JP4193680B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4193680B2
JP4193680B2 JP2003389552A JP2003389552A JP4193680B2 JP 4193680 B2 JP4193680 B2 JP 4193680B2 JP 2003389552 A JP2003389552 A JP 2003389552A JP 2003389552 A JP2003389552 A JP 2003389552A JP 4193680 B2 JP4193680 B2 JP 4193680B2
Authority
JP
Japan
Prior art keywords
region
type
well region
gate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003389552A
Other languages
Japanese (ja)
Other versions
JP2005150617A (en
Inventor
仁志 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003389552A priority Critical patent/JP4193680B2/en
Publication of JP2005150617A publication Critical patent/JP2005150617A/en
Application granted granted Critical
Publication of JP4193680B2 publication Critical patent/JP4193680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Description

この発明は、半導体基板上に形成された高耐圧横形MOSFETなどの半導体装置に関する。   The present invention relates to a semiconductor device such as a high breakdown voltage lateral MOSFET formed on a semiconductor substrate.

近年、SOI基板とトレンチ分離を組み合わせた誘電体分離技術の進歩により、横形のダイオードや絶縁ゲート形バイポーラトランジスタ(以下、IGBTと略す)、横形のMOSFETなどの高耐圧デバイスとその駆動・制御・保護回路を一つのシリコン基板上に集積したパワー集積回路(以下、パワーICと略す)の開発が盛んになっている。
SOI基板を用いた誘電体分離基板上にパワーICを作製することの大きなメリットは、バイポーラデバイスをハイサイドスイッチとして適用できること、しかもこれらを多出力化できる点にある。そのため、三相モータを駆動するインバータICやフラットパネルディスプレイを駆動するドライバICでは、IGBTで構成されたトーテムポール回路を、出力回路として1チップ上に複数搭載したICが開発されている。
ハイサイドスイッチを駆動する場合、レベルシフト回路が必要になる。このレベルシフト回路を高耐圧横形pチャネルMOSFET(以下HVPMOSと略す)で構成することにより、別電源やコンデンサなどを必要としない単純な構成にすることができる。しかも、HVPMOSのゲート酸化膜を厚くすることにより、HVPMOSを出力側電源電圧によって直接駆動することが可能となり、nチャネル形MOSFETと組み合わせたCMOS構成のレベルシフト回路を実現できる。その結果、レベルシフト回路の低消費電力化を達成することができる。
Recent advances in dielectric isolation technology combining SOI substrate and trench isolation have led to high voltage devices such as lateral diodes, insulated gate bipolar transistors (IGBTs) and lateral MOSFETs, and their drive, control and protection. Development of power integrated circuits (hereinafter abbreviated as power ICs) in which circuits are integrated on a single silicon substrate has become active.
A great merit of manufacturing a power IC on a dielectric isolation substrate using an SOI substrate is that a bipolar device can be applied as a high-side switch, and that these can be multi-outputted. Therefore, an inverter IC for driving a three-phase motor and a driver IC for driving a flat panel display have been developed in which a plurality of totem pole circuits composed of IGBTs are mounted on one chip as output circuits.
When driving the high side switch, a level shift circuit is required. By constructing this level shift circuit with a high breakdown voltage lateral p-channel MOSFET (hereinafter abbreviated as HVPMOS), a simple configuration that does not require a separate power source or capacitor can be achieved. In addition, by increasing the thickness of the gate oxide film of the HVPMOS, the HVPMOS can be directly driven by the output side power supply voltage, and a CMOS level shift circuit combined with an n-channel MOSFET can be realized. As a result, low power consumption of the level shift circuit can be achieved.

