JPS6063346A - High strength aluminum alloy plate for printing plate - Google Patents

High strength aluminum alloy plate for printing plate

Info

Publication number
JPS6063346A
JPS6063346A JP17080283A JP17080283A JPS6063346A JP S6063346 A JPS6063346 A JP S6063346A JP 17080283 A JP17080283 A JP 17080283A JP 17080283 A JP17080283 A JP 17080283A JP S6063346 A JPS6063346 A JP S6063346A
Authority
JP
Japan
Prior art keywords
plate
aluminum alloy
thickness
printing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17080283A
Other languages
Japanese (ja)
Other versions
JPH0413417B2 (en
Inventor
Shigeki Shimizu
茂樹 清水
Masayuki Onose
小野瀬 優幸
Yoshiyuki Shirosaka
欣幸 城阪
Hideyoshi Usui
碓井 栄喜
Masahiro Kawaguchi
雅弘 川口
Kozo Hoshino
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical Kobe Steel Ltd
Priority to JP17080283A priority Critical patent/JPS6063346A/en
Publication of JPS6063346A publication Critical patent/JPS6063346A/en
Publication of JPH0413417B2 publication Critical patent/JPH0413417B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength Al alloy plate for a printing plate having improved handleability and electrolytically roughening characteristics by specifying the thickness and grain size of an Al-Mg-Fe alloy having a specified composition after cold rolling into a plate. CONSTITUTION:An Al alloy consisting of 1-6wt% Mg, 0.05-1.5wt% Fe and the balance Al with impurities is cold rolled into a plate of 0.05-0.3omega thickness so that the average width of the grains is adjusted to <=35mum. To the alloy may be added 0.1-0.7% Mn and 0.05-1% Cu. The grain size is adjusted by selecting conditions in cold rolling stages which are carried out while interposing a process annealing stage. The resulting Al alloy plate for a printing plate has superior etchability, high strength and superior handleability, so the thickness can be reduced without deteriorating the printing performance and printing resistance.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は印刷版用高強度アルミニウム合金板に関し、さ
らに詳しくは、オフセント印刷に用いられる98版の支
持体として、高強度化により取扱い性を向上し薄肉化が
可能であり、電解第11面化における均一性の優れた表
面が得られる印刷版用高強度アルミニウム合金板に関す
る。 従来オフセット印刷用アルミニ、・シム板として(幾械
的粗面化法に対してはA1050、Al2O2、A 3
003に相当するものが用いられ、電解粗面化法に則し
ては電11イ柑而化のし易さの点からl\H)50相当
ヰAが用いられている。しかしながら、純アルミニウl
、板を薄肉化すると取扱いの時の「折れ羽ベコ]、印刷
時の「版の伸び」の問題か発生し易く、さらに、バーニ
ング処理(通常200〜300°Cの温度で3へ・10
分間)を行なった時にこれらの問題か11ニドとなる。 また、電解劇り面化特性の良好であるノ\105(l相
8i′14’Aでは冷間圧延により強度上y1をしても
耐力(0,2%耐力、以下単に而(力という)はぜいぜ
い]’5に、/11111”程度にしかならないため、
特に大面積の版の場合には、板厚0.24huo以」二
の印刷版支持体でなければ上記の問題か発生し易く印刷
版とし′この使用に難点かあった。 しh化、近年型11イ粗面化支持体の薄肉化の要望が高
まり、その結果、収扱い性に陵れ、がっ、電111(粗
面化特性が良好である薄肉アルミニウム板の開発か望ま
れていた。 このような要求に月応して先ず取扱い性につき、特にハ
ンドリング時の「折れ」に注目し、アルミニウム板の板
厚と耐力との関係について究明した。 そして、]折れ」の評価に当ってはf:51図に示す評
価法か最適であり、この評価法は幅15i11nのアル
ミニウム板の一端を水平に固定し、固定端より100m
+nの先端部に荷重を負荷上除荷した時の「折れ」が観
察される最低荷重をめるのである。この評価法において
、「折れ」の生しる最低前f!(’vV[gl)と耐力
(σo、2fKg/nun’])および板厚(L[+t
u111)の関係をめると、 \■無0.6×σハ×ll、9 となり、A1050材)′の0.24m+n厚と同等以
上の性能を有する耐カー板厚領域は第2図の斜線部Xと
なる。即ち、l〜1050祠、0.24m口1厚を比較
とした場合、 板厚がO,]、5b++nであれば耐力22 K g 
/ 「1+ m2以」二板厚かO,12+nmであれば
耐力26Kg/mm”以」二板厚が0.lom+nであ
れは′耐力30Kg/mm”以」二板厚が0.08m+
nであればi(力35 K gl 111111”以上
あれば同等の耐「折れ」性能が得られることは明らかで
ある。この評価結果の如く、薄肉化を行なっても取扱い
性の低下しない強度値を究明上さらに、強度向−にのた
めの含有元素として基本的にMH’(選択し、がっ、こ
の系において電解粗面化・1つの1変れた印刷版用素材
状態を究明した。 従来、交流電解粗面化の際には素4t4として純アルミ
ニウドか用いられていたか、強度、取扱い性に問題かあ
り、強度向上のため種々の元素を含有させることか検3
]されており、特に、M8は共晶化合物・析出物の分布
状況を変えることなくか少なく、また、アルミニウム素
4・4の電気化学的性質におよぼす影響も少ないため、
例えば、特公昭58−006635号公報、1、テ開昭
55− (128874号公報等にみられるように、0
.4・〜0,5+uL%程度の少量を含有させることは
既に試みられていた。しカル、この含有量を越える量の
含有は電解粗面化の状況に影響を与えるので行なわれな
かった。 しh化ながら、本発明者はM8を1III1%以上、望
