a線で切断した要部断面図、同図(c)は同図(a)のb−b線で切断した要部断面図である。
図3との違いは、曲線部のn形ソース層4bの高濃度拡散層44cと、ソース電極7を接続させた点である。
この場合は、低濃度拡散層44bに流入する電子流Ieは直線部4aの高濃度拡散層44aからとソース電極端77の曲線部から曲線部4bの高濃度拡散層44cを経由して流れてくるため、ドレインコーナー15の電子流Ieは図3の場合より均一化され、オン電圧低減に効果がある。
8A and 8B are configuration diagrams of a horizontal semiconductor device according to a sixth embodiment of the present invention, in which FIG. 8A is a plan view of an essential part, and FIG. 8B is cut along a line aa in FIG. The principal part sectional drawing and the figure (c) are principal part sectional drawings cut | disconnected by the bb line | wire of the figure (a).
The difference from FIG. 3 is that the source electrode 7 is connected to the high concentration diffusion layer 44c of the n-type source layer 4b in the curved portion.
In this case, the electron flow Ie flowing into the low concentration diffusion layer 44b flows from the high concentration diffusion layer 44a of the straight portion 4a and from the curved portion of the source electrode end 77 via the high concentration diffusion layer 44c of the curved portion 4b. Therefore, the electron flow Ie at the drain corner 15 is made more uniform than in the case of FIG. 3, and is effective in reducing the on-voltage.

図9、図10は、この発明の第7実施例の横形半導体装置の構成図であり、図9(a)は要部平面図、図9(b)は図9(a)のK部拡大図、図10(a)は図9(a)のa−a線で切断した要部断面図、図10(b)は図9(a)のb−b線で切断した要部断面図、図10(c)は図9(a)のc−c線で切断した要部断面図である。これらの図は図4、図5に相当する図である。
図4、図5との違いは、ドレインコーナー15の高濃度拡散層44cにソース電極7を接触させた点である。そのため、ソース電極端77が高濃度拡散層44cと接触している。ソース電極端77が高濃度拡散層44cと接触しているため、図4、図5よりさらにドレインコーナー15の電子流Ieは均一化され、オン抵抗低減に効果がある。
FIGS. 9 and 10 are configuration diagrams of a horizontal semiconductor device according to a seventh embodiment of the present invention. FIG. 9A is a plan view of an essential part, and FIG. 9B is an enlarged view of a portion K in FIG. FIG. 10 (a) is a cross-sectional view of the main part cut along line aa in FIG. 9 (a), FIG. 10 (b) is a cross-sectional view of the main part cut along line bb in FIG. 9 (a), FIG.10 (c) is principal part sectional drawing cut | disconnected by the cc line | wire of Fig.9 (a). These figures correspond to FIGS. 4 and 5.
4 and 5 is that the source electrode 7 is brought into contact with the high-concentration diffusion layer 44c at the drain corner 15. Therefore, the source electrode end 77 is in contact with the high concentration diffusion layer 44c. Since the source electrode end 77 is in contact with the high-concentration diffusion layer 44c, the electron current Ie at the drain corner 15 is made more uniform than in FIGS. 4 and 5, which is effective in reducing the on-resistance.