このような背景から、入力側電源電圧が印加される標準のゲート酸化膜とは異なり、出力側電源電圧の印加に耐えうる厚膜のゲート酸化膜を備えたHVPMOSの開発が重要になっている。尚、本明細書では標準膜厚のゲート酸化膜を備えたHVPMOSを標準ゲートHVPMOSと呼び、厚膜のゲート酸化膜を備えたHVPMOSを厚膜ゲートHVPMOSと呼ぶ。
図3は、厚膜ゲートHVPMOSを適用したレベルシフト回路の一例を示す図である。 出力回路部Aとして2つのIGBT(N1、N2)からなるトーテムポール回路が搭載され、その前段に2つのNチャネル形MOSFET(N3、N4)と2つのHVPMOS(P1、P2)で構成されたレベルシフト回路部Bが搭載されている。出力デバイスN1はVin1によって制御され、N2はレベルシフト回路を駆動するVin2、Vin3の信号によって制御される。なお、出力回路部Aに内蔵されたZDはN2のゲートを保護するためのツェナーダイオードである。出力側電源電圧VHには高電圧が印加されるため、本回路を構成するZD以外のデバイスは全て高耐圧デバイスである。
Against this background, it is important to develop an HVPMOS having a thick gate oxide film that can withstand the application of the output side power supply voltage, unlike the standard gate oxide film to which the input side power supply voltage is applied. . In this specification, an HVPMOS having a gate oxide film having a standard thickness is called a standard gate HVPMOS, and an HVPMOS having a thick gate oxide film is called a thick film gate HVPMOS.
FIG. 3 is a diagram showing an example of a level shift circuit to which the thick gate HVPMOS is applied. A totem pole circuit composed of two IGBTs (N1, N2) is mounted as the output circuit unit A, and a level constituted by two N-channel MOSFETs (N3, N4) and two HVPMOSs (P1, P2) in the preceding stage A shift circuit section B is mounted. The output device N1 is controlled by Vin1, and N2 is controlled by signals Vin2 and Vin3 that drive the level shift circuit. ZD incorporated in the output circuit unit A is a Zener diode for protecting the gate of N2. Since a high voltage is applied to the output side power supply voltage VH, all the devices other than ZD constituting this circuit are high withstand voltage devices.

本回路のレベルシフト回路Bは既知の回路であり、ここではその動作説明を省く。このレベルシフト回路の特徴はP1とP2のゲートを出力側電源電圧VHで駆動できるところにある。このため、レベルシフト回路Bを通常のCMOS回路で構成することが可能となり、レベルシフト回路Bの消費電力を大幅に低減させることができる。
図4は、HVPMOSをSOI基板に形成した場合の従来の半導体装置の要部断面図である。
各素子が形成される領域はSOI基板100を構成する基板1と酸化膜2とn形基板3の中のn形基板3である。この導電形をn形にしているのはパワーICの出力回路を構成するnチャネル形素子の形成を容易にする目的から選んでいる。以下、SOI基板に形成したHVPMOSの高耐圧化について説明する。
The level shift circuit B of this circuit is a known circuit, and the description of its operation is omitted here. This level shift circuit is characterized in that the gates of P1 and P2 can be driven by the output side power supply voltage VH. For this reason, the level shift circuit B can be configured by a normal CMOS circuit, and the power consumption of the level shift circuit B can be greatly reduced.
FIG. 4 is a cross-sectional view of a main part of a conventional semiconductor device in which HVPMOS is formed on an SOI substrate.
A region where each element is formed is an n-type substrate 3 among the substrate 1, the oxide film 2, and the n-type substrate 3 constituting the SOI substrate 100. The n-type conductivity type is selected for the purpose of facilitating the formation of an n-channel element constituting the output circuit of the power IC. Hereinafter, a description will be given of the increase in breakdown voltage of the HVPMOS formed on the SOI substrate.

n形基板3にHVPMOSを形成するためには、p形オフセット領域16が不可欠になる。素子耐圧(素子のブレークダウン電圧のこと)はこのp形オフセット領域16とn形ドリフト領域4の接合で発生するアバランシェブレークダウン電圧によって決まり、この電圧はp形オフセット領域16の形成条件に依存する。したがって、素子の高耐化はこのp形オフセット領域16の形成条件を最適化することで実施される。
厚膜ゲートHVPMOSと標準ゲートHVPMOSの構造上の相違点は、(1)ゲート絶縁膜の厚さと、(2)p形ソース領域の深さにある。(1)の厚膜ゲート絶縁膜11の厚さは出力側電源電圧の大きさで決まる。また、(2)のp形ソース領域18の拡散深さは、製造方法で決まり、ここでは説明を省略する。
ここで、(1)の項目について説明する。厚膜ゲートHVPMOSには出力側電源電圧がゲート電極13に印加される。そのため、ゲート電極13に出力側電源電圧を印加した状態で、ドレイン電極15にも出力側電源電圧を印加した時にはゲート電極13直下のp形ウエル領域18(D部)に電界集中が発生し、この電界集中による耐圧の低下が起こりやすくなる。すなわち、厚膜ゲートHVPMOSにおいてはオフ状態時の耐圧(以下、オフ耐圧と称す)を確保する耐圧構造のみだけでなく、ゲート電極13に出力側電源電圧など高電圧を印加した場合のオン状態時の耐圧(以下、オン耐圧と称す)を確保する必要がある。
In order to form HVPMOS on the n-type substrate 3, the p-type offset region 16 is indispensable. The device breakdown voltage (device breakdown voltage) is determined by the avalanche breakdown voltage generated at the junction of the p-type offset region 16 and the n-type drift region 4, and this voltage depends on the formation conditions of the p-type offset region 16. . Therefore, the high durability of the element is implemented by optimizing the formation conditions of the p-type offset region 16.
The structural differences between the thick film gate HVPMOS and the standard gate HVPMOS are (1) the thickness of the gate insulating film and (2) the depth of the p-type source region. The thickness of the thick gate insulating film 11 in (1) is determined by the magnitude of the output side power supply voltage. Further, the diffusion depth of the p-type source region 18 in (2) is determined by the manufacturing method, and the description thereof is omitted here.
Here, the item (1) will be described. The output side power supply voltage is applied to the gate electrode 13 in the thick film gate HVPMOS. Therefore, when the output-side power supply voltage is applied to the drain electrode 15 in a state where the output-side power supply voltage is applied to the gate electrode 13, an electric field concentration occurs in the p-type well region 18 (D portion) immediately below the gate electrode 13, The breakdown voltage tends to decrease due to this electric field concentration. That is, in the thick film gate HVPMOS, not only the withstand voltage structure that secures the withstand voltage in the off state (hereinafter referred to as the off withstand voltage) but also in the on state when a high voltage such as the output side power supply voltage is applied to the gate electrode 13. It is necessary to ensure the withstand voltage (hereinafter referred to as the on-withstand voltage).

