JPS6064451A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6064451A
JPS6064451A JP17256183A JP17256183A JPS6064451A JP S6064451 A JPS6064451 A JP S6064451A JP 17256183 A JP17256183 A JP 17256183A JP 17256183 A JP17256183 A JP 17256183A JP S6064451 A JPS6064451 A JP S6064451A
Authority
JP
Japan
Prior art keywords
pattern
film
insulating film
patterns
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17256183A
Other languages
Japanese (ja)
Inventor
Toru Mochizuki
徹 望月
Michihiro Ishikawa
通弘 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17256183A priority Critical patent/JPS6064451A/en
Publication of JPS6064451A publication Critical patent/JPS6064451A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a change into a thin-film of a metal in a contact section by forming an inter-layer insulating film on a conductive pattern, selectively removing the insulating film to expose the pattern and forming an upper electrode to the pattern. CONSTITUTION:Ti patterns 321-323 and first Al patterns 31... are shaped to contact sections, resist patterns 30 are formed on the patterns 31..., a first SiO2 film 33 is formed on the whole surface, and the resists 30 and the SiO2 films 33 on the patterns 31... are removed simultaneously through a lift-off. Consequently, the surfaces of the residual films 33 and the surfaces of the patterns 31... are brought to the same level, and the contact sections can be flattened. Accordingly, a change into thin-films of Al in the contact sections can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、上部電極と下部電極の接続を改良した半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device in which the connection between an upper electrode and a lower electrode is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、上部電極及び下部電極を有した2層構造の半導体
装置は、第1図に示すように製造されている。まず、常
法により半導体基板1の所定の表面にフィールド酸化膜
2を形成し、このフィールド酸化膜2で分離された基板
1上に酸化膜(図示せず)を形成する。つづいて、全面
に多結晶シリコン層を形成した後、パターニングしてフ
ィールド酸化膜2上に下部電極3を形成し、酸化膜上に
ゲート電極4を形成する。次いで、ゲート電極4をマス
クとして前記酸化膜を選択的に除去し、ゲート絶縁膜5
を形成する。
Conventionally, a semiconductor device having a two-layer structure having an upper electrode and a lower electrode has been manufactured as shown in FIG. First, a field oxide film 2 is formed on a predetermined surface of a semiconductor substrate 1 by a conventional method, and an oxide film (not shown) is formed on the substrate 1 separated by the field oxide film 2. Subsequently, after forming a polycrystalline silicon layer over the entire surface, it is patterned to form a lower electrode 3 on the field oxide film 2, and a gate electrode 4 on the oxide film. Next, the oxide film is selectively removed using the gate electrode 4 as a mask, and the gate insulating film 5 is removed.
form.

しかる後、ゲート電極4をマスクとして基vi1に不純
物をイオン注入してソース、ドレイン領域6′、7を形
成する。更に、全面に第1の層間絶縁膜8を形成した後
、前記下部電極3及びソース、ドレイン領域7,8の夫
々の一部に対応する層間絶縁膜8を選択的に除去し、コ
ンタクトホール98,9□、9.を形成、引う。ひきつ
づき、全面にA4?を蒸着した後パターニングし、コン
タクトホール9.を介して前記下部電極3に接続する上
部電極101.コンタクトホール9!s98 を介して
ソース、ドレイン領域7゜8に夫々接続するコンタクト
電極11.11を形成した。以下、同様にして全面に第
2の層間絶縁膜J2を形成した後、コンタクトホール1
3、該コンタクトホール13を介して前記上部電極10
に接続する取出し配線14を形成し、半導体装置を製造
する。
Thereafter, impurity ions are implanted into the base vi1 using the gate electrode 4 as a mask to form source and drain regions 6' and 7. Furthermore, after forming the first interlayer insulating film 8 on the entire surface, the interlayer insulating film 8 corresponding to the lower electrode 3 and a portion of each of the source and drain regions 7 and 8 is selectively removed to form a contact hole 98. ,9□,9. form and draw. Continuing, A4 all over? After vapor deposition, patterning is performed to form a contact hole 9. an upper electrode 101. connected to the lower electrode 3 via the upper electrode 101. Contact hole 9! Contact electrodes 11 and 11 were formed to connect to the source and drain regions 7.8 through s98, respectively. Thereafter, after forming the second interlayer insulating film J2 on the entire surface in the same manner, contact holes 1
3. The upper electrode 10 via the contact hole 13
A semiconductor device is manufactured by forming an extraction wiring 14 connected to the semiconductor device.