図11は、この発明の第8実施例の横形半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のL部拡大図、同図(c)は同図(a)のa−a線で切断した要部断面図である。図11(a)、(b)は図9(a)、(b)に相当する図である。図11(a)のa−a線で切断した要部断面図は図10(a)に相当する図であり、図11(a)のb−b線で切断した図は図10(b)と同じであり、図11(a)のc−c線で切断した図は、図10(c)で高濃度拡散層44cが無い場合に相当する。 図9、図10との違いは、曲線部のn形ソース層4bの高濃度拡散層44cが分割され、その分割された高濃度拡散層44cにソース電極7が接続している点である。
この場合は、分割された低濃度拡散層44cの側面からのみ電子流Ieが流入するために、図9、図10の場合よりドレインコーナー15の電子流Ieが抑制される。
11A and 11B are configuration diagrams of a horizontal semiconductor device according to an eighth embodiment of the present invention, in which FIG. 11A is a plan view of the main part, FIG. 11B is an enlarged view of the L part of FIG. FIG. 2C is a cross-sectional view of the main part taken along the line aa in FIG. 11A and 11B are diagrams corresponding to FIGS. 9A and 9B. The main part sectional view cut along line aa in FIG. 11A corresponds to FIG. 10A, and the figure cut along line bb in FIG. The figure taken along the line cc in FIG. 11A corresponds to the case where there is no high concentration diffusion layer 44c in FIG. 10C. 9 and 10 is that the high concentration diffusion layer 44c of the n-type source layer 4b in the curved portion is divided, and the source electrode 7 is connected to the divided high concentration diffusion layer 44c.
In this case, since the electron flow Ie flows only from the side surface of the divided low-concentration diffusion layer 44c, the electron flow Ie at the drain corner 15 is suppressed more than in the case of FIGS.

図12、図13は、この発明の第9実施例の横形半導体装置の構成図であり、図12(a)は要部平面図、図12(b)は図12(a)のK部拡大図、図13(a)は図12(a)のa−a線で切断した要部断面図、図13(b)は図12(a)のb−b線で切断した要部断面図、図13(c)は図12(a)のc−c線で切断した要部断面図である。これらの図は図6、図7に相当する図である。
図6、図7との違いは、ドレインコーナー15の高濃度拡散層44cにソース電極7を接触させた点である。ソース電極端77が高濃度拡散層44cと接触しているため、図6、図7よりさらにドレインコーナー15の電子流Ieは均一化され、オン抵抗低減に効果がある。
12 and 13 are configuration diagrams of a horizontal semiconductor device according to a ninth embodiment of the present invention. FIG. 12 (a) is a plan view of the main part, and FIG. 12 (b) is an enlarged view of a portion K in FIG. FIG. 13A is a cross-sectional view of a main part cut along a line aa in FIG. 12A; FIG. 13B is a cross-sectional view of a main part cut along a line bb in FIG. FIG.13 (c) is principal part sectional drawing cut | disconnected by the cc line | wire of Fig.12 (a). These figures correspond to FIGS. 6 and 7.
The difference from FIGS. 6 and 7 is that the source electrode 7 is brought into contact with the high-concentration diffusion layer 44 c at the drain corner 15. Since the source electrode end 77 is in contact with the high-concentration diffusion layer 44c, the electron flow Ie at the drain corner 15 is made more uniform than in FIGS. 6 and 7, and the on-resistance is effectively reduced.

図14は、この発明の第10実施例の高耐圧横型半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のL部拡大図、同図(c)は同図(a)のa−a線で切断した要部断面図である。図14は図11に相当する図である。
図11との違いは、との違いは、高濃度拡散層44cの張出し箇所Bの先端が低濃度拡散層44b端より内側に入っている点である。このような構成であっても図11と同様の効果が得られる。
14A and 14B are configuration diagrams of a high breakdown voltage lateral semiconductor device according to the tenth embodiment of the present invention. FIG. 14A is a plan view of the main part, and FIG. 14B is an enlarged view of the L part of FIG. FIG. 4C is a cross-sectional view of the main part taken along line aa in FIG. FIG. 14 corresponds to FIG.
The difference from FIG. 11 is that the tip of the protruding portion B of the high concentration diffusion layer 44c is located inside the end of the low concentration diffusion layer 44b. Even with such a configuration, the same effect as in FIG. 11 can be obtained.