ましくは2…1%以」二含有させることにより、均一微
細で印刷版用に非常に適した電f’+!(8ル而が1i
〕られるという事実を見出したことと、 一般に使用さ
れているAl−Mg合金において、冷間圧延中の発熱・
圧延後の安定化処理時にAI−N旬、A1−Mg−Cu
系析出物が析出し、かつ、この析出物は冷間圧延前の焼
鈍時の結晶粒界にある程度1憂先的に生じること、さら
に、これら析出物は層状腐蝕等の核となり易いという良
く知られている事実から、共晶化合物分布および上記析
出物分布を適宜にすることにより印刷版として適当な電
解粗面か得られると考え、適正な素材状態について研究
を進めた結果本発明を完成したのである。 本発明に系る印刷版用高強度アルミニウム合金板は、(
1)Mg1−6u+L%、Fe O,05−1,5Ll
lL%を含有し、残部不純物およびA1よりなるアルミ
ニウム合金の冷開圧延後の板厚が0.05〜0.3m+
nであり、かつ、その板厚における結晶粒の幅の平均が
35μIl+以下であることを特徴とする電解粗面化処
理される印刷版用高強度アルミニウム合金板を第1の発
明とし、(2)Mg ]、−66社%Fe O,05−
1,5iuL%、MnO,1〜0.71%を含有し、残
部不純物およびAIよりなるアルミニウム合金の冷開圧
延後の板厚が0.05〜0.3+nmであり、かつ、そ
の板厚における結晶粒の幅の平均が35μI11以下で
あることを特徴とする電解粗面化処理される印刷服用高
強度アルミニウム合金板を第2の発明とし、(3)MH
I−6wL%、Fe O,05−]、5uL%、Cu 
O,05−1u+1%を含有し、残部不純物およびA1
よりなるアルミニウム合金の冷間圧延後の板厚が(1,
05・〜(頴(m Inであり、かつ、その板厚におけ
る結晶粒の幅の平均が35μm0以下であることを特徴
とする印刷IUi用高用度強度アルミニウム合金板3の
発明とし、(4)Mg ]−66wt%Fe O,05
−]、5+u1%、C110,05〜11%、h4no
、1〜0.7LI11%を含有し、残部不純物およびA
1よりなるアルミニラl、合金の冷間圧延後の板厚が0
.05〜O,:(+11mであり、かつ、その板厚にお
ける結晶粒の幅の平均が135μm11以ト”であるこ
とを特徴とする印刷版用高強度アルミニウム合金板を第
4の発明とする4つの発明よりなるものである。 本発明に係る印刷版用高強度アルミニウム合金板につい
て以下詳細に説明する。 先ず、印刷版用高強度アルミニウム合金板の含有成分お
よび成分割合について説明する。 へ旬は電解粗面化面の均一微細化、強度向上、取扱い性
の向」二のために含有させる元素で゛あり、含有量が1
u+j、%未満では上記説明の析出物が不足することか
ら電解粗面が不均一となると共に、薄肉化に必要な強度
力翳られず、また、6畝%を越える含有量では鋳造時に
M2Cか形成され易く、圧延板の粗面時に線状の欠陥が
発生し易くなる。 よって、M、含有量は1〜61%とする。しめ化で、電
解粗面の一層の均一化および充分な強度をイ1するため
には2田L%以上とするのが望ましい。 Feは再結晶の微細化、取扱い性の向上のためと電解粗
面化面の均一化のために含有させる元素であり、Feは
アルミニウム合金中で他の元素と結びつ%、Al−Fe
系の共晶化合物を形成する元素であり、Al−Fe系の
共晶化合物は再結晶粒の微細化に効果があると共に、そ
の粒界に優先析出するAt−M、系およびAlMg−C
u系析出物の存在と相俟って均一微細な電解第1[面を
形成する効果があり、含有量か0.05+uL%未満で
は再結晶粒の微細化、電解ネ■面化面の均一微細効果が
少なく、また、1.51%を越える含有量では粗大化合
物の形成により逆に電解粗面化面が不均一となる。よっ
て、Fe含有量は0.05−1,5u+j%とする。 C1は電解第1L面化によるエツチング効果を高くする
ため、および、強度向上のために有効な元素であり、含
有量が0.’(15u+L%未満ではこのような効果が
少なく、また、1田11%を越える含有■で1.1−電
解粗面化時の溶解が過剰となり好ましくない。 よって、CLI含有量は0.05〜1v+t%とする。 M ITはFeと略同様な効果を有する元素で、丙紀。 品粒の微細化、取扱い性の向上、電解粗面化面の均一化
のためには、上記Fe含有量のアルミニウム合金にMn
含有量がO,1u+j%未114ではこれらの効果が少
なく、また、0.711It%を越える含有量ではAI
−’Fe−Mu系の共晶化番物がオJ[大化し電15f
1111面化面が不均一になり易くなる。よって、Mn
含有量は0.1〜Q、”u+t%とする。 上記含有成分以外に鋳塊組織を微細化するためTiを含
有させてもよいが、TI金含有より)\1−Ti粒子お
よび/またはi’ i −B粒子の凝集を生し易く、電
解粗面化処理により不均一なネ■面になり易いので、T
1含有量は0.05+IIt%以下とするのがよい。 また、不純物については、通常市販の工業用純アルミニ
ウムに含有される程度の範囲であれば差支えはないが、
Slは0.5+uL%を越えると電解粗面化処理により
エツチング部が出現し易い傾向を示すので0.5…t%
以下とする。 次に、本発明に係る印刷服用高強度アルミニウム合金板
の製造法を簡単に説明すると、上記のア“ルミニウム合
金溶湯を通常の方法によりダj造し、熱間圧延し、冷間
圧延、中間焼鈍、冷間圧延を行ない0.05〜0.3m
n+厚の板とする。電解粗面化面の微細化のためには中
間焼鈍時の再結晶粒が35μm0以下の微細とすること
が必要であり、この中間焼鈍までの冷間圧延は30%以
上バし、また、望ましくは、26μm1以下の微細粒と
するのが好ましく、この場合には50%以上の冷間圧延
率とする。そして、この中間焼鈍は徐熱・徐冷方式、急
熱・急冷方式の何れの方式でも実質的に問題はないか、
再結晶粒の微細化のためには急熱・急冷方式か好ましい
。なお、焼鈍条件は再結晶するのに光分な温度、例えば
、300’(::以上であれば問題はない。 この中間焼鈍後、20%以上の冷間圧延率で最終冷間圧
延を行ない22KH/+llm2以上に強度を調整し、
冷開圧延率か20%未満では必要な強瓜が得られず、か
つ、圧延板の歪か良好となり叉11<支持本として充分
な平担さが11トられにくい。なお、−1−6記の薄板
の冷間圧延において、4・(料自体の変形時の発熱によ
り、コイルか冷却されるまでに充分な1.jのAl−M
gまたは〕\1−八旬へCu系化合物の411出がある
ため、最終調質はHlll、l−I211、IIJll
の阿れでもよいが、上記析出物を最も有効に1史うため
にはH,nか好ましい。 このようにしてイ9−られなアルミニウム合金板に電解
粗面化処理を施すのであるか、しカル、アルミニウム合
金板の表面は油脂、鎖、フミ等で汚染されているので、
電解粗面化に先立ちアルミニウム合金板を常法に従って
脱脂、洗浄をすることか望ましく、例えば、トリクレン
、シンナー餘による溶剤脱脂、ケロシンとトリエタノー
ルアミン笠1こよるエマルション脱脂、濃度1〜10%
の苛性ソーダ溶液に20〜70℃の温度に5秒〜10分
間浸漬して脱脂のみでは除去できない汚れ、自然酸化皮
膜を除去上次いで、濃度10〜20%の硝酸または硫酸
水溶液に10〜50°Cの温度に5秒〜5分間浸漬し、
アルカリエツチング後の中和およびスマットの除去を行
なう方法等か挙げられる。、この処理後に電1官粗面化
処理を行なうのであるか、電解エツチングは塩酸または
硝酸溶液中で行なうものであり、塩酸溶液を使用[る場
合の濃度は、0.3〜3田L%、好ましくは0.5〜2
u+1%の範囲が好適である。また、硝酸溶液を使用す
る場合の濃度は、0.5〜5u+L%、好ましくは、1
〜3+uL%が好適である。そして、この電解液に腐蝕
抑制剤または安定剤として、塩化アンモニウム、塩化ナ
トリウム等の塩化物、硝酸アンモニラ11、硝酸す1リ
ウム等の硝酸塩、トリメチルアミン、シエタノールアミ
ン、エチレンジアミン、ヘキサメナレンノアミン等のア
ミン類やホルムアルデヒド等のアルデヒド類並びに燐酸
、クロム酸、スルホサリチル酸等を0.05〜3田L%
含有させることができる。 電解、処理条件は、使用する電解液やlil’i ;!