しかしながら、前述した製造方法によれば、コンタクト
ホール9I〜9..13の開孔面積が小さくなるにつれ
てコンタクトホール9i〜9、.13を開孔することが
困難となる。、これは、層間絶縁膜8,12を、ガスプ
ラズマや液体でエツチングする場合洗、コンタクトホー
ルの開孔面積が小さいために、エツチング生成物が拡散
などによってコンタクトホールの外に流出していくこと
が困難となるためである。また、コンタクトホールが形
成された場合でもコンタクトホール上部の角周辺におい
て、スパッタ、蒸着等によって形成されたAJが、平面
に被着したAJよりも薄くなり、素子信頼上大きな問題
となる。
However, according to the manufacturing method described above, contact holes 9I to 9. .. As the opening area of contact holes 9i to 9, . 13 becomes difficult to drill. This is because when the interlayer insulating films 8 and 12 are etched with gas plasma or liquid, the etching products flow out of the contact holes by diffusion because the opening area of the contact holes is small. This is because it becomes difficult. Further, even when a contact hole is formed, the AJ formed by sputtering, vapor deposition, etc. around the upper corner of the contact hole becomes thinner than the AJ deposited on a flat surface, which poses a serious problem in device reliability.

このようなことから、最近、第2図に示すように半導体
装置が製造されている。まず、ゲート電極4の周囲にの
み酸化膜15を形成し、第1の層間絶縁膜8を形成した
後、第1の層間絶縁膜8にコンタクトホール16、〜1
63を開孔する。つづいて、全面に前記層間絶縁膜8に
対応して開孔部171〜17.を有するフォトレジスト
膜18を形成し、更に全面にAlh419を被着し、前
記コンタクトホール16x〜16、にもAJ層20を充
填する。次いで、リフトオフ技術により、フォトレジス
ト膜18を除去してその上部のkl)mx9も同時に収
り除く。しかる後、AJ屓2oを2−シて泥1の層間絶
縁膜8を除去−t〉1.以下、AIj層を再度仮看しパ
ターニングを行なって半導体装置を製造する。しかるに
1こうしたリフトオフ技術を用いた製造方法は、コンタ
クトホールの開孔面積に比べて深いコンタクトホールを
ム1等によって充填し、実質的段差を浅くしてコンタク
トホール上部角部のAJ薄膜化を防止しようとするもの
である。しかしながら、かかる方法によれば、AIを除
去すべき面積が大部分を占めるため、リフトオフ技術そ
のものが困難である。また、フォトレジスト膜18を用
いるため、Aノ被着前、コンタクトホール開孔後にAJ
をつめ本べきコンタクトホールな清浄することが困難と
なり、コンタクト部の抵抗を低減することが困難である
。。
For this reason, recently, semiconductor devices as shown in FIG. 2 have been manufactured. First, an oxide film 15 is formed only around the gate electrode 4, and a first interlayer insulating film 8 is formed.
63 is drilled. Subsequently, openings 171 to 17. are formed on the entire surface corresponding to the interlayer insulating film 8. A photoresist film 18 is formed, and then Alh419 is deposited on the entire surface, and the contact holes 16x to 16 are also filled with the AJ layer 20. Next, by lift-off technique, the photoresist film 18 is removed and the kl)mx9 above it is also removed at the same time. After that, the interlayer insulating film 8 of the mud 1 is removed by applying AJ layer 2o. Thereafter, the AIj layer is temporarily inspected and patterned again to manufacture a semiconductor device. However, in the manufacturing method using such a lift-off technology, a contact hole that is deep compared to the opening area of the contact hole is filled with a layer 1, etc., thereby making the actual step shallow and preventing thinning of the AJ film at the upper corner of the contact hole. This is what I am trying to do. However, according to this method, the lift-off technique itself is difficult because the area where AI should be removed occupies most of the area. In addition, since the photoresist film 18 is used, AJ is used before AJ is deposited and after the contact hole is opened.
It becomes difficult to clean the contact holes that should be filled, and it is difficult to reduce the resistance of the contact portion. .