また、図示しないが、厚膜ゲートHVPMOSにおいて、ゲート電極をはみ出してゲート電極上とp形オフセット領域上へソース電極を形成し、このはみ出し長さを所定の長さとすることで、pオフセット領域の全電荷量を低下させることなく、オフ耐圧を高耐圧化できることが報告されている(特許文献1参照)。
また、図示しないが、厚膜ゲートHVPMOSにおいて、ゲート電極をオフセット領域上に延在して形成し、オフセット領域上に形成するゲート電極の長さを所定の長さとすることで、pオフセット領域の全電荷量を低下させることなく、オフ耐圧を高耐圧化できることが報告されている(特許文献2参照)。
これらの特許文献はSOI基板上に形成した厚膜ゲートHVPMOSに関し、その高耐圧化の手法が述べられている。しかし、両文献ともにオフ耐圧のみにしか言及されておらず、厚膜ゲートHVPMOSのゲート電極に出力側電源電圧などの高電圧を印加した時のオン耐圧に関しては何ら記載されていない。
特開平11−145462号公報 特開2000−252467号公報
Although not shown, in the thick film gate HVPMOS, the source electrode is formed on the gate electrode and the p-type offset region by protruding from the gate electrode, and by setting the protruding length to a predetermined length, It has been reported that the off breakdown voltage can be increased without reducing the total charge amount (see Patent Document 1).
Although not shown, in the thick gate HVPMOS, the gate electrode is formed so as to extend on the offset region, and the length of the gate electrode formed on the offset region is set to a predetermined length. It has been reported that the off breakdown voltage can be increased without reducing the total charge amount (see Patent Document 2).
These patent documents describe a technique for increasing the breakdown voltage of a thick film gate HVPMOS formed on an SOI substrate. However, both documents only refer to the off breakdown voltage, and nothing is described about the on breakdown voltage when a high voltage such as the output side power supply voltage is applied to the gate electrode of the thick film gate HVPMOS.
JP-A-11-145462 JP 2000-252467 A

図3の回路において、前記したように、SOI基板上に形成した厚膜ゲートHVPMOSではゲート電極13に出力側電源電圧が印加される。そのため、ソース電極14とゲート電極13の間に出力側電源電圧が印加された状態が発生し、この印加状態では、オン耐圧の検討が必要になる。
前記したように、ソース電極14に対しドレイン電極のみに負の高電圧を印加した場合ではp形オフセット領域16とn形ドリフト領域4の接合で高電界が発生する。しかし、ゲート電極13にも負の高電圧を印加した場合にはゲート電極13直下のn形ウエル領域(D部)にも高電界が発生することになり、この高電界でオン耐圧が低下し、オフ耐圧よりも低くなる。
この発明の目的は、前記の課題を解決し、オン耐圧の向上を図ることができる半導体装置を提供することにある。
In the circuit of FIG. 3, as described above, in the thick gate HVPMOS formed on the SOI substrate, the output side power supply voltage is applied to the gate electrode 13. For this reason, a state occurs in which the output-side power supply voltage is applied between the source electrode 14 and the gate electrode 13, and in this applied state, it is necessary to examine the ON breakdown voltage.
As described above, when a negative high voltage is applied only to the drain electrode with respect to the source electrode 14, a high electric field is generated at the junction of the p-type offset region 16 and the n-type drift region 4. However, when a negative high voltage is applied also to the gate electrode 13, a high electric field is generated also in the n-type well region (D portion) immediately below the gate electrode 13, and the on breakdown voltage is lowered by this high electric field. It becomes lower than the off breakdown voltage.
An object of the present invention is to provide a semiconductor device capable of solving the above-described problems and improving the on-breakdown voltage.