!の電)5イiL面化の程度により変化するので、−・
概には決定することはできないが、一般的には、温度は
10〜40℃、好ましくは20〜30℃で、電流密度(
交流)(土20−2(10A / den2、好ましく
は、50・i!50A/llb+”で、時間は2〜12
0秒で行なわれる。 このような電11イ液を使用して電MJIY面化処理を
行なう際使バjする交流電流は、正負の極性を交互に交
換させて利られる波形の矩形波、台形波等の交流波形電
流をも含むが、通常の商業用交流、即ち、正弦波の単相
交流および三、111交>A:で光分である。 このように、電M 811面化されたアルミニウム合金
板は引き続き、水洗後、デスマット処理されるが、その
条件は、常法に従って、室温〜80゛Cのアルカリまた
は酸の水溶液に5秒〜5分間浸漬することによりデスマ
ットする。 そして、得られた電解粗面化板に印刷版用支持体に供す
るに当り、常法に従って、陽極酸化処理を施してもよく
、具体的には、硫酸または燐酸等の濃度10〜50u+
L%の水溶液で、電流密度1〜10A/dm2で電解す
ることにより行なわれる。この陽極酸化後に、必要に応
して熱水、硅酸塩、重クロム酸塩、酢酸塩、親水性高分
子化合物等で11孔または親水化処理を施してもよい。 このようにして得られたアルミニウム合金板に適用され
る感光性物質は、特に限定されるものではなく、良く知
られている種々のちのを使用することかでb、例えば、
親水性ポリマーとノアゾニウム塩からなる組成物、キ7
ンジアンド化合物とアリカリ可溶成樹脂との組成物、活
性光線の照射により三量化を起す不飽和カルボン酸、例
えば、桂皮酸、フェニレンジアクリル酸をその(1゛す
酸成分とするポリマー、活性光線の照射により重合反応
を起す化合物とバインダーポリマーとの組成物、アジド
系感光性糾成物か挙げられる。 これら感光性物質は種/4の良く知られている添加剤と
共に適当な溶媒に溶解腰−1−記紹られた本発明に係る
印刷服用高強度アルミニウム合金板に塗布し、(・と燥
すれば感光性平版印刷版が製造される。この感光性平版
印刷版に被複写物を重ねて常法
The present invention relates to a high-strength aluminum alloy plate for printing plates, and more specifically, it can be used as a support for 98 plates used in off-cent printing. The present invention relates to a high-strength aluminum alloy plate for printing plates that provides a surface with excellent uniformity. Conventional aluminum for offset printing, as a shim plate (A1050, Al2O2, A3 for geometric roughening method)
003 is used, and in accordance with the electrolytic surface roughening method, 1\H)50 equivalent A is used from the viewpoint of ease of conversion. However, pure aluminum
When the plate is made thinner, problems such as folding during handling and elongation of the plate during printing are likely to occur.Furthermore, burning treatment (usually at a temperature of 200 to 300°C to 3 or 10
These problems will result in 11 nids when you do this for 1 minute). In addition, it has good electrolytic flattening properties (for l-phase 8i'14'A, even if the strength is increased by y1 due to cold rolling, the yield strength is 0.2% yield strength, hereinafter simply referred to as "force"). [at most] '5, /11111'', so
Particularly in the case of large-area plates, the above-mentioned problems tend to occur unless the printing plate support has a plate thickness of 0.24 mm or more, and this poses a problem when used as a printing plate. In recent years, there has been an increasing demand for thinner type 11 roughened supports, and as a result, handling has become difficult. In response to these demands, we first focused on ease of handling, paying particular attention to "bending" during handling, and investigating the relationship between the thickness and yield strength of aluminum plates. For evaluation, the evaluation method shown in Fig. f:51 is most suitable.This evaluation method involves fixing one end of an aluminum plate with a width of 15i11n horizontally, and placing it 100m from the fixed end.
The minimum load at which "bending" is observed when the load is applied and unloaded is placed at the tip of +n. In this evaluation method, the lowest f! ('vV[gl) and proof stress (σo, 2fKg/nun']) and plate thickness (L[+t
Considering the relationship of u111), we get \■No. This is the shaded area X. In other words, when comparing l~1050 korean and 0.24 m mouth 1 thickness, if the plate thickness is O,], 5b++n, the yield strength is 22 Kg.
/ If the thickness is 1+ m2 or more, the thickness of the two plates is 0. If the thickness is 12+ nm, the yield strength is 26 kg/mm or more. lom+n, the proof stress is 30Kg/mm or more, and the thickness of the two plates is 0.08m+
It is clear that if n is equal to or greater than i (force 35 K gl 111111"), the same "breakage" resistance performance can be obtained. As shown in this evaluation result, the strength value does not deteriorate handleability even if the wall is made thinner. In addition, we basically selected MH'(MH') as the contained element for strength, and in this system, we investigated electrolytic surface roughening and one unique condition of the printing plate material. Conventional During AC electrolysis surface roughening, pure aluminum was used as the element 4T4, and there were problems with strength and handling, so it was investigated whether various elements were added to improve the strength.
] In particular, M8 does not change the distribution of eutectic compounds and precipitates and has a small effect on the electrochemical properties of aluminum elements 4 and 4, so
For example, as seen in Japanese Patent Publication No. 58-006635, 1, Te Kaisho 55- (128874), etc.
.. Attempts have already been made to include small amounts of about 4.0.5+uL%. However, inclusion of more than this content was not carried out because it would affect the electrolytic surface roughening situation. However, by containing M8 at least 1%, preferably at least 2...1%, the present inventor has created an electric f'+! which is uniformly fine and very suitable for printing plates. (8ru but 1i
] and that in commonly used Al-Mg alloys, heat generation and
AI-N, A1-Mg-Cu during stabilization treatment after rolling
It is well known that system precipitates precipitate, and that these precipitates occur to some extent at grain boundaries during annealing before cold rolling, and that these precipitates tend to become the nucleus of layer corrosion. Based on this fact, we believed that by adjusting the eutectic compound distribution and the above-mentioned precipitate distribution appropriately, we could obtain an electrolytically rough surface suitable for printing plates, and as a result of conducting research on the appropriate material condition, we completed the present invention. It is. The high-strength aluminum alloy plate for printing plates according to the present invention is (
1) Mg1-6u+L%, FeO,05-1,5Ll
The thickness of the aluminum alloy after cold-open rolling is 0.05 to 0.3 m+
A first invention provides a high-strength aluminum alloy plate for printing plates subjected to electrolytic roughening treatment, characterized in that the average width of crystal grains in the plate thickness is 35μIl+ or less, )Mg], -66%FeO,05-
An aluminum alloy containing 1.5 iuL%, MnO, 1 to 0.71%, and the remainder consisting of impurities and AI has a plate thickness of 0.05 to 0.3+nm after cold-open rolling, and A second invention provides a high-strength aluminum alloy plate for printing which is subjected to electrolytic roughening treatment, characterized in that the average width of crystal grains is 35 μI11 or less, (3) MH
I-6wL%, FeO,05-], 5uL%, Cu
Contains O,05-1u+1%, remaining impurities and A1
The thickness of the aluminum alloy after cold rolling is (1,
05. Invention of a high-strength aluminum alloy plate 3 for printing IUi, characterized in that the average width of crystal grains in the plate thickness is 35 μm or less, and (4 )Mg]-66wt%FeO,05
-], 5+u1%, C110, 05-11%, h4no
, 1-0.7 LI 11%, the remainder impurities and A
Aluminum laminated from 1, the plate thickness after cold rolling of the alloy is 0
.. A fourth invention is a high-strength aluminum alloy plate for printing plates, which is +11 m and has an average grain width of 135 μm or more in the plate thickness. The high-strength aluminum alloy plate for printing plates according to the present invention will be explained in detail below. First, the components and component ratios of the high-strength aluminum alloy plate for printing plates will be explained. It is an element that is included to uniformly refine the electrolytically roughened surface, improve strength, and improve handling properties, and the content is 1.
If the content is less than 6%, the electrolytically roughened surface will be non-uniform due to the lack of precipitates as described above, and the strength required for thinning the wall will not be maintained, and if the content exceeds 6%, M2C will not be produced during casting. Line defects are likely to occur when the surface of a rolled plate is roughened. Therefore, the M content is set to 1 to 61%. In order to make the electrolytically roughened surface more uniform and to obtain sufficient strength by tightening, it is desirable that the content be 2 L% or more. Fe is an element that is included to make recrystallization finer, to improve handleability, and to make the electrolytically roughened surface uniform.
It is an element that forms a eutectic compound of the Al-Fe system, and the Al-Fe-based eutectic compound is effective in refining recrystallized grains.