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、上部電極を
平坦な下地の上に形成してコンタクト部での金属の薄膜
化を防止できるとともに、コンタクト部の抵抗を低減し
得る半導体装置の製造方法を提供することを目的とする
ものである。
The present invention has been made in view of the above circumstances, and is capable of manufacturing a semiconductor device in which an upper electrode is formed on a flat base to prevent thinning of the metal film at the contact portion, and at the same time, the resistance of the contact portion can be reduced. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板表面の拡散層あるいは前記基板上
に絶縁膜を介して設けられた下部電去して導体パターン
を露出させ、更にiT tl /%間絶縁峡上に前記導
体パターンに接続する上部電極を形成することによって
、コンタクト部での金属の薄膜化の防止、及びコンタク
ト部の抵抗の低減を図ることを骨子とする。
The present invention exposes a conductive pattern by discharging a diffusion layer on the surface of a semiconductor substrate or a lower part provided on the substrate via an insulating film, and further connects the conductive pattern on an insulating layer between iT tl /%. By forming the upper electrode, the main purpose is to prevent the metal from becoming thin in the contact portion and to reduce the resistance of the contact portion.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を、81,3図(al〜ldl
を参照して説明する。
Hereinafter, one embodiment of the present invention will be described in Figures 81 and 3 (al to ldl
Explain with reference to.

(1) まず、常法により半導体基板としての81基板
21の所定の表面にフィールド酸化膜22を形成し、こ
のフィールド′、酸化膜22で分離された基板1上に酸
化膜(図示せず)を形成した。つづいて、全面に多結晶
シリコン1tIJを形成した後、パターニングしてフィ
ールド酸化膜22上に下部電極13を形成し、酸化膜上
にゲート電極24を形成した。次いで、ゲート電極24
をマスクとして前記酸化膜を選択的に除去し、ゲート絶
縁膜25を形成した。次いで、ゲート基Fi24をマス
クとして基板に不純物をイオン注入し、拡散層としての
ソース、ドレイン領域26.;j7を形成した後、ゲー
ト電極24の周囲に酸化膜28を形成した。更に1厚さ
約1000;Lのチタン(Ti)層29を形成した後、
このTl129上に厚さ5000^のアルミニウム(a
/)層(図示せず)を′4N看し、このAJ層上のコン
タクトホール形成予定部のみにレジストパターン3oを
形成した。しかる後、このレジストパターン3oをマス
クとして前記A6層を選択的にエツチング除去し、導体
パターンの一部を構成する第1のAJパターン31・・
・を形成した(第3図(耐図示)。
(1) First, a field oxide film 22 is formed on a predetermined surface of an 81 substrate 21 as a semiconductor substrate by a conventional method, and an oxide film (not shown) is formed on the substrate 1 separated by the oxide film 22 in this field'. was formed. Subsequently, polycrystalline silicon 1tIJ was formed on the entire surface, and then patterned to form a lower electrode 13 on the field oxide film 22, and a gate electrode 24 on the oxide film. Next, the gate electrode 24
Using this as a mask, the oxide film was selectively removed to form a gate insulating film 25. Next, impurity ions are implanted into the substrate using the gate base Fi 24 as a mask, and the source and drain regions 26 . ; After forming j7, an oxide film 28 was formed around the gate electrode 24. After further forming a titanium (Ti) layer 29 with a thickness of approximately 1000 mm,
On this Tl129, a 5000^ thick aluminum (a
/) layer (not shown), a resist pattern 3o was formed only in the area where a contact hole was to be formed on this AJ layer. Thereafter, using this resist pattern 3o as a mask, the A6 layer is selectively etched away to form a first AJ pattern 31 that forms part of the conductor pattern.
・ was formed (Fig. 3 (resistance illustration)).

