JPS6064247A - Inspection processing method of iron pipe - Google Patents

Inspection processing method of iron pipe

Info

Publication number
JPS6064247A
JPS6064247A JP17254683A JP17254683A JPS6064247A JP S6064247 A JPS6064247 A JP S6064247A JP 17254683 A JP17254683 A JP 17254683A JP 17254683 A JP17254683 A JP 17254683A JP S6064247 A JPS6064247 A JP S6064247A
Authority
JP
Japan
Prior art keywords
discrete fourier
pipe
fourier transform
magnetic field
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17254683A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wasa
泰宏 和佐
Tokunori Miura
三浦 徳紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17254683A priority Critical patent/JPS6064247A/en
Publication of JPS6064247A publication Critical patent/JPS6064247A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect the coupling and the like of an iron pipe embedded in the ground, by performing frequency analysis of the data of magnetic-field distribution in the iron pipe, and removing the contribution of local magnetization, which is to become noises, by discrete Fourier transform and inverse discrete Fourier transform. CONSTITUTION:Cylindrical coordinates, in which the axis of a gas pipe P is (x) and an angle is theta, are set, and the distribution of a static magnetic field in the direction of the pipe axis is measured by a magnetism sensor. The frequency analysis of the data of the magnetic-field distribution with respect to the (x) axis is performed by discrete Fourier transformation. Based on the frequency distribution data obtained by the discrete Fourier transform, it is judged that the concentrated region of the constituent frequencies of the noise component is concentrated in, e.g., low frequency region. The low frequency component is removed from the data of the frequency distribution, and inverse discrete Fourier transform is performed. Thus the noise component is decreased to a large extent. By observing the place, where the change in magnetic field is large, the position of a coupling part and the position of a branch-pipe part can be readily detected.

Description

【発明の詳細な説明】 本発明は主として地中に埋設された鉄管の検査処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a method for inspecting and processing iron pipes buried underground.

ガス管や水道管など地中に埋設された鉄管では、管の継
手部分や枝管部分等での腐食や溶接不良などによる事故
がもつとも多く発生する。このため、管内から鉄管の継
手部の位置を検出し、この部分いったんガスもれなどの
事故を起した場合にも、まず継手部の位置を検出して、
この部分を検査修理することが必要である。このように
、継手部や枝管部等の位置を検出することは保守管理上
、もつとも重要な技術となって込るが、従来の検出方法
には、問題があることがわかった。
With iron pipes buried underground, such as gas pipes and water pipes, accidents often occur due to corrosion or poor welding at pipe joints and branch pipes. Therefore, the position of the joint of the iron pipe can be detected from inside the pipe, and even if an accident such as a gas leak occurs in this area, the position of the joint can be detected first.
It is necessary to inspect and repair this part. As described above, detecting the positions of joints, branch pipes, etc. is an important technique for maintenance management, but it has been found that conventional detection methods have problems.

従来より管の検査処理方法における測定手段として磁場
を用いることが広く行なわれている。これは、例えば継
手部や枝管部等の位置近傍において磁場分布が、変化す
ることに注目してその変化によって継手部や枝管部等を
検出しようとするものである。ところが、検査しようと
する管が長期間の間に局部的に磁化されていると、継手
部や枝管部等以外でも磁場分布の変化が検出され、継手
部などと管の内壁との識別が不可能となることが明らか
になった。局部的磁化の原因としては、特に地中に埋ま
っている管の場合は、地中の磁気によるもの、あるいは
地電流によるものなどが考えられる1例えば、継手部や
枝管部の位置が外部かおいては、この局所的磁化が著し
い。このような管に対しては従来の方法のままでは、検
出不可能となる。そこで本発明は、検出のノイズとなる
局部的磁化の寄与を離散フーリエ変換(以下り、F、T
BACKGROUND ART Conventionally, magnetic fields have been widely used as a measuring means in pipe inspection and processing methods. This method focuses on the fact that the magnetic field distribution changes in the vicinity of the joint, branch pipe, etc., and attempts to detect the joint, branch pipe, etc. based on the change. However, if the pipe to be inspected has been locally magnetized for a long period of time, changes in the magnetic field distribution will be detected in areas other than the joints and branch pipes, making it difficult to distinguish between the joints and the inner wall of the pipe. It turned out to be impossible. Possible causes of local magnetization include underground magnetism, especially in the case of pipes buried underground, or ground current.1For example, if the joint or branch pipe is located outside, In this case, this local magnetization is remarkable. Such tubes cannot be detected using conventional methods. Therefore, the present invention transforms the contribution of local magnetization, which causes detection noise, into a discrete Fourier transform (hereinafter referred to as F, T
.