この発明の第1実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のa−a線で切断した要部断面図、(c)は(a)のb−b線で切断した要部断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the horizontal semiconductor device of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the aa line | wire of (a), (c) is Sectional drawing of the principal part cut | disconnected by the bb line of (a). この発明の第2実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のa−a線で切断した要部断面図、(c)は(a)のb−b線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 2nd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the aa line | wire of (a), (c) is Sectional drawing of the principal part cut | disconnected by the bb line of (a). この発明の第3実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のa−a線で切断した要部断面図、(c)は(a)のb−b線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 3rd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the aa line | wire of (a), (c) is Sectional drawing of the principal part cut | disconnected by the bb line of (a). この発明の第4実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のK部拡大図It is a block diagram of the horizontal semiconductor device of 4th Example of this invention, (a) is a principal part top view, (b) is the K section enlarged view of (a). この発明の第4実施例の横形半導体装置の構成図であり、(a)は図4(a)のa−a線で切断した要部断面図、(b)は図4(a)のb−b線で切断した要部断面図、(c)は図4(a)のc−c線で切断した要部断面図相当する図である。It is a block diagram of the horizontal semiconductor device of 4th Example of this invention, (a) is principal part sectional drawing cut | disconnected by the aa line of Fig.4 (a), (b) is b of Fig.4 (a). The principal part sectional drawing cut | disconnected by the -b line | wire, (c) is a figure equivalent to principal part sectional drawing cut | disconnected by the cc line | wire of Fig.4 (a). この発明の第5実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のK部拡大図It is a block diagram of the horizontal semiconductor device of 5th Example of this invention, (a) is a principal part top view, (b) is the K section enlarged view of (a). この発明の第5実施例の横形半導体装置の構成図であり、(a)は図6(a)のa−a線で切断した要部断面図、(b)は図6(a)のb−b線で切断した要部断面図、(c)は図6(a)のc−c線で切断した要部断面図相当する図である。FIG. 10 is a configuration diagram of a horizontal semiconductor device according to a fifth embodiment of the present invention, in which (a) is a cross-sectional view taken along line aa in FIG. 6 (a), and (b) is b in FIG. 6 (a). FIG. 8C is a cross-sectional view of the main part cut along the line -b, and FIG. 6C is a view corresponding to the cross-sectional view of the main part cut along the line cc in FIG. この発明の第6実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のa−a線で切断した要部断面図、(c)は(a)のb−b線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 6th Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the aa line | wire of (a), (c) is Sectional drawing of the principal part cut | disconnected by the bb line of (a). この発明の第7実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のK部拡大図It is a block diagram of the horizontal semiconductor device of 7th Example of this invention, (a) is a principal part top view, (b) is the K section enlarged view of (a). この発明の第7実施例の横形半導体装置の構成図であり、(a)は図9(a)のa−a線で切断した要部断面図、(b)は図9(a)のb−b線で切断した要部断面図、(c)は図9(a)のc−c線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 7th Example of this invention, (a) is principal part sectional drawing cut | disconnected by the aa line | wire of Fig.9 (a), (b) is b of FIG.9 (a). Sectional view taken along line -b, (c) is a sectional view taken along line cc in FIG. 9 (a). この発明の第8実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のL部拡大図、(c)は(a)のa−a線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 8th Example of this invention, (a) is a principal part top view, (b) is the L section enlarged view of (a), (c) is aa of (a). Cross-sectional view of the main part cut by wire この発明の第9実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のK部拡大図It is a block diagram of the horizontal semiconductor device of 9th Example of this invention, (a) is a principal part top view, (b) is the K section enlarged view of (a). この発明の第9実施例の横形半導体装置の構成図であり、(a)のa−a線で切断した要部断面図、(b)は図12(a)のb−b線で切断した要部断面図(c)は図12(a)のc−c線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 9th Example of this invention, (a) It is principal part sectional drawing cut | disconnected by the aa line, (b) is cut | disconnected by the bb line of Fig.12 (a) Sectional view (c) of the relevant part is a sectional view of the principal part taken along line cc of FIG. この発明の第10実施例の横形半導体装置の構成図であり、(a)は要部平面図、(b)は同図(a)のL部拡大図、(c)は(a)のa−a線で切断した要部断面図It is a block diagram of the horizontal semiconductor device of 10th Example of this invention, (a) is a principal part top view, (b) is the L section enlarged view of the same figure (a), (c) is a of (a). Cross-sectional view of major parts cut along line -a 高耐圧パワーICの出力回路例を示す図The figure which shows the output circuit example of high voltage power IC 横形MOSFETを半導体領域上に形成した場合の要部断面図Cross-sectional view of the main part when a lateral MOSFET is formed on a semiconductor region 図11の断面構造をもった横形MOSFETの要部平面図FIG. 11 is a plan view of a main part of a lateral MOSFET having the cross-sectional structure of FIG. 横形MOSFETのドレインコーナー15のみがある表面パターン図Surface pattern diagram with only drain corner 15 of lateral MOSFET 電子流がドレインコーナーに集中している様子を示す図Diagram showing electron flow concentrated at the drain corner