前記の目的を達成するために、n形の半導体層の表面層に選択的に形成されたn形のウエル領域と、前記半導体層の表面層に前記ウエル領域から離して選択的に形
成されたp形のオフセット領域と、前記ウエル領域の表面層に選択的に形成されたp形のソース領域と、前記オフセット領域の表面層に選択的に形成されたp形のドレイン領域と、前記ウエル領域の表面層に選択的に形成されたn形のコンタクト領域と、前記ソース領域と前記オフセット領域に挟まれた前記半導体層上と前記ウエル領域上にゲート絶縁膜を介して形成されたゲート電極と、前記コンタクト領域上と前記ソース領域上とに形成されたソース電極と、前記ドレイン領域上に形成されたドレイン電極とを有する半導体装置において、
前記ソース領域と前記半導体層に挟まれた前記ウエル領域の表面での前記ソース領域端と該ソース領域端と対向する前記ウェル領域端との距離(L1)が、前記ウエル領域と前記オフセット領域に挟まれた前記半導体層の表面での前記ウエル領域端と該ウエル領域と対向する前記オフセット領域端との距離(L2)より長い構成とする。
To achieve the above object, the selectively formed n-type well region in the surface layer of the n-type semiconductor layer, selectively formed away from the well region in a surface layer of said semiconductor layer a p-type offset region; a p-type source region selectively formed in a surface layer of the well region; a p-type drain region selectively formed in a surface layer of the offset region; and the well region An n-type contact region selectively formed on the surface layer, a gate electrode formed on the semiconductor layer and the well region sandwiched between the source region and the offset region via a gate insulating film; In a semiconductor device having a source electrode formed on the contact region and the source region, and a drain electrode formed on the drain region,
The distance (L1) between the source region end on the surface of the well region sandwiched between the source region and the semiconductor layer and the well region end facing the source region end is the distance between the well region and the offset region. The structure is longer than the distance (L2) between the end of the well region on the surface of the sandwiched semiconductor layer and the end of the offset region facing the well region.

また、前記ソース領域と、該ソース領域と対向する前記オフセット領域との距離(L1+L2)が2μm以上で20μm以下であるとよい。
また、この半導体装置は、トーテムポール回路のハイサイドスイッチもしくはプッシュプル回路を駆動するレベルシフト回路を構成する高電位側スイッチ素子として適用されるよい。
The distance (L1 + L2) between the source region and the offset region facing the source region is preferably 2 μm or more and 20 μm or less.
Further, this semiconductor device may be applied as a high-potential side switch element constituting a level shift circuit that drives a high-side switch or push-pull circuit of a totem pole circuit.

この発明によれば、ソース領域と半導体層に挟まれたウエル領域の表面での前記ソース領域端とこのソース領域端と対向する前記半導体層端との距離(L1)を、前記ウエル領域とオフセット領域に挟まれた前記半導体層の表面での前記ウエル領域端とこのウエル領域と対向する前記オフセット領域端との距離(L2)より長くすることで、ゲート電極にドレイン電極と同電位の高電圧が印加された時にでもゲート絶縁膜直下での高電界発生が抑えられ、この領域でのオン耐圧低下を防止することができる。その結果、ゲート電極にドレイン電極と同等の電圧を印加した場合でもオフ耐圧と同等のオン耐圧を確保することができる。
また、この発明の構成はn形ウエル領域のマスクパターンを調整するだけで実現できるため、この発明を適用することによるプロセス工程数の増加はない。
According to the present invention, the distance (L1) between the source region end on the surface of the well region sandwiched between the source region and the semiconductor layer and the semiconductor layer end opposite to the source region end is set to the offset from the well region. By making the distance between the end of the well region on the surface of the semiconductor layer sandwiched between the regions and the end of the offset region facing the well region (L2), a high voltage having the same potential as the drain electrode is applied to the gate electrode. Even when a voltage is applied, generation of a high electric field directly under the gate insulating film can be suppressed, and a decrease in the ON breakdown voltage in this region can be prevented. As a result, even when a voltage equivalent to that of the drain electrode is applied to the gate electrode, an ON breakdown voltage equivalent to the OFF breakdown voltage can be secured.
Further, since the configuration of the present invention can be realized only by adjusting the mask pattern of the n-type well region, the number of process steps is not increased by applying the present invention.