と略記)と、逆離散フーリエ変換(以下I 、D、F、
T。
) and inverse discrete Fourier transform (hereinafter I, D, F,
T.

と略記)とをmいて除去することによって従来の欠点を
解決したものである。
This method solves the drawbacks of the conventional method by removing the following.

以下、具体的な例としてガス管内の静磁場検出を通して
本発明の詳細を述べる。
Hereinafter, details of the present invention will be described through detection of a static magnetic field within a gas pipe as a specific example.

第1図は継手部1と枝管部2,3を有するガス管Pであ
る。管PFi直径180y+m、長さは1505.、で
ある。測定の都合上図に示したように、管軸をX角度を
θとした円柱座標を設定する。
FIG. 1 shows a gas pipe P having a joint part 1 and branch pipe parts 2 and 3. Pipe PFi diameter 180y+m, length 1505. , is. For convenience of measurement, as shown in the figure, cylindrical coordinates are set with the tube axis and the X angle as θ.

第2図(a)〜(c)はガス管Pの管軸方向の静磁場分
布Bをフラックスゲート型磁気センサーで測定した結果
を示す、第2図の(a)では継手部および枝管部2,3
の位置にほぼ対応する4、5.6の位置で大きな磁場分
布の変化が存在し、また(b) 、 (c)では継手部
1に対応して7,8の位置で大きな変化が発生している
。ところが(C)のX≧700における変化に象徴され
るように継手部や枝管部以外にも大きな変化がみうけら
れる。これが局所的磁化によるノイズである。このノイ
ズのために、継手部や枝管部の位置を第2図の測定結果
から直接判定することは困難である。
Figures 2 (a) to (c) show the results of measuring the static magnetic field distribution B in the axial direction of the gas pipe P using a fluxgate type magnetic sensor. 2,3
There is a large change in the magnetic field distribution at positions 4 and 5.6, which approximately correspond to the position , and in (b) and (c), a large change occurs at positions 7 and 8, which correspond to joint part 1. ing. However, as symbolized by the change when X≧700 in (C), large changes can be seen in areas other than the joint and branch pipes. This is noise due to local magnetization. Because of this noise, it is difficult to directly determine the positions of the joints and branch pipes from the measurement results shown in FIG.

そこでまず、第2図の(a) = (b) −(c)の
磁場分布のデータのX軸に対する周波数分析を行う。周
波数分析としては、次式で与えられるり、F、T、を用
いる。
Therefore, first, frequency analysis with respect to the X axis of the magnetic field distribution data of (a) = (b) - (c) in Fig. 2 is performed. For frequency analysis, F and T given by the following equation are used.