〔胴〕 次に、露出するTi R1J29を希HFによ
り選択的にエツチング除去し、前記第1のAn?パター
ン3ノ・・・と導体パターンを構成するTI パターン
32.〜32sを形成した。つづいて、プラズマCVD
法により約100℃で全面に第1の層間絶縁膜としての
厚さ5000λの第1の5i02膜33を形成した(第
3図(b1図示)。次いで、前記レジストパターン30
を除去することによって、同時にこのレジストパターン
30を覆うS t O,膜33を除去した(リフトオフ
)。更に、全面tg−Alt鮨を破着し、パターニング
して前記810.膜33上に前記Tiパターン32.に
接続するA/l’からなる上部電極34を形成すると同
時に、前t)dソース、ドレイン領域26.27にTi
パターン327、第1のAdパターン31及びTiパタ
ーン323、第1のAAlパターン31夫々を介して接
続する第20Aeパターン35.35を形成した。
[Cylinder] Next, the exposed Ti R1J29 was selectively etched away using dilute HF, and the first An? Pattern 3... and TI pattern 32 constituting a conductor pattern. ~32s was formed. Next, plasma CVD
A first 5i02 film 33 with a thickness of 5000λ as a first interlayer insulating film was formed on the entire surface at about 100° C. by a method (shown in FIG. 3 (b1)). Next, the resist pattern 30
At the same time, the S t O film 33 covering the resist pattern 30 was also removed (lift-off). Furthermore, the entire surface of the tg-Alt sushi is broken and patterned to form the above 810. The Ti pattern 32. is formed on the film 33. At the same time, forming the upper electrode 34 made of A/l' connected to the source and drain regions 26 and 27 of
A 20th Ae pattern 35.35 connected through the pattern 327, the first Ad pattern 31 and Ti pattern 323, and the first AAl pattern 31 was formed.

なお、Tiパターン322、第1のA6パターン31及
び第2のAI!パターン35よりソース領域26とのコ
ンタクト電極36が構成され、Tiパターン323、第
1のAAlパターン31び第2のA!パターン35より
ドレイン領域17とのコンタクト電極37が構成される
(第3図(e)図示)。しかる後、前述した方法で前記
上部電極34上にTiパターン3B、klパターン39
を形成し、更に第2の層間絶縁膜としての第2の810
.膜40を形成し、ひきつづきこの第2のSin、膜4
0上にAAlパターン39Tiパターン38を介して上
部電極34に接続するAAからなる取出し配線41を形
成して半導体装置を製造した(第3図(d)図示)。 
−しかして、本発明によれば、予め下部電極23、及び
ソース、ドレイン領域26.27のコンタクト部にTi
パターン32.〜323、第1のAJパターン3ノ川を
形成した後、第1のAJパターン3o・・・上にレジス
トパターン30を形成し、更に全面に第1のStO,膜
33を形成し九後、リフトオフにより第1のAdパター
ン30・・・上のレジストパターン3o及び該パターン
30を覆う第1の810.膜33を同時に除去できる。
Note that the Ti pattern 322, the first A6 pattern 31, and the second AI! The pattern 35 constitutes a contact electrode 36 with the source region 26, and includes the Ti pattern 323, the first AAl pattern 31 and the second A! A contact electrode 37 with the drain region 17 is formed from the pattern 35 (as shown in FIG. 3(e)). Thereafter, a Ti pattern 3B and a kl pattern 39 are formed on the upper electrode 34 using the method described above.
A second 810 as a second interlayer insulating film is formed.
.. Form the film 40, and then continue to form the second Sin film 4.
A semiconductor device was manufactured by forming an extraction wiring 41 made of AA and connecting it to the upper electrode 34 via an AAl pattern 39 and a Ti pattern 38 on the semiconductor device 0 (as shown in FIG. 3(d)).
- According to the present invention, it is possible to apply Ti to the contact portions of the lower electrode 23 and the source and drain regions 26 and 27 in advance.
Pattern 32. ~323, After forming the first AJ pattern 3, a resist pattern 30 is formed on the first AJ pattern 3o, and a first StO film 33 is further formed on the entire surface. The lift-off removes the resist pattern 3o on the first Ad pattern 30 and the first 810. The film 33 can be removed at the same time.