符号の説明Explanation of symbols

1 n形半導体基板
2 pウェル層
3 p形コンタクト層
3a pコンタクト層端
4 n形ソース層(全体:4a+4b)
4a n形ソース層(直線部)
4b n形ソース層(曲線部)
5 nチャネル領域
6 ゲート酸化膜
7 ソース電極
8 ゲート電極
9 ソース・ゲート領域
10 n形ドレイン層
11 ドレイン電極
12 ドレイン領域
13 n形ドリフト領域
14 ソースコーナー
15 ドレインコーナー
19 バッファ
20 レベルシフタ
21 シフトレジスタ
44a 高濃度拡散層
44b 低濃度拡散層
44c 高濃度拡散層
77 ソース電極端
Ie 電子流
S ソース端子
G ゲート端子
D ドレイン端子
N1、N2 高耐圧nチャネル形IGBT
N3 高耐圧nチャネル形MOSFET
P1 高耐圧pチャネル形MOSFET
D1、D2 高耐圧ダイオード
ZD 定電圧ダイオード
R1、R2 抵抗
VL、Vin1、Vin2、Vss、VH、Vout 回路の端子名
1 n-type semiconductor substrate 2 p-well layer 3 p-type contact layer 3a p-contact layer edge 4 n-type source layer (whole: 4a + 4b)
4a n-type source layer (straight line)
4b n-type source layer (curved part)
5 n channel region 6 gate oxide film 7 source electrode 8 gate electrode 9 source / gate region 10 n-type drain layer 11 drain electrode 12 drain region 13 n-type drift region 14 source corner 15 drain corner 19 buffer 20 level shifter 21 shift register 44a high Concentration diffusion layer 44b Low concentration diffusion layer 44c High concentration diffusion layer 77 Source electrode end Ie Electron current S Source terminal G Gate terminal D Drain terminals N1, N2 High breakdown voltage n-channel IGBT
N3 High voltage n-channel MOSFET
P1 High voltage p-channel MOSFET
D1, D2 High voltage diode ZD Constant voltage diode R1, R2 Resistors VL, Vin1, Vin2, Vss, VH, Vout Terminal names

Claims (11)