Coupled with the presence of U-based precipitates, it has the effect of forming a uniform and fine electrolytic surface, and if the content is less than 0.05+uL%, the recrystallized grains become finer and the electrolytic surface becomes uniform. The fineness effect is small, and if the content exceeds 1.51%, the electrolytically roughened surface becomes non-uniform due to the formation of coarse compounds. Therefore, the Fe content is set to 0.05-1.5u+j%. C1 is an element effective for enhancing the etching effect by electrolytic first L surface formation and for improving strength, and the content is 0. (If the content is less than 15u+L%, this effect will be small, and if the content exceeds 11%, the dissolution during 1.1-electrolytic surface roughening will be excessive, which is not preferable. Therefore, the CLI content is 0.05 ~1v+t%. MIT is an element that has almost the same effect as Fe, and is in the 1000s. In order to make the grains finer, improve handling, and make the electrolytically roughened surface uniform, the above-mentioned Fe-containing amount of Mn in aluminum alloy
These effects are small when the content is O, 1u+j% and less than 114, and when the content exceeds 0.711It%, AI
-'Fe-Mu system eutectic material is
The 1111-sided surface tends to become non-uniform. Therefore, Mn
The content is 0.1 to Q, "u+t%.In addition to the above-mentioned components, Ti may be included to refine the ingot structure, but Ti (gold content) \1-Ti particles and/or i' i - B particles tend to aggregate, and electrolytic surface roughening treatment tends to result in an uneven surface.
1 content is preferably 0.05+IIt% or less. In addition, there is no problem with impurities as long as they are within the range normally found in commercially available industrial pure aluminum.
If Sl exceeds 0.5+uL%, etched areas tend to appear due to electrolytic surface roughening treatment, so 0.5...t%
The following shall apply. Next, to briefly explain the manufacturing method of the high-strength aluminum alloy plate for printing according to the present invention, the above-mentioned molten aluminum alloy is formed into a die by a normal method, hot rolled, cold rolled, intermediate 0.05-0.3m by annealing and cold rolling
The plate is n+thick. In order to make the electrolytically grained surface finer, it is necessary that the recrystallized grains during intermediate annealing be as fine as 35 μm or less, and it is desirable that the cold rolling up to this intermediate annealing should be carried out by at least 30%. It is preferable that the grains are fine grains of 26 μm or less, and in this case, the cold rolling rate is 50% or more. Also, is there any practical problem with this intermediate annealing, whether it is a slow heating/slow cooling method or a rapid heating/quenching method?
In order to refine the recrystallized grains, a rapid heating/quenching method is preferable. Note that there is no problem as long as the annealing conditions are at a temperature sufficient for recrystallization, for example, 300' (::) or above. After this intermediate annealing, final cold rolling is performed at a cold rolling rate of 20% or more. Adjust the intensity to 22KH/+llm2 or more,
If the cold-opening rolling ratio is less than 20%, the required strength cannot be obtained, and the rolled plate will not be sufficiently distorted, and it will be difficult to obtain sufficient flatness as a supporting book. In addition, in the cold rolling of the thin plate described in -1-6, 4.
g or]\1-Since there is a Cu-based compound 411 in H1ll, the final tempering is Hllll, l-I211, IIJll.
However, in order to most effectively remove the precipitate, H or n is preferable. In this way, the electrolytic surface roughening treatment is applied to the aluminum alloy plate, which has a rough texture, because the surface of the aluminum alloy plate is contaminated with oils, fats, chains, dirt, etc.
Prior to electrolytic surface roughening, it is preferable to degrease and wash the aluminum alloy plate according to conventional methods, such as solvent degreasing using trichloride and thinner, emulsion degreasing using kerosene and triethanolamine, and concentration 1 to 10%.
Immerse in a caustic soda solution at a temperature of 20 to 70°C for 5 seconds to 10 minutes to remove dirt and natural oxide film that cannot be removed by degreasing alone. Immerse for 5 seconds to 5 minutes at a temperature of
Examples include a method of neutralizing and removing smut after alkali etching. Electrolytic etching is carried out in a hydrochloric acid or nitric acid solution, and if a hydrochloric acid solution is used, the concentration is 0.3 to 3% L%. , preferably 0.5-2
A range of u+1% is preferred. In addition, when using a nitric acid solution, the concentration is 0.5 to 5u+L%, preferably 1
~3+uL% is preferred. In this electrolytic solution, corrosion inhibitors or stabilizers such as chlorides such as ammonium chloride and sodium chloride, nitrates such as ammonium 11 nitrate and 1 lithium nitrate, trimethylamine, diethanolamine, ethylenediamine, hexamenalennoamine, etc. 0.05 to 3% of amines, aldehydes such as formaldehyde, phosphoric acid, chromic acid, sulfosalicylic acid, etc.
It can be included. Electrolysis and treatment conditions depend on the electrolyte used and lil'i ;!
! Since it changes depending on the degree of L surfaceization, -・
Although it cannot be determined in general terms, the temperature is generally between 10 and 40°C, preferably between 20 and 30°C, and the current density (
AC) (Sat 20-2 (10A/den2, preferably 50・i!50A/llb+", time is 2-12
It takes 0 seconds. The alternating current used when performing the electric MJIY surface processing using such an electric liquid is an alternating current waveform current with a waveform such as a rectangular wave or a trapezoidal wave, which is used by alternating the positive and negative polarities. It also includes ordinary commercial alternating current, ie, sinusoidal single-phase alternating current and 3,111 alternating current>A: light minutes. In this way, the aluminum alloy plate with the M811 surface is subsequently washed with water and then desmutted. Desmat by soaking for minutes. Then, when the electrolytically grained plate obtained is used as a support for a printing plate, it may be anodized according to a conventional method.
It is carried out by electrolyzing an aqueous solution of L% at a current density of 1 to 10 A/dm2. After this anodization, 11-hole or hydrophilic treatment may be performed using hot water, silicate, dichromate, acetate, hydrophilic polymer compound, etc., if necessary. The photosensitive material applied to the aluminum alloy plate obtained in this way is not particularly limited, and various well-known materials may be used, for example,
Composition consisting of hydrophilic polymer and noazonium salt, Ki7
Compositions of a diandic compound and an alkali-soluble resin, unsaturated carboxylic acids that trimerize when irradiated with actinic rays, such as cinnamic acid and phenylene diacrylic acid as their (1) acid component, actinic rays. Examples include compositions of a binder polymer and a compound that causes a polymerization reaction when irradiated with irradiation, and azide-based photosensitive composites. -1- A photosensitive lithographic printing plate is produced by applying the coating to the high strength aluminum alloy plate for printing according to the present invention and drying it. common law

【こ従って露光、現像す
れば親水性および保水1トLに優れ、かつ、(き光性物
質からなる画像部とアルミニウム合金板との接着性か極
めて強固で偵・1刷〕Jニ優れた印刷版を1υることか
でδる。 本発明に係る印刷服用高強度アルミニウム・合金板は、
エツチング性が限れており、強度か高く取扱い性に曖j
t、従って、従来のA11.0(1、Al050等の純
アルミニウム板では不(げ能であった薄肉化が、印刷性
や耐刷性を4flなうことなく達成することがでトる。 本発明に係る印刷版用高強度アルミニウム合金板の実施
例を説明する。 実施例1 f51表に示す本発明に係る印刷版用高強度アルミニウ
ム合金Aについて、フィルター処理後造塊、面側し、5
10°(:X61廿均熱後熱間圧延を厚さ411111
1まで行ない、最終圧延温度は280℃であった。これ
を、0.75nooの厚さまで冷間)圧延し、昇温速度
、降温速度を共に500℃/++l ; IIとし、5
00℃X Oseeの中間焼鈍を行ない、0.1511
1111のj!Wさまで圧延したものを第2表のNo、
4とした。また、本発明合金Aを熱間圧延終了後、0.