この発明を実施する最良の形態は、ゲート電極直下に形成されるn形ウエル領域の表面での幅をn形ドリフト領域の表面での幅より広くすることによって、オン耐圧を高くすることである。以下に具体的な実施例について説明する。   The best mode for carrying out the present invention is to increase the on-breakdown voltage by making the width of the n-type well region formed immediately below the gate electrode wider than the width of the n-type drift region. . Specific examples will be described below.

図1は、この発明の一実施例の半導体装置の要部断面図である。図4と同一箇所には同一符号を記した。
n形またはp形の基板1とn形基板3とを酸化膜2で貼り合わせたSOI基板100のn形基板3の表面層に表面濃度が2×1017cm-3程度で拡散深さが3μm程度のn形ウエル領域17を形成し、このn形ウエル領域17と離して表面濃度が1×1016cm-3程度で拡散深さが2μm程度のp形オフセット領域16を形成する。n形ウエル領域17、p形オフセット領域16が形成されないn形基板3がn形ドリフト領域4となる。
n形ウエル領域17の表面層に表面濃度が1×1018cm-3程度で拡散深さが1μm程度のp形ソース領域18を形成し、p形オフセット領域16の表面層に高濃度のp形ドレイン領域6を形成する。n形ウエル領域17の表面層にp形ソース領域18と接して(接しない場合もある)高濃度のn形コンタクト領域9を形成する。p形オフセット領域16とp形ソース領域18に挟まれたn形基板3上とn形ウエル領域17上に厚膜のゲート酸化膜11を介してポリシリコンのゲート電極13を形成し、p形ソース領域18上とn形コンタクト領域9上にソース電極14を形成し、ドレイン領域6上にドレイン電極15を形成する。また、p形オフセット領域16上には絶縁膜が形成されその上にゲート電極13が延在する。厚膜のゲート酸化膜11の膜厚(400nm程度)は、図示しない、同時に形成されるCMOS回路のMOSFETのゲート酸化膜や横形IGBTのゲート酸化膜の膜厚(20nm〜25nm)よりも厚く形成する。前記のn形基板3の内で、前記のn形ウエル領域17、p形オフセット領域16が形成されない箇所がn形ドリフト領域4となる。尚、図中のSはソース端子、Gはゲート端子、Dはドレイン端子である。
FIG. 1 is a cross-sectional view of an essential part of a semiconductor device according to one embodiment of the present invention. The same parts as those in FIG.
The surface concentration of the n-type substrate 3 of the SOI substrate 100 in which the n-type or p-type substrate 1 and the n-type substrate 3 are bonded to each other with the oxide film 2 is approximately 2 × 10 17 cm −3 and the diffusion depth is about 2 × 10 17 cm −3. An n-type well region 17 of about 3 μm is formed, and a p-type offset region 16 having a surface concentration of about 1 × 10 16 cm −3 and a diffusion depth of about 2 μm is formed apart from the n-type well region 17. The n-type substrate 3 in which the n-type well region 17 and the p-type offset region 16 are not formed becomes the n-type drift region 4.
A p-type source region 18 having a surface concentration of about 1 × 10 18 cm −3 and a diffusion depth of about 1 μm is formed on the surface layer of the n-type well region 17, and a high-concentration p is formed on the surface layer of the p-type offset region 16. A shaped drain region 6 is formed. A high-concentration n-type contact region 9 is formed on the surface layer of the n-type well region 17 in contact with the p-type source region 18 (which may not be in contact). A polysilicon gate electrode 13 is formed on the n-type substrate 3 and the n-type well region 17 sandwiched between the p-type offset region 16 and the p-type source region 18 via the thick gate oxide film 11, and the p-type is formed. A source electrode 14 is formed on the source region 18 and the n-type contact region 9, and a drain electrode 15 is formed on the drain region 6. Further, an insulating film is formed on the p-type offset region 16, and the gate electrode 13 extends thereon. The film thickness of the thick gate oxide film 11 (about 400 nm) is thicker than the film thickness (20 nm to 25 nm) of the gate oxide film of the MOSFET of the CMOS circuit and the lateral IGBT which are simultaneously formed. To do. In the n-type substrate 3, a portion where the n-type well region 17 and the p-type offset region 16 are not formed becomes an n-type drift region 4. In the figure, S is a source terminal, G is a gate terminal, and D is a drain terminal.