従って、第3図(b)に示す如く、残存する第1のS 
t O,膜33の表面と第1のAAlパターン31・・
の表面を同、−レベルにし、コンタクト部を平坦にでき
る。その結果、第1図の半導体装置の如きコンタクト部
でのAAの薄膜化を防止でき、素子の信頼性を向上でき
る。
Therefore, as shown in FIG. 3(b), the remaining first S
tO, the surface of the film 33 and the first AAl pattern 31...
The contact area can be flattened by keeping the surfaces at the same - level. As a result, it is possible to prevent the AA from becoming thinner in the contact portion as in the semiconductor device shown in FIG. 1, and the reliability of the device can be improved.

また、コンタクト部にAeパターン31・・・を形成す
る際、第2図の半導体装置の如く、フオトレジスM用い
ることがないため、AIパターン31・・・形成後、清
浄な面を保持でき、もってコンタクト部の抵抗を低減で
きる。
Furthermore, when forming the Ae pattern 31... on the contact portion, the photoresist M is not used as in the semiconductor device shown in FIG. 2, so a clean surface can be maintained after the AI pattern 31... The resistance of the contact part can be reduced.

更に、AIパターン3ノ・・・を形成時、エツチング除
去されるA1層は広い平面上からほぼ自由に流出可能で
あるから、原理的には0.1μ′程度の極端に小さなコ
ンタクト部の形成が可能になる。
Furthermore, when forming AI pattern 3, the A1 layer that is etched away can flow out almost freely from a wide plane, so in principle it is possible to form an extremely small contact portion of about 0.1 μ'. becomes possible.

なお、上記実施例では、下部電極とのコンタクト部の形
成に際し、その材料としてAl及びTIを用いたが、こ
れに限らず、下部電極の材料である多結晶シリコンとエ
ツチング速度が異なる等電体材料なら全て用いることが
できる。
In the above embodiment, Al and TI were used as the materials for forming the contact portion with the lower electrode, but the material is not limited to this, and an isoelectric material having an etching rate different from polycrystalline silicon, which is the material of the lower electrode, may be used. Any material can be used.

また、上記実施例では、上部電極がAAからなる1層構
造の場合について述べたが、第4図に示す如くAeパタ
ーン51とTIパターン52の2層構造のものにも同様
に適用できる。
Further, in the above embodiment, the case where the upper electrode has a single layer structure made of AA has been described, but it can be similarly applied to a case where the upper electrode has a two layer structure consisting of an Ae pattern 51 and a TI pattern 52 as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