3+t)II)の厚さよで冷間圧延し、340℃X 2
 Hrの除熱・徐冷方式の中間焼鈍後、0.111II
 Il+の厚さは圧延し、第2表のNo、2とした。な
お、このNo、1およびNo、2は共に冷間圧延後のフ
ィルアップl晶度は約80’Cで゛あった。 また、第1表のA 1050桐’ Bの0.24m+n
厚利を比較に用い(第2表のNo、3)、さらに、A1
050の0.24厚の何科を0.11+nmの厚さに圧
延し、No、2との比較に用いた(第2表のNo、4)
。 第2表から明らかなように、本発明に係る印刷版用高強
度アルミニウム合金板は、薄肉比相の取扱い性にツいて
はA1050IJの0.24+nm厚より4fj 92
しこ優れている。 次に、これらのアルミニ911合金板を以下説明する条
flで処理し、電1ζイ粗面化性お」;び印刷′1.′
l性を調査した。 1.1iij処理 アルミニウム合金板を5+lI1%苛性ソーダ水溶液中
で65°Cの?:i’を度で1分間アルカリエツチング
を行なった後水洗し、10u+1%硝酸水溶液中で25
°Cの温度で1分間中和した後水洗した。 2、電In柑面化 (1)塩酸系工/チングの場合 前処理を施したアルミニウム合金板を塩酸1.51%を
含有する電解水溶液中で、浴棉125°Cの温度におい
て、交)ズこ電流密度80 A / (1111”、処
理If、’llB120秒の条f!1で電11寵11面
化を行なった。 (2)硝酸系工・/チングの場合 前処理を施したアルミニウム合金板を硝酸2+++1%
の電1うり液中で、浴温30℃において、交流電流密度
80 A/ (1111”、処理時間20秒の柔性で電
解粗面化を行なった。 3、テ゛スマント 電解粗面化した砂目板を引き続15+u1%苛性ソーダ
溶液中で、60°Cの温度で10秒間のデスマット処理
をした後中和水洗した。 4、陽極酸化 1−12S O,系の場合;デスマン1、中和水洗した
アルミニウム合金板を、さらに、20+uL%硫酸溶液
の中で 25°Cの温度において、鉛をメ′4極とし、
電流密度6A/cb計で30秒陽極酸化を行なう。 83PO,系の場合;デスマ、)、中和水洗したアルミ
ニウム合金板をさらに、421%燐酸溶液中で25°C
のC度で鉛を月極とし、電流密度2.6A/6分間陽極
酸化処理した。 5、後処理 陽極酸化処理した後、jIS3i3′硅酸ソーダの11
%水溶液に85℃の温度において1分間浸漬し、水洗後
乾燥を行なった。 6、感光層 (1)O−キノンジアンド系感光層の場合感光液組成を
以下に示す。 ・す7)’4ノンー1,2−ン゛アン′ドー5−スルホ
ニルクロライISと−21−クレゾール・ホルムアルデ
ヒドノボラック樹脂の縮合物(縮合率25%モル)・・
・・・・ 4.り8゜ ・111−クレゾール・ホルムアルデヒド/ボラック樹
脂(住人デュレス社製) ・・・・・ 9.028・ナ
フトキ7ンノアノF−4クロライド・0.19g・ビク
トリアビューアフルーBoll(保」三谷化学製) ・
・・・・・・ o、1g8 ・エチルセロソルブ ・・・・・・・ i f、’l 
f’、l (H感光層の乾燥後の塗布量は2S11)H
/ tln’であろ、。 このようにしてイ:)られた、感光性平版印刷版IJ、
解像力チャート(ウグラー製)と感度測定用ステンプタ
7レットを密着し、メタルハライドランプを光源として
露光した。次に、これをメタ硅酸す1リウム4u+L%
水溶液により、25℃の温度で45抄開の条件で現像し
た。 (2)E)アゾニウム塩感光層の場合 感光液組成を以下に示す。 ・P−ノアジノフェニルアミンとホルムアルデヒドの縮
合物の]つF、、塩 ・・・・・ 0.42゜・P−ヒ
ドロキシフェニルメタクリルアミドとアクリロニトリル
とエチルアクリレートとメタクリル酸の共重合体 ・・
・・・・ 6.0゜・ビクトリアビューアブルーB O
H(保土谷化学製)(50%メタノール溶液)・・・・
・ 0.168・ジ゛ユリマー−AC−] (’、11
−(ポリアクリル酸、日本純薬社製) ・・・・・ 0
.18゜・メチルセロソルブ ・・・・・ 1oog感
光層の乾燥後の塗布量は191□1ε/dm”である。 このようにして得られた感光性平版印刷版に、解像力チ
ャート(ウグラー製)と感度測定用ステップタブレット
を密着し、メタルハライドランプを光源として露光した
。次に、以下に示す現像液に25°Cの温度で1分間浸
漬し、その後脱脂篩で表面を軽くこすり、未露光部を除
去した。 現像液 ・ベンジルアルコール 3011】1 ・炭酸ナトリム 5g ・亜硫酸すYリウム 5g ・イソプロピルナフタレンスルホン酸 ナトリウム 1(1B ・水 11 (3)二砒化を起す不飽和カルボン酸感光層の場合感光
!11411戊を以下に示す。 ・100モル%の1)−7エニレンノアクリル酸ジエチ
ルと100モルの1・4−ジ−β−ヒドロキシエトキシ
シクロヘキサンとの縮合で作られた感光性ポリエステル
 ・・・・−l 、 +3 、。 ・(2−ベンゾイルメチレン)−1−メチル−β−す7
トチアゾリン ・・・・+3,328 ・安り2.香酸 ・・・・0,16ε ・ハイドロキノン ・・・・0.08B・モノクロロベ
ンゼン ・・・・100.0ml・顔料(へりオーゲン
ブルーに、C,I、ピグメントブルー) ・・・・・f
) 、8 B 感光層の塗布量は14B/ (II□12である。 このようにして得られた感光性゛ド版印刷版(八;ητ
像カチャート(・ングラー製)と感度測定用ステンプタ
ブレ・7トを密着し、メタルハライドランプを光源とし
て露光した。そして、次に示す組成の現像液でぬぐって
現像した。 現像液 ・4−ブチロラクトン ・・・・・500.0+nl・
トリエタノールアミン ・・・・ 50.0ml・グリ
セロール ・・・・50.0ml・メチルアビニテート
 ・・・・・5.O+nl・水添ウンドロンン(バーキ
ュレスパウダー 社のステイベライトレジン) ・・・
・・ 0.58・湿潤剤(デュポンのゾニルA)・・・
4.5+nl電解粗電解性を第3表に、および印刷特性
を第4表に示す。 実施例2 第5表に示す本発明に係る印刷IUi用高用度強度アル
ミニウム合金ついて、フィルター処理後造塊面側し、5
10°CXGHr均熱後熱間圧延を行なって厚さ4+n
+nと腰最終圧延温度は:+oo°cであった。 これを0,40IM厚まで゛冷間圧延し、0.4+nm
l°Iで:15f)℃X 31−1 rの中間焼鈍を行
ない、さらに、EA G表に示す工程で再結晶粒サイズ
を変えて(1、] IIIf+n 1.’/、l:で冷
間圧延を行なった。なお、除熱・徐冷の場合IJ約 4
0℃/ l−1rの昇降温速度で350 ’CX ’、
(tl rの焼鈍を行ない、さらに、200℃まで炉冷
を11°ない、また、急熱・急冷の場合は500℃/+
11’lllのシ旧1ねl、j速度で500°CX (
l seeの焼鈍とした。なお、最終冷間圧延仕上後の
フィルアップ温度は何れも約80°Cであった。 これら0.l+面厚の板について、圧延−1−9の調質
のまま3u+L%苛成ソーダ水溶液中で50°CX30
!;(・Cのアルカリエッチを行なった後水洗し]Ou
+L%硝酸水溶液中で25℃X 30sec中和し、1
,5u+f%塩酸液中、25°Cの温度で交流電流密度
SoA/ dm”、処理時間15secの条件で電解粗
面化を行ない、さらに、5田L%苛成ソーグ溶液中でG
O’CX 10secのデスマット処理をした後、中和
水洗した。 これらの電1祥粗而化板の表面粗度およびミクロ評価結
果を第7表および第3図に示す。これらの結果から本発
明に係る印刷版用高強度アルミニウム合金は非常に均−
徽tillなピア)・が形成されていることが明らかで
ある。なお、これらの強度、取扱い性を第8表に示すか
、IIIfれも純アルミニウム系より優れていることは
明らかであり、また、第8表には比較のため最終冷間圧
延率を80%としたJ I S 105044’ 0.