第1半導体層の表面層に選択的に形成された第2導電形ウェル層と、該第2導電形ウェル層の表面層に選択的に形成された高濃度の第2導電形コンタクト層と、前記第2導電形ウェル層の表面層に選択的に形成された第1導電形ソース層と、該第1導電形ソース層と前記第1半導体層に挟まれた第2導電形ウェル層上にゲート絶縁膜を介して形成されたゲート電極と、前記第2導電形コンタクト層上と前記第1導電形ソース層上に形成されたソース電極と、前記第1半導体層の表面層に前記第2導電形ウェル層と離して、選択的に形成された高濃度の第1導電形ドレイン層と、該第1導電形ドレイン層上に形成されたドレイン電極を具備する横形半導体装置において、
前記第2導電形ウェル層と前記第1導電形ドレイン層の表面パターンが、前記第2導電形ウェル層端線と、前記第1導電形ドレイン層端線とが対向し、該対向する前記第2導電形ウェル層端線の長さが、前記第1導電形ドレイン層端線の長さより長くなるコーナー箇所を備え、該コーナー箇所で前記第1導電形ソース層が前記ソース電極と接触しないことを特徴とする横形半導体装置。
A second conductivity type well layer selectively formed on the surface layer of the first semiconductor layer, and a high concentration second conductivity type contact layer selectively formed on the surface layer of the second conductivity type well layer; A first conductivity type source layer selectively formed on a surface layer of the second conductivity type well layer; and a second conductivity type well layer sandwiched between the first conductivity type source layer and the first semiconductor layer. A gate electrode formed through a gate insulating film, a source electrode formed on the second conductivity type contact layer and the first conductivity type source layer, and a second electrode on the surface layer of the first semiconductor layer. In a lateral semiconductor device comprising a high-concentration first conductivity type drain layer formed separately from a conductivity type well layer and a drain electrode formed on the first conductivity type drain layer,
The surface pattern of the second conductivity type well layer and the first conductivity type drain layer is such that the second conductivity type well layer end line and the first conductivity type drain layer end line are opposed to each other. A corner portion where the length of the two conductivity type well layer end line is longer than the length of the first conductivity type drain layer end line, and the first conductivity type source layer does not contact the source electrode at the corner portion. A lateral semiconductor device characterized by the above.
前記コーナー箇所の前記第1導電形ソース層を他の箇所のソース層より不純物濃度の低い低濃度拡散層で形成することを特徴とする請求項1に記載の横型半導体装置。 2. The lateral semiconductor device according to claim 1, wherein the first conductivity type source layer at the corner portion is formed by a low concentration diffusion layer having an impurity concentration lower than that of the source layer at another portion. 前記コーナー箇所で、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層が形成され、前記コーナー箇所の内側に前記低濃度拡散層が形成されることを特徴とする請求項1に記載の横形半導体装置。 At the corner portion, the first conductivity type source layer is formed of two diffusion layers, a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer, and the high concentration source layer is formed outside the corner portion. The lateral semiconductor device according to claim 1, wherein a diffusion layer is formed, and the low-concentration diffusion layer is formed inside the corner portion. 前記コーナー箇所で、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層が形成され、該高濃度拡散層は前記コーナー箇所の内側方向に向かって張出し箇所が形成され、該張出し箇所を挟むように前記低濃度拡散層が形成されることを特徴とする請求項1に記載の横形半導体装置。 At the corner portion, the first conductivity type source layer is formed of two diffusion layers, a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer, and the high concentration source layer is formed outside the corner portion. The diffusion layer is formed, the high-concentration diffusion layer is formed with a projecting portion toward the inside of the corner portion, and the low-concentration diffusion layer is formed so as to sandwich the projecting portion. 2. The horizontal semiconductor device according to 1. 前記張出し箇所の先端部は前記第2導電形コンタクト層内に形成されることを特徴とする請求項1に記載の横形半導体装置。 