一以上詳述した如く、本発明によればコンタクト部での
金属の薄膜化を防止できるとともに、コンタクト部の抵
抗を低減できる高信頼性の半導体装置の製造方法を提供
できるものである。
As described above in detail, according to the present invention, it is possible to provide a method of manufacturing a highly reliable semiconductor device that can prevent the metal from becoming thin in the contact portion and reduce the resistance of the contact portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々従来の半導体装置の断面図、第
3図(a)〜(dlは本発明の一実施例に係る半導体装
置の製造方法を工程順に示す断面図、第4図は本発明の
他の実施例に係る半導体装置の断面図である。 21・・・81基板(半導体基板)、22・・・フィー
ルド酸化膜、23・・・下部電極、24・・・ゲート電
極、25・・・ゲート絶縁膜、26・・・ソース領域、
27・・嗜ドレイン領域、28・+1彎酸化膜、29・
・・チタン(Ti)層、30・・・レジストパターン、
31゜35 、39 、5 J−−−A ll<9−ン
、32.〜32、・・・Tiパターン(導体)(ターン
)、33゜40・・・5i02膜、34・・―上部電極
、36 、37・・・コンタクト電極、38.52・・
・’p i %9− V、41・・・取出し配線。 出願人代理人 弁理士 鈴江武 彦
1 and 2 are cross-sectional views of a conventional semiconductor device, FIGS. 3(a) to (dl) are cross-sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps, and FIG. is a sectional view of a semiconductor device according to another embodiment of the present invention. 21...81 substrate (semiconductor substrate), 22... field oxide film, 23... lower electrode, 24... gate electrode , 25... Gate insulating film, 26... Source region,
27..Drain region, 28.+1 curved oxide film, 29.
...Titanium (Ti) layer, 30...Resist pattern,
31゜35, 39, 5 J---All<9-n, 32. ~32,...Ti pattern (conductor) (turn), 33°40...5i02 film, 34...upper electrode, 36, 37...contact electrode, 38.52...
・'pi%9-V, 41...Exit wiring. Applicant's representative Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】 111 半導体基板表面の拡散層あるいは前記基板上に
絶縁膜を介して設けられた下部電極のうち少なくともい
ずれか一方の上に導体パターンを形成する工程と、全面
に層間絶縁膜を形成する工程と、前記導体パターン上の
層間絶縁膜を選択的に除去して導体パターンを露出させ
る工程と、前記層間絶縁膜上に前記導体パターンに接続
する上部電極を形成する工程とを具備することを特徴と
する半導体装置の製造方法。 (2)上部電極あるいは下部電極が異種の導電体パター
ンからなる2層構造であることを特徴とする特許請求の
範囲型1項記載の半導体装置の製造方法。
[Claims] 111 A step of forming a conductive pattern on at least one of a diffusion layer on the surface of a semiconductor substrate or a lower electrode provided on the substrate via an insulating film, and forming an interlayer insulating film on the entire surface. a step of selectively removing an interlayer insulating film on the conductor pattern to expose the conductor pattern; and a step of forming an upper electrode connected to the conductor pattern on the interlayer insulating film. A method for manufacturing a semiconductor device, characterized in that: (2) The method of manufacturing a semiconductor device according to claim 1, wherein the upper electrode or the lower electrode has a two-layer structure consisting of different types of conductor patterns.
JP17256183A 1983-09-19 1983-09-19 Manufacture of semiconductor device Pending JPS6064451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17256183A JPS6064451A (en) 1983-09-19 1983-09-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17256183A JPS6064451A (en) 1983-09-19 1983-09-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6064451A true JPS6064451A (en) 1985-04-13

Family

ID=15944132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17256183A Pending JPS6064451A (en) 1983-09-19 1983-09-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6064451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208249A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of multilayer interconnection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208249A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of multilayer interconnection structure

Similar Documents

Publication Publication Date Title
JPS62279661A (en) Method of forming penetrating conductor in integrated circuit
JPS6064451A (en) Manufacture of semiconductor device
JPH02117153A (en) Method of forming semiconductor element
JPH0427125A (en) Method of producing wiring member
JPS62137853A (en) Formation of multilayer interconnection
JP3209209B2 (en) Method for manufacturing semiconductor device having capacitance contact hole
JPH02111052A (en) Formation of multilayer interconnection
JP3001931B2 (en) Electrode wiring of semiconductor device and method of forming the same
JPH043962A (en) Semiconductor device and its manufacture
JPH04109654A (en) Semiconductor device and manufacture thereof
JPH0453130A (en) Semiconductor device and manufacture thereof
JPS61239646A (en) Formation of multilayer interconnection
JPS63111644A (en) Manufacture of semiconductor device
JPH0414830A (en) Manufacture of semiconductor device
JPS62222654A (en) Manufacture of semiconductor device
JPH08274098A (en) Semiconductor device and its manufacture
JPH03239348A (en) Semiconductor device and its manufacture
JPH03248533A (en) Semiconductor integrated circuit device
JPH0936222A (en) Semiconductor device and its manufacture
JPH09270463A (en) Method of forming contact holes
JPS63166248A (en) Semiconductor integrated circuit device and manufacture thereof
JPS5895840A (en) Manufacture of semiconductor device
JPS63299120A (en) Formation of electrode of semiconductor device
JPH03205829A (en) Manufacture of semiconductor device
JP2001177077A (en) Method for fabricating semiconductor memory