ここで、Jctlは離散的に測定した位置のX座標n=
0 # 1 + 2 +”・e N−”B(為)は位置
:t!lでの磁場 B(ト) k = 0.1,2.・・・、N−1は周波
数強度t=、/TT Nは総データ数 り、F、T、を行った結果を図にしたものを第3図に示
す。次にノイズ部分の構成周波数を調べるために、第2
図(b) 、 (c)の後半部(:c≧780)のみの
り、F、T、を行う。その結果を第4図に示す。第3図
と第4図とを比較するとわかるように、ノイズ成分の構
成周波数成分は低周波領域に集中している。ここで低周
波成分とはX軸に対する磁場分布の変化の波長が長い成
分をいう。高周波成分はその逆である。
Here, Jctl is the X coordinate of the discretely measured position n=
0 # 1 + 2 +”・e N-”B (for) is at position: t! Magnetic field B(g) at l k = 0.1, 2. ..., N-1 is the frequency intensity t=, /TTN is the total number of data, and FIG. 3 shows the results of performing F and T. Next, in order to investigate the constituent frequencies of the noise part,
Perform only the second half (c≧780) of Figures (b) and (c), F, and T. The results are shown in FIG. As can be seen by comparing FIG. 3 and FIG. 4, the constituent frequency components of the noise component are concentrated in the low frequency region. Here, the low frequency component refers to a component with a long wavelength of change in magnetic field distribution with respect to the X axis. The opposite is true for high frequency components.

よって、第2図の磁場分布からノイズ成分を除去するに
は、第3図の周波数分布のデータから低周波成分を除去
して(ゼロにして) 1.D、F、T、すればよいこと
がわかる、これは一種のフィルターを通すことに相当す
る。 1.D、F、T、は次式で与えられる。
Therefore, in order to remove the noise component from the magnetic field distribution in FIG. 2, remove the low frequency component from the frequency distribution data in FIG. 3 (make it zero).1. It turns out that all you have to do is D, F, T. This is equivalent to passing it through a kind of filter. 1. D, F, and T are given by the following equations.

記号は(1)式のそれと同じ このようにして得られた磁場分布を図にしたものが、第
5図である。第5図では、第2図に比べてノイズ成分が
大幅に減少していることがわかる。
The symbols are the same as those in equation (1). FIG. 5 is a diagram of the magnetic field distribution obtained in this way. In FIG. 5, it can be seen that the noise component is significantly reduced compared to FIG. 2.

この傾向は特に(b) 、 (c)に著しく表われてい
る。このようにすると、第5図からは磁場変化の大きい
箇所9〜13をみることによって容易に継手部の位置(
9,12,13)や枝管部の位置(1o、ii)を検出
することができる。
This tendency is particularly noticeable in (b) and (c). In this way, from FIG. 5, the position of the joint (
9, 12, 13) and the position of the branch pipe (1o, ii) can be detected.

以上述べた例では、ガス管の磁場分布の低周波成分を除
去したが、管の種類、埋没年数、使用環境、その他種々
の条件の違いによって磁場分布に及ばずノイズも種々異
なることが考えられる。本ヒ 発明の要旨するところは、ノイズによる磁場変化と、継
手部や枝管部等による磁場変化の構成周波数の差によっ
てノイズを除去することであるから、ノイズの構成周波
数が、高周波であれば、高周波成分を除去すればよい。
In the example described above, the low frequency component of the magnetic field distribution of the gas pipe was removed, but the magnetic field distribution and the noise may vary depending on the type of pipe, the age of burial, the usage environment, and various other conditions. . The gist of the present invention is to remove noise by the difference in the constituent frequencies of magnetic field changes caused by noise and magnetic field changes caused by joints, branch pipes, etc. Therefore, if the constituent frequency of the noise is high frequency, , high frequency components may be removed.

すなわち検出したい対象のサンプルをまず測定し、ノイ
ズの構成周波数成分を調べた上で測定のデータから、ノ
イズに相当する周波数成分を除去することによって検出
可能な対象の範囲を大幅に広げることができる。また前
述の例では管内磁場による検出を通して本発明の有用性
を述べたが、たとえば地中に埋まっている管を地表から
測定する場合等にも適用できる。
In other words, by first measuring a sample of the target to be detected, examining the frequency components that make up the noise, and then removing the frequency components corresponding to the noise from the measurement data, the range of detectable targets can be greatly expanded. . Further, in the above example, the usefulness of the present invention was described through detection using a magnetic field inside a pipe, but it can also be applied, for example, to the case where a pipe buried underground is measured from the ground surface.