The lateral semiconductor device according to claim 1, wherein a tip portion of the protruding portion is formed in the second conductivity type contact layer. 前記張出し箇所の先端部は前記第2導電形コンタクト層と離れた第2導電形高濃度拡散層内に形成されることを特徴とする請求項1に記載の横形半導体装置。 The lateral semiconductor device according to claim 1, wherein a tip end portion of the protruding portion is formed in a second conductivity type high concentration diffusion layer separated from the second conductivity type contact layer. 第1半導体層の表面層に選択的に形成された第2導電形ウェル層と、該第2導電形ウェル層の表面層に選択的に形成された高濃度の第2導電形コンタクト層と、前記第2導電形ウェル層の表面層に選択的に形成された第1導電形ソース層と、該第1導電形ソース層と前記第1半導体層に挟まれた第2導電形ウェル層上にゲート絶縁膜を介して形成されたゲート電極と、前記第2導電形コンタクト層上と前記第1導電形ソース層上に形成されたソース電極と、前記第1半導体層の表面層に前記第2導電形ウェル層と離して、選択的に形成された高濃度の第1導電形ドレイン層と、該第1導電形ドレイン層上に形成されたドレイン電極を具備する横形半導体装置において、
前記第2導電形ウェル層と前記第1導電形ドレイン層の表面パターンが、前記第2導電形ウェル層端線と、前記第1導電形ドレイン層端線とが対向し、該対向する前記第2導電形ウェル層端線の長さが、前記第1導電形ドレイン層端線の長さより長くなるコーナー箇所を備え、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層を形成し、前記コーナー箇所の内側に前記低濃度拡散層が形成され、前記ソース層の内前記高濃度拡散層にのみ前記ソース電極が接触されることを特徴とする横形半導体装置。
A second conductivity type well layer selectively formed on the surface layer of the first semiconductor layer, and a high concentration second conductivity type contact layer selectively formed on the surface layer of the second conductivity type well layer; A first conductivity type source layer selectively formed on a surface layer of the second conductivity type well layer; and a second conductivity type well layer sandwiched between the first conductivity type source layer and the first semiconductor layer. A gate electrode formed through a gate insulating film, a source electrode formed on the second conductivity type contact layer and the first conductivity type source layer, and a second electrode on the surface layer of the first semiconductor layer. In a lateral semiconductor device comprising a high-concentration first conductivity type drain layer formed separately from a conductivity type well layer and a drain electrode formed on the first conductivity type drain layer,
The surface pattern of the second conductivity type well layer and the first conductivity type drain layer is such that the second conductivity type well layer end line and the first conductivity type drain layer end line are opposed to each other. A corner portion where the length of the end line of the two conductivity type well layer is longer than the length of the end line of the first conductivity type drain layer, and the first conductivity type source layer is formed by the high concentration diffusion layer and the high concentration diffusion layer; The low concentration diffusion layer having a low impurity concentration is formed from two diffusion layers, the high concentration diffusion layer is formed outside the corner portion, the low concentration diffusion layer is formed inside the corner portion, and the source layer The lateral semiconductor device according to claim 1, wherein the source electrode is in contact only with the high concentration diffusion layer.
前記コーナー箇所で、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層から形成され、前記コーナー箇所の外側に前記高濃度拡散層を形成し、該高濃度拡散層が前記コーナー箇所の内側方向に向かって張出箇所が形成され、該張出箇所を挟むように前記低濃度拡散層を形成し、前記ソース層の内前記高濃度拡散層にのみ前記ソース電極が接触されることを特徴とする請求項7に記載の横形半導体装置。 At the corner portion, the first conductivity type source layer is formed of two diffusion layers, a high concentration diffusion layer and a low concentration diffusion layer having a lower impurity concentration than the high concentration diffusion layer, and the high concentration source layer is formed outside the corner portion. A diffusion layer is formed, and the high-concentration diffusion layer is formed with an overhanging portion inward of the corner portion, and the low-concentration diffusion layer is formed so as to sandwich the overhanging portion. The lateral semiconductor device according to claim 7, wherein the source electrode is in contact only with the high concentration diffusion layer. 