3+n+n厚のデータも示しである。 施例3 第9表に示す比較例りおよび本発明に係る印刷用高強度
アルミニウム合金E、 F、(9を造塊面後、5H)’
CX6Hrの均熱を行ない、h+m厚、約0°Cの温度
で熱間圧延を行ない、0.7511I+11厚まで間圧
延を行ない、0.75+nb+l!Jで500’C/m
inの昇温速度で500°CX Oseeの焼鈍を行な
い、さら、0.15m+n厚に仕上げた。なお、何れの
例も冷開」二げ後のコイルアップ温度は約80°Cであ
った。 これら0.15m+n厚の板について、I(16調質の
まま、・L%苛成ソーダ水溶液中で、65℃X 60s
ecのアルリエッチングを行なった後水洗し、loLI
IL%硝酸)薄液中で25°CX60secで用]和し
た後水洗した。 らに、1.51%塩酸水溶液中において、25°Cで一
流電流密度So A /den2X 20secの条件
で電解tIt化を行ない、その後5IIIt%苛成ソー
ダl容液中で、1℃X ]0secのデスマット処理を
した後中和水洗だ。 れらの例の強度、取扱い性の評価を第1()表に、−面
性能を第11表に示す。 この第10表および第11表の結果かられかるように、
比較例D(Mg O,24iuL%)では強度、取扱い
牲および電解柑面比の点で問題があり、しかし、本発明
に係る印刷1に用品強度アルミニウl、合金板E、F、
GにおいてはM8含有量力カベ+t%以」−であるので
これらの点か完全に11イ決されていることは明らかで
ある。 以上説明したように、本発明に係る印刷IUii用高強
度アルミニウム合金版は上記の1111成を有l、でい
るか呟エンチング性に優れ、強度か高く、++y 、+
及い性にも優れ、さらに、薄肉にしても印刷性も、):
び耐刷性を損なわないという効果を奏する。。
[Thus, when exposed and developed, it has excellent hydrophilicity and water retention, and (the adhesion between the image area made of a luminescent substance and the aluminum alloy plate is extremely strong, making it excellent in reconnaissance and first printing). δ is calculated by moving the printing plate by 1υ.The high-strength aluminum alloy plate for printing according to the present invention is
Etching properties are limited, strength is high, and handling is uncertain.
Therefore, thinning, which was impossible with conventional pure aluminum plates such as A11.0 (1, Al050), can be achieved without reducing printability and printing durability of 4 fl. Examples of the high-strength aluminum alloy plate for printing plates according to the present invention will be described.Example 1 Regarding the high-strength aluminum alloy A for printing plates according to the present invention shown in the f51 table, after filter treatment, agglomeration, surface side, 5
10°(:X61) Hot rolled after soaking to a thickness of 411111
The final rolling temperature was 280°C. This was cold-rolled to a thickness of 0.75 noo, and the heating rate and cooling rate were both 500°C/++l; II.
Perform intermediate annealing at 00℃XOsee, 0.1511
1111 j! No. W rolled in Table 2,
It was set as 4. Further, after the hot rolling of the alloy A of the present invention, 0.
Cold rolled to a thickness of 3+t) II) at 340°C x 2
After intermediate annealing using Hr heat removal and slow cooling method, 0.111II
The thickness of Il+ was determined by rolling and No. 2 in Table 2. Note that the fill-up crystallinity of both No. 1 and No. 2 after cold rolling was about 80'C. Also, A 1050 paulownia'B's 0.24m+n in Table 1
We use Welfare for comparison (No. 3 in Table 2), and furthermore, A1
050 with a thickness of 0.24 was rolled to a thickness of 0.11+nm and used for comparison with No. 2 (No. 4 in Table 2)
. As is clear from Table 2, the high-strength aluminum alloy plate for printing plates according to the present invention has a thin wall ratio of 4fj 92 compared to the 0.24+nm thickness of A1050IJ in terms of handling properties.
Shiko is excellent. Next, these aluminum 911 alloy plates were treated with the steps described below to improve surface roughening and printing. ′
We investigated the nature of 1.Iij-treated aluminum alloy plate was heated to 5+lI in 1% caustic soda aqueous solution at 65°C. : i' was alkaline etched for 1 minute at 30°C, washed with water, and etched in 10U + 1% nitric acid aqueous solution
After neutralization at a temperature of °C for 1 minute, it was washed with water. 2. In the case of hydrochloric acid treatment/etching, the pretreated aluminum alloy plate was heated in an electrolytic aqueous solution containing 1.51% hydrochloric acid at a temperature of 125°C. Electrical current density 80 A / (1111", treatment If, 'llB 120 seconds f!1) Alloy plate in nitric acid 2+++1%
Electrolytic surface roughening was carried out in a bath temperature of 30° C. with an alternating current density of 80 A/(1111") and a processing time of 20 seconds. 3. Grained plate with electrolytic roughening was then desmutted in a 15+U1% caustic soda solution at a temperature of 60°C for 10 seconds and then neutralized and washed with water. 4. In the case of anodized 1-12SO, system; Desman 1, aluminum washed with neutralized water The alloy plate was further heated in a 20+uL% sulfuric acid solution at a temperature of 25°C using lead as the main electrode,
Anodic oxidation is performed for 30 seconds using a current density 6A/cb meter. In the case of 83PO, system; Desma), the neutralized and water-washed aluminum alloy plate was further heated at 25°C in a 421% phosphoric acid solution.
Anodic oxidation treatment was carried out at a current density of 2.6 A for 6 minutes using lead as a monthly electrode at a temperature of 2.0 C. 5. Post-treatment After anodizing treatment, jIS3i3' sodium silicate 11
% aqueous solution at a temperature of 85° C. for 1 minute, washed with water, and then dried. 6. Photosensitive layer (1) In case of O-quinone diand type photosensitive layer, the composition of the photosensitive liquid is shown below. 7) Condensate of '4-non-1,2-and-5-sulfonylchloride IS and -21-cresol formaldehyde novolak resin (condensation rate 25% mole)...
... 4. 8゜・111-Cresol・Formaldehyde/Bolac resin (manufactured by Susumu-Duress Co., Ltd.) 9.028・Naphtoki 7-Nanoano F-4 Chloride・0.19g・Victoria Viewer Flue Boll (Hot) made by Mitani Chemical Co., Ltd.・
・・・・・・ o, 1g8 ・Ethyl cellosolve ・・・・・・・ if, 'l
f', l (The amount of coating after drying of the H photosensitive layer is 2S11)H
/ tln'. The photosensitive lithographic printing plate IJ made in this way,
A resolution chart (manufactured by Ugler) and a 7-let stencil for sensitivity measurement were brought into close contact with each other, and exposure was carried out using a metal halide lamp as a light source. Next, this is 1 lium metasilicate 4u + L%
It was developed with an aqueous solution at a temperature of 25° C. and under the conditions of 45 sheets. (2) E) In case of azonium salt photosensitive layer The composition of the photosensitive liquid is shown below.・F,, salt of a condensate of P-noazinophenylamine and formaldehyde...0.42゜・Copolymer of P-hydroxyphenylmethacrylamide, acrylonitrile, ethyl acrylate, and methacrylic acid...