前記の構成において、p形ソース領域18とn形ドリフト領域4に挟まれたn形ウエル領域17の表面でのp形ソース領域端21とこのp形ソース領域端21と対向するn形ウエル領域端22との距離L1を、n形ウエル領域17とp形オフセット領域16に挟まれたn形ドリフト領域4の表面でのn形ウエル領域端22とこのn形ウエル領域端22と対向するp形オフセット領域端23との距離L2より大きくする。こうすることで、高いゲート電圧を印加したときのオン耐圧を向上させることができる。その根拠をつぎに説明する。尚、前記のL1はn形ウエル領域17の表面層に形成されるp形チャネル領域の長さに相当し、またL2はn形ドリフト領域4の表面層に形成されるp形チャネル領域の長さに相当する。
図2は、オン耐圧とL1、L2の関係の一例を示す図である。ゲート電圧を170Vに固定してドレイン電圧を上昇させたときのオン耐圧を示す。また、L1+L2=10μmである。L1が5μm以下の小さいときは、ゲート電極直下のn形ウエル領域17で電位分布が不均一となり、電界強度が強くなるため、オン耐圧は100Vと極めて低くなる。L1が5μm(L2=5μm)を超えると、ゲート電極直下のn形ウエル領域17で電位分布が均一となり、電界強度が緩和されて、急激にオン耐圧が上昇し、L1が6μm(L2=4μm)となったところでオン耐圧がゲート電圧に到達する。L1が6μmを超えると、オン耐圧はゲート電圧よりも高くなる。図3の回路では、ゲート電圧は、電源電圧となり、ドレイン電圧は0Vから電源電圧まで変化するので、オン耐圧はゲート電圧以上とすることが必要となる。この条件を満たすためには、L1を5μmを超すようにする。これは、L1がL2を超えた大きさにすることである。
In the above-described configuration, the p-type source region end 21 on the surface of the n-type well region 17 sandwiched between the p-type source region 18 and the n-type drift region 4 and the n-type well region facing the p-type source region end 21. The distance L1 between the n-type well region 17 and the n-type well region end 22 on the surface of the n-type drift region 4 sandwiched between the n-type well region 17 and the p-type offset region 16 is p. The distance is set to be larger than the distance L2 from the shape offset region end 23. By doing so, the ON breakdown voltage when a high gate voltage is applied can be improved. The basis for this will be described next. L1 corresponds to the length of the p-type channel region formed in the surface layer of the n-type well region 17, and L2 represents the length of the p-type channel region formed in the surface layer of the n-type drift region 4. It corresponds to.
FIG. 2 is a diagram illustrating an example of the relationship between the ON breakdown voltage and L1 and L2. The on-breakdown voltage when the gate voltage is fixed to 170 V and the drain voltage is raised is shown. L1 + L2 = 10 μm. When L1 is as small as 5 μm or less, the potential distribution becomes non-uniform in the n-type well region 17 immediately below the gate electrode, and the electric field strength is increased, so that the on-breakdown voltage is as extremely low as 100V. When L1 exceeds 5 μm (L2 = 5 μm), the potential distribution becomes uniform in the n-type well region 17 immediately below the gate electrode, the electric field strength is relaxed, the ON breakdown voltage is rapidly increased, and L1 is 6 μm (L2 = 4 μm). ), The ON breakdown voltage reaches the gate voltage. When L1 exceeds 6 μm, the ON breakdown voltage becomes higher than the gate voltage. In the circuit of FIG. 3, the gate voltage becomes the power supply voltage, and the drain voltage changes from 0 V to the power supply voltage. Therefore, the on-breakdown voltage needs to be equal to or higher than the gate voltage. In order to satisfy this condition, L1 is made to exceed 5 μm. This is to make L1 larger than L2.

ここまでは、ゲート電圧を170Vとして、L1+L2を10μmとした場合であるが、これらの値を変えても、L1>L2とすることで、オン耐圧をゲート電圧(=出力側電源電圧)より高くすることができる。
ゲート電圧が80Vの場合において、L1+L2<2μmとなると、L1>L2の条件に依らずゲート電極直下での電界強度が強くなるため、オフ耐圧、オン耐圧が低下が著しく好ましくない。また、L1+L2>6μmとなると、L1>L2の条件に依らずゲート電極直下の等電位線が均一になり、オフ耐圧、オン耐圧とも確保される。
また、ゲート電圧が300Vの場合において、L1+L2<5μmとなると、L1>L2の条件に依らずゲート電極直下での電界強度が強くなるため、オフ耐圧、オン耐圧が低下が著しく好ましくない。また、L1+L2>20μmとなると、L1>L2の条件に依らずゲート電極直下の等電位線が均一になり、オフ耐圧、オン耐圧とも確保される。
Up to this point, the gate voltage is set to 170 V and L1 + L2 is set to 10 μm. However, even if these values are changed, by setting L1> L2, the ON breakdown voltage is higher than the gate voltage (= output side power supply voltage). can do.
In the case where the gate voltage is 80 V, if L1 + L2 <2 μm, the electric field strength directly under the gate electrode is increased regardless of the condition of L1> L2, so that the OFF breakdown voltage and the ON breakdown voltage are extremely undesirably reduced. Further, when L1 + L2> 6 μm, the equipotential lines directly under the gate electrode become uniform regardless of the condition of L1> L2, and both the off breakdown voltage and the on breakdown voltage are secured.
In addition, when the gate voltage is 300 V, if L1 + L2 <5 μm, the electric field strength directly under the gate electrode is increased regardless of the condition of L1> L2, so that the off breakdown voltage and the on breakdown voltage are extremely undesirably reduced. Further, when L1 + L2> 20 μm, the equipotential lines directly under the gate electrode become uniform regardless of the condition of L1> L2, and both the off breakdown voltage and the on breakdown voltage are secured.