本発明を用いることによって従来の方法ではノイズのた
めに誤検出が多かったり、検出不可能であった検出対象
に対する高精度の検出が可能となシ、ひいては地中埋没
等の保守管理を容易に行うことができる効果を有するも
のである。
By using the present invention, it is possible to detect objects with high precision that were undetectable or cause many false detections due to noise with conventional methods, and also facilitate the maintenance and management of objects buried underground. It has the effect that it can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するために、測定サンプルに用い
たガス管を示すもので、(a)は正面図、(b)は側面
図、第2図(a)〜(C)は第1図に示すガス管内の軸
方向の磁場分布図、第3図(a)〜(c)は第2図に示
した磁場分布をり、F、T、 した周波数分布図、第4
図(b) 、 ((りは第2図(b) 、 (e)の後
半部に生ずるノイズ成分のみをり、F、T、 t、た周
波数分布図、第5図(a)〜(e)はノイズを除去した
後の磁場分布図である。 1・・・継手部、2,3−・・枝管部 特許出願人 日本電気株式会社 尾3区 u tu rハノ ス公りトノV 毘4図 ス公りトル スペクトル 手続補正書輸発) 特許庁長官 殿 1、事件の表示 昭和58年 特許 願第172546
号2、発明の名称 鉄管の検査処理方法 3、補正をする者 事件との関係 出 願 人 東京都港区芝五丁1」33番1号 (423) 日本電気株式会社 代表者 関本忠弘 4、代理人 〒108 東京gl!港区芝五丁目37番8号 住人三
田ビル5、 補正の対象 図 面 6、 補正の内容 1)本願添付図面の第5図を別紙図面のよう忙補正する
Fig. 1 shows a gas pipe used as a measurement sample to explain the present invention, (a) is a front view, (b) is a side view, and Figs. 2 (a) to (C) are gas pipes. The axial magnetic field distribution diagram in the gas pipe shown in Figure 1, Figures 3 (a) to (c) are frequency distribution diagrams with F, T, and F, T, respectively, based on the magnetic field distribution shown in Figure 2.
Figures (b) and (((re) are frequency distribution diagrams of F, T, t, and Figures 5 (a) to (e), excluding only the noise components that occur in the latter half of Figures 2 (b) and (e). ) is a magnetic field distribution diagram after noise has been removed. 1... Joint part, 2, 3-... Branch pipe part Patent applicant Figure 4 (Import of Amended Document for Spectrum Procedures) Director General of the Patent Office 1, Indication of Case 1982 Patent Application No. 172546
No. 2, Title of the invention Inspection and processing method for iron pipes 3, Relationship with the case of the person making the amendment Applicant No. 33-1 (423) Shiba Go-cho 1, Minato-ku, Tokyo NEC Corporation Representative Tadahiro Sekimoto 4; Agent 〒108 Tokyo GL! Resident Mita Building 5, 37-8 Shiba 5-chome, Minato-ku, Drawing subject to amendment 6, Contents of amendment 1) Figure 5 of the drawings attached to this application will be amended as shown in the attached drawing.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄管の静磁場分布を測定し、その磁場分布のデー
タについての周波数分析を離散フーリエ変換で行ない、
離散フーリエ変換によって得られた周波数分布データに
基づいてノイズ成分の構成周波数の集中領域を判定し、
ノイズ成分の集中領域の周波数成分を除去して、前記周
波数分布データの逆離散フーリエ変換を行うことを特徴
とする鉄管の検査処理方法。
(1) Measure the static magnetic field distribution of the iron pipe, perform frequency analysis on the magnetic field distribution data using discrete Fourier transform,
Determine the concentration region of the constituent frequencies of the noise component based on the frequency distribution data obtained by discrete Fourier transform,
A method for inspecting iron pipes, comprising removing frequency components in areas where noise components are concentrated and performing inverse discrete Fourier transform on the frequency distribution data.
JP17254683A 1983-09-19 1983-09-19 Inspection processing method of iron pipe Pending JPS6064247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17254683A JPS6064247A (en) 1983-09-19 1983-09-19 Inspection processing method of iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17254683A JPS6064247A (en) 1983-09-19 1983-09-19 Inspection processing method of iron pipe