・・・・6.0゜・Victoria Viewer Blue B O
H (manufactured by Hodogaya Chemical) (50% methanol solution)...
・0.168 Diurimer-AC-] (', 11
- (Polyacrylic acid, manufactured by Nippon Pure Chemical Industries) ・・・・・・ 0
.. 18゜Methyl cellosolve... The coating amount after drying of 100g photosensitive layer is 191□1ε/dm''.The thus obtained photosensitive lithographic printing plate was marked with a resolution chart (manufactured by Ugler) and A step tablet for sensitivity measurement was placed in close contact with the tablet and exposed using a metal halide lamp as a light source.Next, it was immersed in the developer shown below at a temperature of 25°C for 1 minute, and then the surface was lightly rubbed with a degreasing sieve to remove the unexposed areas. Removed.Developer/Benzyl alcohol 3011] 1 ・Sodium carbonate 5g ・Lium sulfite 5g ・Sodium isopropylnaphthalene sulfonate 1 (1B ・Water 11) (3) In the case of an unsaturated carboxylic acid photosensitive layer that causes diarsenization! 11411 is shown below: - Photosensitive polyester made by condensation of 100 mol% of diethyl 1)-7-enylenenoacrylate and 100 mol of 1,4-di-β-hydroxyethoxycyclohexane...・-l, +3,. ・(2-benzoylmethylene)-1-methyl-β-su7
Tothiazoline...+3,328 ・Cheap 2. Fragrance acid...0,16ε Hydroquinone...0.08B Monochlorobenzene...100.0ml Pigment (Heliogen Blue, C, I, Pigment Blue)...f
), 8B The coating amount of the photosensitive layer is 14B/(II□12).
An image cutcher (manufactured by NGLER) and a stamp table for measuring sensitivity were brought into close contact and exposed using a metal halide lamp as a light source. Then, it was developed by wiping with a developer having the composition shown below. Developer・4-butyrolactone・・・・500.0+nl・
Triethanolamine ・・・50.0ml・Glycerol・・・・50.0ml・Methyl abinitate・・・・5. O+nl/Hydrogenated Undron (Stabelite resin from Vercules Powder Co., Ltd.)...
・・0.58・Wetting agent (DuPont's Zonyl A)・・
The 4.5+nl electrolytic crude electrolyte properties are shown in Table 3, and the printing properties are shown in Table 4. Example 2 Regarding the high-strength aluminum alloy for printing IUi according to the present invention shown in Table 5, after filter treatment, the agglomerated side was
After soaking at 10°CXGHr, perform hot rolling to a thickness of 4+n.
+n and waist final rolling temperature were: +oo°c. This was cold rolled to a thickness of 0.40 IM and 0.4+nm thick.
Intermediate annealing at l°I: 15 f) °C Rolling was performed.In addition, in the case of heat removal and slow cooling, the IJ was approximately 4
350'CX' at a heating/cooling rate of 0℃/l-1r,
(Tl r annealing is performed, and further furnace cooling is performed by 11 degrees to 200℃, and in the case of rapid heating and cooling, 500℃/+
500°CX (
The annealing was performed as follows. The fill-up temperature after the final cold rolling finish was about 80°C in all cases. These 0. A plate with a surface thickness of 1+ was heated at 50°CX30 in a 3u+L% caustic soda aqueous solution as it was after rolling-1-9.
! ;(Washing with water after performing alkaline etching of C) Ou
Neutralize in +L% nitric acid aqueous solution at 25°C for 30 seconds,
, 5U+F% hydrochloric acid solution at a temperature of 25°C, alternating current density SoA/dm'', and treatment time 15 seconds.
After desmutting with O'CX for 10 seconds, it was washed with neutralized water. Table 7 and FIG. 3 show the surface roughness and microscopic evaluation results of these Den-Isho roughened plates. These results show that the high-strength aluminum alloy for printing plates according to the present invention is extremely uniform.
It is clear that a strong peer) is being formed. The strength and handling properties of these materials are shown in Table 8, and it is clear that they are superior to pure aluminum. JIS 105044' 0.
Data for 3+n+n thickness are also shown. Example 3 Comparative examples shown in Table 9 and high-strength aluminum alloys for printing according to the present invention E, F, (9 after ingot formation, 5H)'
CX6Hr was soaked, hot rolled at a temperature of about 0°C to a thickness of h+m, and then rolled to a thickness of 0.7511I+11, resulting in a thickness of 0.75+nb+l! 500'C/m at J
Annealing was carried out at 500° CX Osee at a temperature increase rate of 0.5 in, and the thickness was further finished to 0.15 m+n. In each example, the coil-up temperature after cold opening was about 80°C. These 0.15m+n thick plates were heated at 65°C for 60s in an L% caustic soda solution as I
After performing ec al-etching, wash with water and loLI
After diluting in a thin solution (IL% nitric acid) at 25° C. for 60 seconds, it was washed with water. Furthermore, electrolysis was carried out in a 1.51% hydrochloric acid aqueous solution at 25°C under the conditions of a first-flow current density So A /den2X 20 sec, and then in a 1 volume solution of 5IIIt% caustic soda at 1°C After the desmat treatment, it is neutralized and washed with water. Evaluations of the strength and handleability of these examples are shown in Table 1 ( ), and Table 11 shows the negative surface performance. As can be seen from the results of Tables 10 and 11,
Comparative Example D (Mg O, 24 iuL%) had problems in terms of strength, handling, and electrolytic surface ratio.
In G, the M8 content is greater than +t%, so it is clear that these points have been completely resolved. As explained above, the high-strength aluminum alloy plate for printing IUii according to the present invention has the above-mentioned 1111 properties, excellent etching properties, high strength, ++y, +
It has excellent spreadability, and printability even when made thin.):
This has the effect of not impairing printing durability and printing durability. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐「折れ1性評価法の説明図、第2図は板厚と
耐力との関係から「折れ−1の発生しない領域を示す図
、第3図は平均結晶粒径と表面相度との関係を示す図、
第4図は繰り返し曲げノ、j命の試験法の説明図である
。 甘1 図 W 矛4m 才2図 0 0.1 0.2 0.3 0.4 0.5板界 (
m制)8o4 第1頁の続き 0発 明 者 川 口 雅 弘 真岡市大谷台町8[相
]発 明 者 星 野 晃 三 真岡市大谷台町8番地 番地
Figure 1 is an explanatory diagram of the method for evaluating bending resistance. Figure 2 is a diagram showing the area where 'breaking-1' does not occur based on the relationship between plate thickness and yield strength. Figure 3 is an illustration of the average grain size and surface phase. Diagram showing the relationship with degree,
FIG. 4 is an explanatory diagram of the repeated bending test method. Sweet 1 Figure W Spear 4m Sai 2 Figure 0 0.1 0.2 0.3 0.4 0.5 Itakai (
m system) 8o4 Continuation of 1st page 0 Inventor Masahiro Kawaguchi 8 Oyadai-cho, Moka City [Phase] Inventor Akira Hoshino 8 Oyadai-cho, Moka City

Claims (1)

【特許請求の範囲】 (1ンNりgl−611,%、Pe0.05−1.5I
llt%を含有し、残部不純物およびA1よりなるアル
ミニウム合金の冷間圧延後の板厚が0j15〜0.3m
mであり、か−)、その板厚における結晶粒の幅の平均
か35μmfl以■ζであることを特徴とする電解劇E
面此処」111される印刷版用高強度アルミニウム合金
板。 (2)N4B 1−6u+L%、F e 0.05□−
1,5u+1%、Mn0.1〜0.7IIIL%を含有
し、残部不純物およびA1よりなるアルミニウム合金の
冷間圧延後の板厚か(1,(15〜0.3annであり
、かつ、その板厚における結I’i纂:iの幅の平均が
35μm0以下であることを1、′l徴と1−る電解粗
面化法理される印刷版用高強度アルミニウム合金板。 (3)MHl−6u+L%、FeO,[)5・−1,5
u+1%、Cu0.05・〜]u+L%を含有し、残部
不純物す3よびA1よりなるアルミニウム合金の冷開圧
延後の板厚が0.05〜0,311+111であり、か
つ、その板厚における結晶粒の幅の平均が35μm0以
下であることを特徴とする印刷版用高強度アルミニウム
合金板。 (4)MFl 1〜6u+L%、 FeO,05〜1.
5+++L%、 C110005〜11%、Mn0.1
〜0,7u+t%を含有し、残部不純物およびA1より
なるアルミニウム合金の冷間圧延後の板厚が(1,05
〜Q、3+n+nであり、かつ、その板厚における結晶
粒の幅の平均カベ(5μIll以下であることを特徴と
する印刷版用高強度アルミニラl、合金板。
[Claims] (1Ngl-611,%, Pe0.05-1.5I
The thickness of the aluminum alloy after cold rolling is 0j15 to 0.3 m
An electrolytic film E characterized in that the average width of crystal grains in the plate thickness is 35 μm or more.
High-strength aluminum alloy plate for printing plates. (2) N4B 1-6u+L%, Fe 0.05□-
The plate thickness after cold rolling of an aluminum alloy containing 1,5u+1%, Mn0.1~0.7III%, and the remainder consisting of impurities and A1 is 1,(15~0.3ann, and the plate A high-strength aluminum alloy plate for printing plates subjected to the electrolytic surface roughening method, which is characterized by the fact that the average width of i is 35 μm or less. (3) MHl- 6u+L%, FeO, [)5・-1,5
u+1%, Cu0.05.~]u+L%, and the remaining impurities S3 and A1 have a plate thickness after cold-open rolling of 0.05 to 0,311+111, and at that plate thickness. A high-strength aluminum alloy plate for printing plates, characterized in that the average width of crystal grains is 35 μm or less. (4) MFl 1-6u+L%, FeO, 05-1.
5+++L%, C110005~11%, Mn0.1
The plate thickness after cold rolling of an aluminum alloy containing ~0.7u+t% and the remainder consisting of impurities and A1 is (1.05
~Q, 3+n+n, and an average width of crystal grains (5 μIll or less) in the thickness of the plate.
JP17080283A 1983-09-16 1983-09-16 High strength aluminum alloy plate for printing plate Granted JPS6063346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17080283A JPS6063346A (en) 1983-09-16 1983-09-16 High strength aluminum alloy plate for printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17080283A JPS6063346A (en) 1983-09-16 1983-09-16 High strength aluminum alloy plate for printing plate

Publications (2)

Publication Number Publication Date
JPS6063346A true JPS6063346A (en) 1985-04-11
JPH0413417B2 JPH0413417B2 (en) 1992-03-09

Family

ID=15911612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17080283A Granted JPS6063346A (en) 1983-09-16 1983-09-16 High strength aluminum alloy plate for printing plate

Country Status (1)

Country Link
JP (1) JPS6063346A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274060A (en) * 1985-09-27 1987-04-04 Kobe Steel Ltd Manufacture of support for lithographic printing plate
JPS62218540A (en) * 1986-03-19 1987-09-25 Furukawa Alum Co Ltd Al alloy for receiver tank
JPS6387288A (en) * 1986-09-30 1988-04-18 Fuji Photo Film Co Ltd Production of base for planographic plate
JPS63143235A (en) * 1986-12-06 1988-06-15 Mitsubishi Alum Co Ltd Aluminum alloy for printing plate
JPS63143234A (en) * 1986-12-06 1988-06-15 Mitsubishi Alum Co Ltd Aluminum alloy for printing plate
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
CN103911531A (en) * 2014-04-23 2014-07-09 北京科技大学 Al-Mg alloy and preparation method of Al-Mg alloy plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207467A (en) 1996-02-02 1997-08-12 Fuji Photo Film Co Ltd Manufacture of lithographic printing plate support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528874A (en) * 1978-08-23 1980-02-29 Kubota Ltd Preparation of inorganic extruding moldings with pattern
JPS586635A (en) * 1981-07-03 1983-01-14 Matsushita Electric Ind Co Ltd Signal transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528874A (en) * 1978-08-23 1980-02-29 Kubota Ltd Preparation of inorganic extruding moldings with pattern
JPS586635A (en) * 1981-07-03 1983-01-14 Matsushita Electric Ind Co Ltd Signal transmission system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274060A (en) * 1985-09-27 1987-04-04 Kobe Steel Ltd Manufacture of support for lithographic printing plate
JPS62218540A (en) * 1986-03-19 1987-09-25 Furukawa Alum Co Ltd Al alloy for receiver tank
JPS6387288A (en) * 1986-09-30 1988-04-18 Fuji Photo Film Co Ltd Production of base for planographic plate
JPS63143235A (en) * 1986-12-06 1988-06-15 Mitsubishi Alum Co Ltd Aluminum alloy for printing plate
JPS63143234A (en) * 1986-12-06 1988-06-15 Mitsubishi Alum Co Ltd Aluminum alloy for printing plate
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
CN103911531A (en) * 2014-04-23 2014-07-09 北京科技大学 Al-Mg alloy and preparation method of Al-Mg alloy plate

Also Published As

Publication number Publication date
JPH0413417B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
JPH0549735B2 (en)
JPS6063346A (en) High strength aluminum alloy plate for printing plate
US6337136B1 (en) Aluminum alloy support for lithographic printing plate and process for producing substrate for support
JPS61146598A (en) Supporter for lithographic printing plate and its manufacture
JPS62148295A (en) Aluminum alloy base for planographic plate and production thereof
JPS5967349A (en) Aluminum strip for photosensitive lithographic printing plate
JPH0419290B2 (en)
JPH0473394B2 (en)
JPS6330294A (en) Aluminum alloy support for planographic printing plate and its preparation
JPH08943B2 (en) Aluminum alloy for printing plate
JPH05156414A (en) Production of base for planographic printing plate
JPS63135294A (en) Aluminum alloy substrate for lithographic plate and production thereof
JPH07100844B2 (en) Method for manufacturing aluminum alloy support for offset printing
JP3650507B2 (en) Aluminum alloy support for lithographic printing plate and method for producing the same
JP4016310B2 (en) Aluminum alloy support for lithographic printing plate and method for producing base plate for support
JPH05201166A (en) Manufacture of supporter for lithographic plate
JPS6274693A (en) Aluminum alloy support for offset print
JPH0473393B2 (en)
JPS6347348A (en) Aluminum alloy support for lithographic printing plate
JPH04254545A (en) Aluminum alloy substrate for planographic printing plate
EP1136280B1 (en) Substrate for a planographic printing plate and substrate fabrication method
JPS63143235A (en) Aluminum alloy for printing plate
JP4590648B2 (en) Aluminum alloy material for lithographic printing plate and lithographic printing plate
JPS6347347A (en) Aluminum alloy support for lithographic printing plate
JPS6063342A (en) High strength aluminum alloy plate for printing plate