そのため、ゲート電圧が80Vから300Vの範囲において、L1>L2の条件が顕著に働くn形ウエル領域とp形オフセット領域の距離(L1+L2)は、2μm≦L1+L2≦20μmの範囲である。
また、n形ウエル領域17とp形オフセット領域16が表面で接すると、表面でn形ドリフト領域4が無くなるため、表面で空乏層の伸びが抑えられて電界強度が強くなり、オフ耐圧が低下する(勿論、オン耐圧も低下する)。そのため、n形ウエル領域17とp形オフセット領域16とは離れている方が望ましい。そのため、L2>0μmであるとよい。
また、L1をL2よりも大きくするためには、n形ウエル領域17を形成するマスクにおいて、n形ウエル領域17とゲート電極13の重なり長(Lm1)を調整するだけでよく、新たなプロセス工程の追加は必要ない。
Therefore, when the gate voltage is in the range of 80 V to 300 V, the distance (L1 + L2) between the n-type well region and the p-type offset region where the condition of L1> L2 is remarkable is in the range of 2 μm ≦ L1 + L2 ≦ 20 μm.
Further, when the n-type well region 17 and the p-type offset region 16 are in contact with each other on the surface, the n-type drift region 4 is eliminated on the surface. (Of course, the ON breakdown voltage also decreases). Therefore, it is desirable that the n-type well region 17 and the p-type offset region 16 are separated from each other. Therefore, it is preferable that L2> 0 μm.
In order to make L1 larger than L2, it is only necessary to adjust the overlap length (Lm1) of the n-type well region 17 and the gate electrode 13 in the mask for forming the n-type well region 17, and a new process step There is no need to add.

また、本発明のHVPMOSを図3のレベルシフト回路Bに適用することで、レベルシフト回路を安定に動作させることができる。このレベルシフト回路Bは、前記したように三相モータを駆動するインバータICやフラットパネルディスプレイを駆動するドライバICとして、IGBTなどで構成されたトーテムポール回路やプッシュプル回路の出力回路と一緒に搭載される。   Further, by applying the HVPMOS of the present invention to the level shift circuit B of FIG. 3, the level shift circuit can be operated stably. As described above, the level shift circuit B is mounted with an inverter IC for driving a three-phase motor or a driver IC for driving a flat panel display together with an output circuit of a totem pole circuit or push-pull circuit composed of an IGBT or the like. Is done.

この発明の一実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of one Example of this invention オン耐圧とL1、L2の関係の一例を示す図The figure which shows an example of the relationship between ON breakdown voltage and L1 and L2 厚膜ゲートHVPMOSを適用したレベルシフト回路の一例を示す図The figure which shows an example of the level shift circuit to which thick film gate HVPMOS is applied HVPMOSをSOI基板に形成した場合の従来の半導体装置の要部断面図Sectional view of the main part of a conventional semiconductor device when HVPMOS is formed on an SOI substrate

符号の説明Explanation of symbols

1 n形またはp形の半導体基板
2 酸化膜
3 n形基板
4 n形ドリフト領域
6 p形ドレイン領域
9 n形コンタクト領域
11 厚膜のゲート絶縁膜
12 絶縁膜
13 ゲート電極
14 ソース電極
15 ドレイン電極
16 p形オフセット領域
17 n形ウエル領域
18 p形ソース領域
21 p形ソース領域端
22 n形ウエル領域端
23 p形オフセット領域端
100 SOI基板
1 n-type or p-type semiconductor substrate 2 oxide film 3 n-type substrate 4 n-type drift region 6 p-type drain region 9 n-type contact region 11 thick gate insulating film 12 insulating film 13 gate electrode 14 source electrode 15 drain electrode 16 p-type offset region 17 n-type well region 18 p-type source region 21 p-type source region end 22 n-type well region end 23 p-type offset region end 100 SOI substrate