第1半導体層の表面層に選択的に形成された第2導電形ウェル層と、該第2導電形ウェル層の表面層に選択的に形成された高濃度の第2導電形コンタクト層と、前記第2導電形ウェル層の表面層に選択的に形成された第1導電形ソース層と、該第1導電形ソース層と前記第1半導体層に挟まれた第2導電形ウェル層上にゲート絶縁膜を介して形成されたゲート電極と、前記第2導電形コンタクト層上と前記第1導電形ソース層上に形成されたソース電極と、前記第1半導体層の表面層に前記第2導電形ウェル層と離して、選択的に形成された高濃度の第1導電形ドレイン層と、該第1導電形ドレイン層上に形成されたドレイン電極を具備する横形半導体装置において、
前記第2導電形ウェル層と前記第1導電形ドレイン層の表面パターンが、前記第2導電形ウェル層端線と、前記第1導電形ドレイン層端線とが対向し、該対向する前記第2導電形ウェル層端線の長さが、前記第1導電形ドレイン層端線の長さより長くなるコーナー箇所を備え、前記第1導電形ソース層が高濃度拡散層と該高濃度拡散層より不純物濃度の低い低濃度拡散層の2つの拡散層で交互に接するように形成され、前記ソース層の内前記高濃度拡散層にのみ前記ソース電極が接触することを特徴とする横形半導体装置。
A second conductivity type well layer selectively formed on the surface layer of the first semiconductor layer, and a high concentration second conductivity type contact layer selectively formed on the surface layer of the second conductivity type well layer; A first conductivity type source layer selectively formed on a surface layer of the second conductivity type well layer; and a second conductivity type well layer sandwiched between the first conductivity type source layer and the first semiconductor layer. A gate electrode formed through a gate insulating film, a source electrode formed on the second conductivity type contact layer and the first conductivity type source layer, and a second electrode on the surface layer of the first semiconductor layer. In a lateral semiconductor device comprising a high-concentration first conductivity type drain layer formed separately from a conductivity type well layer and a drain electrode formed on the first conductivity type drain layer,
The surface pattern of the second conductivity type well layer and the first conductivity type drain layer is such that the second conductivity type well layer end line and the first conductivity type drain layer end line are opposed to each other. A corner portion where the length of the end line of the two conductivity type well layer is longer than the length of the end line of the first conductivity type drain layer, and the first conductivity type source layer is formed by the high concentration diffusion layer and the high concentration diffusion layer; A lateral semiconductor device, wherein the low concentration diffusion layer having a low impurity concentration is formed so as to alternately contact two diffusion layers, and the source electrode is in contact with only the high concentration diffusion layer of the source layer.
前記高濃度拡散層の先端部が前記第2導電形コンタクト層内に形成されることを特徴とする請求項9に記載の横形半導体装置。 The lateral semiconductor device according to claim 9, wherein a front end portion of the high concentration diffusion layer is formed in the second conductivity type contact layer. 前記高濃度拡散層の先端部が前記第2導電形コンタクト層と離れた第2導電形反転防止層内に隣接して形成されることを特徴とする請求項9に記載の横形半導体装置。 The lateral semiconductor device according to claim 9, wherein a front end portion of the high-concentration diffusion layer is formed adjacent to a second conductivity type inversion prevention layer separated from the second conductivity type contact layer.
JP2004129199A 2004-04-26 2004-04-26 Horizontal semiconductor device Expired - Lifetime JP4839578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129199A JP4839578B2 (en) 2004-04-26 2004-04-26 Horizontal semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129199A JP4839578B2 (en) 2004-04-26 2004-04-26 Horizontal semiconductor device

Publications (2)

Publication Number Publication Date
JP2005311211A true JP2005311211A (en) 2005-11-04
JP4839578B2 JP4839578B2 (en) 2011-12-21

Family

ID=35439593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129199A Expired - Lifetime JP4839578B2 (en) 2004-04-26 2004-04-26 Horizontal semiconductor device

Country Status (1)

Country Link
JP (1) JP4839578B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080919A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Semiconductor device
KR101244139B1 (en) 2011-03-23 2013-03-15 가부시끼가이샤 도시바 Semiconductor apparatus
CN115224127A (en) * 2021-04-16 2022-10-21 深圳真茂佳半导体有限公司 Field effect transistor structure, manufacturing method thereof and chip device
EP4243084A4 (en) * 2020-11-09 2024-02-21 Nissan Motor Semiconductor device and method for manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064471A (en) * 1983-09-19 1985-04-13 Nec Corp High voltage insulated gate type field-effect transistor
JPS60254658A (en) * 1984-05-30 1985-12-16 Toshiba Corp Conductive modulation type mosfet
JPH04196174A (en) * 1990-11-26 1992-07-15 Fuji Electric Co Ltd Insulated-gate bipolar
JPH0697439A (en) * 1992-09-10 1994-04-08 Toshiba Corp High breakdown strength semiconductor element
JPH08186254A (en) * 1994-12-28 1996-07-16 Toyota Central Res & Dev Lab Inc Insulation gate type semiconductor device and its production
JP2000156495A (en) * 1998-11-20 2000-06-06 Fuji Electric Co Ltd High breakdown voltage lateral semiconductor device
JP2000232224A (en) * 1999-02-10 2000-08-22 Matsushita Electronics Industry Corp Semiconductor device and manufacture thereof
JP2002124670A (en) * 2000-10-19 2002-04-26 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2005093696A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Lateral mos transistor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064471A (en) * 1983-09-19 1985-04-13 Nec Corp High voltage insulated gate type field-effect transistor
JPS60254658A (en) * 1984-05-30 1985-12-16 Toshiba Corp Conductive modulation type mosfet
JPH04196174A (en) * 1990-11-26 1992-07-15 Fuji Electric Co Ltd Insulated-gate bipolar
JPH0697439A (en) * 1992-09-10 1994-04-08 Toshiba Corp High breakdown strength semiconductor element
JPH08186254A (en) * 1994-12-28 1996-07-16 Toyota Central Res & Dev Lab Inc Insulation gate type semiconductor device and its production
JP2000156495A (en) * 1998-11-20 2000-06-06 Fuji Electric Co Ltd High breakdown voltage lateral semiconductor device
JP2000232224A (en) * 1999-02-10 2000-08-22 Matsushita Electronics Industry Corp Semiconductor device and manufacture thereof
JP2002124670A (en) * 2000-10-19 2002-04-26 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2005093696A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Lateral mos transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080919A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Semiconductor device
KR101244139B1 (en) 2011-03-23 2013-03-15 가부시끼가이샤 도시바 Semiconductor apparatus
EP4243084A4 (en) * 2020-11-09 2024-02-21 Nissan Motor Semiconductor device and method for manufacturing same
CN115224127A (en) * 2021-04-16 2022-10-21 深圳真茂佳半导体有限公司 Field effect transistor structure, manufacturing method thereof and chip device

Also Published As

Publication number Publication date
JP4839578B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP3473460B2 (en) Horizontal semiconductor device
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
KR100789308B1 (en) Semiconductor device
JP4772843B2 (en) Semiconductor device and manufacturing method thereof
US20160181419A1 (en) Semiconductor device
WO2012124786A1 (en) Semiconductor device and manufacturing method therefor
JP3203858B2 (en) High breakdown voltage MIS field-effect transistor
JP2007067181A (en) Lateral double-diffusion field effect transistor, and integrated circuit having same
US8421153B2 (en) Semiconductor device
CN101297407B (en) Transistor device and manufacturing method thereof
JP2008042073A (en) Semiconductor device
JP5072043B2 (en) Semiconductor device
JPH11163336A (en) Semiconductor device
KR100732952B1 (en) Semiconductor device
JP4839578B2 (en) Horizontal semiconductor device
JP5124533B2 (en) Semiconductor device, plasma display driving semiconductor integrated circuit device using the same, and plasma display device
JP2004146626A (en) Semiconductor device
JP2012099696A (en) Semiconductor device
JP5332112B2 (en) High voltage lateral MOSFET
JP4756084B2 (en) Semiconductor device
JP4193604B2 (en) Semiconductor device and manufacturing method thereof
JP2009071082A (en) Semiconductor device
JP4830263B2 (en) High voltage insulated gate bipolar transistor
JP4193680B2 (en) Semiconductor device
JP2009105421A (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250