Publications (1)

Publication Number Publication Date
JPS6064247A true JPS6064247A (en) 1985-04-12

Family

ID=15943881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17254683A Pending JPS6064247A (en) 1983-09-19 1983-09-19 Inspection processing method of iron pipe

Country Status (1)

Country Link
JP (1) JPS6064247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052550A1 (en) * 2005-10-31 2007-05-10 Sumitomo Metal Industries, Ltd. Method for measuring s/n ratio in eddy current scratch on inner surface of tube
JP2020059602A (en) * 2018-10-09 2020-04-16 フジテック株式会社 Elevator rope diagnosis system and diagnosis method
JP2020059601A (en) * 2018-10-09 2020-04-16 フジテック株式会社 Elevator rope diagnosis system and diagnosis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052550A1 (en) * 2005-10-31 2007-05-10 Sumitomo Metal Industries, Ltd. Method for measuring s/n ratio in eddy current scratch on inner surface of tube
JP2007121193A (en) * 2005-10-31 2007-05-17 Sumitomo Metal Ind Ltd Method of measuring s/n ratio in eddy current examination on tube inner face
JP4697593B2 (en) * 2005-10-31 2011-06-08 住友金属工業株式会社 S / N ratio measurement method for eddy current flaw detection on the inner surface of a tube
US8027796B2 (en) 2005-10-31 2011-09-27 Sumitomo Metal Industries, Ltd. S/N ratio measuring method in eddy current testing on internal surface of pipe or tube
JP2020059602A (en) * 2018-10-09 2020-04-16 フジテック株式会社 Elevator rope diagnosis system and diagnosis method
JP2020059601A (en) * 2018-10-09 2020-04-16 フジテック株式会社 Elevator rope diagnosis system and diagnosis method

Similar Documents

Publication Publication Date Title
Coramik et al. Discontinuity inspection in pipelines: A comparison review
US5623203A (en) Remote field flaw sensor including an energizing coil, first and second receiving coil groups oriented perpendicular and a third receiving coil oriented parallel to pipe
WO2017008621A1 (en) Micro-magnetic detection method and device
US7565252B2 (en) Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison
RU2697008C1 (en) Method for in-pipe diagnostics of pipeline technical state
Jarvis et al. Performance evaluation of a magnetic field measurement NDE technique using a model assisted Probability of Detection framework
CN104833720A (en) Method for single-coil electromagnetic resonance detection of metal pipeline damage
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
JPH05240841A (en) Apparatus for simulating electromagnetic field in pipe
JPS6064247A (en) Inspection processing method of iron pipe
JPS58218644A (en) Method and apparatus for testing surface flaw of metallic material
RU2587695C1 (en) Magnetic flaw detector for detecting defects in welds
CN211206377U (en) Sensitivity calibration sample tube for detecting defects of non-ferromagnetic heat exchanger tube bundle
RU2700715C1 (en) Nondestructive inspection method of pipelines and device for its implementation
RU2741177C1 (en) Method of detection of unauthorized tie-ins to underground pipeline
JPS60125560A (en) Method for inspecting metal surface
RU2229707C1 (en) Method of magnetic inspection of pipe-lines
CN211553856U (en) Ring type eddy current testing probe
JPS6345555A (en) Inspection method for pitting corrosion of steel tube
RU2095804C1 (en) Device for magnetic flaw detection
TW569513B (en) Method for tube thickness measurement by remote field eddy current testing and method for reconstructing the defect-depth evaluation curve in remote field eddy current testing
Lindsey et al. Short-range guided wave testing for corrosion under pipe supports
JP3932282B2 (en) Corrosion protection coating damage detection device for buried piping
Reber Eddy current testing in pipeline inspection
JPS59119260A (en) Method and apparatus for diagnosing metal