Claims (3)

n形の半導体層の表面層に選択的に形成されたn形のウエル領域と、前記半導体層の表面層に前記ウエル領域から離して選択的に形成されたp形のオフセット領域と、前記ウエル領域の表面層に選択的に形成されたp形のソース領域と、前記オフセット領域の表面層に選択的に形成されたp形のドレイン領域と、前記ウエル領域の表面層に選択的に形成されたn形のコンタクト領域と、前記ソース領域と前記オフセット領域に挟まれた前記半導体層上と前記ウエル領域上にゲート絶縁膜を介して形成されたゲート電極と、前記コンタクト領域上と前記ソース領域上とに形成されたソース電極と、前記ドレイン領域上に形成されたドレイン電極とを有する半導体装置において、
前記ソース領域と前記半導体層に挟まれた前記ウエル領域の表面での前記ソース領域端と該ソース領域端と対向する前記ウェル領域端との距離L1が、前記ウエル領域と前記オフセット領域に挟まれた前記半導体層の表面での前記ウエル領域端と該ウエル領域と対向する前記オフセット領域端との距離L2より長いことを特徴とする半導体装置。
an n-type well region selectively formed in the surface layer of the n-type semiconductor layer; a p-type offset region selectively formed in the surface layer of the semiconductor layer apart from the well region; and the well A p-type source region selectively formed on the surface layer of the region, a p-type drain region selectively formed on the surface layer of the offset region, and a surface layer of the well region. An n-type contact region, a gate electrode formed on the semiconductor layer and the well region sandwiched between the source region and the offset region via a gate insulating film, the contact region, and the source region In a semiconductor device having a source electrode formed on and a drain electrode formed on the drain region,
A distance L1 between the source region end on the surface of the well region sandwiched between the source region and the semiconductor layer and the well region end facing the source region end is sandwiched between the well region and the offset region. Further, the semiconductor device is characterized in that it is longer than a distance L2 between the end of the well region on the surface of the semiconductor layer and the end of the offset region facing the well region.
前記のL1+L2が2μm以上で20μm以下であることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein L <b> 1 + L <b> 2 is 2 μm or more and 20 μm or less. トーテムポール回路もしくはプッシュプル回路のハイサイドスイッチを駆動するレベルシフト回路を構成する高電位側スイッチ素子として適用されることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the semiconductor device is applied as a high-potential side switch element constituting a level shift circuit that drives a high-side switch of a totem pole circuit or a push-pull circuit.
JP2003389552A 2003-11-19 2003-11-19 Semiconductor device Expired - Fee Related JP4193680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389552A JP4193680B2 (en) 2003-11-19 2003-11-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389552A JP4193680B2 (en) 2003-11-19 2003-11-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005150617A JP2005150617A (en) 2005-06-09
JP4193680B2 true JP4193680B2 (en) 2008-12-10

Family

ID=34696263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389552A Expired - Fee Related JP4193680B2 (en) 2003-11-19 2003-11-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4193680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332112B2 (en) * 2006-03-29 2013-11-06 富士電機株式会社 High voltage lateral MOSFET

Also Published As

Publication number Publication date
JP2005150617A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP6117640B2 (en) Semiconductor device and drive system
KR100350648B1 (en) Mos transistor and method for manufacturing the same
US8022477B2 (en) Semiconductor apparatus having lateral type MIS transistor
US20120267750A1 (en) Semiconductor apparatus
JP3473460B2 (en) Horizontal semiconductor device
JP2011018892A (en) High-voltage semiconductor device
JP2004296831A (en) Semiconductor device
WO2013073539A1 (en) High-voltage-resistance semiconductor device
JP4620437B2 (en) Semiconductor device
JP2822961B2 (en) Semiconductor device
US20090212373A1 (en) Semiconductor device
US9608072B2 (en) Semiconductor device
JP6677672B2 (en) Semiconductor device
KR101505313B1 (en) Semiconductor device and semiconductor integrated circuit device using the same
CN106663658B (en) Semiconductor integrated circuit having a plurality of transistors
JP5332112B2 (en) High voltage lateral MOSFET
JP2001217414A (en) Semiconductor device
JP4193680B2 (en) Semiconductor device
JPH1065018A (en) Semiconductor device
JP4839578B2 (en) Horizontal semiconductor device
JP6370952B2 (en) Semiconductor device
JP4788276B2 (en) Semiconductor device
JP4193604B2 (en) Semiconductor device and manufacturing method thereof
JP2920061B2 (en) Semiconductor integrated device for high load driving driver and high load driving driver device
JP3279281B2 (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Ref document number: 4193680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees