JPS6062281A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6062281A
JPS6062281A JP58170476A JP17047683A JPS6062281A JP S6062281 A JPS6062281 A JP S6062281A JP 58170476 A JP58170476 A JP 58170476A JP 17047683 A JP17047683 A JP 17047683A JP S6062281 A JPS6062281 A JP S6062281A
Authority
JP
Japan
Prior art keywords
image pickup
output
ccd10
circuit
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58170476A
Other languages
Japanese (ja)
Inventor
Takaaki Kagawa
賀川 能明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58170476A priority Critical patent/JPS6062281A/en
Publication of JPS6062281A publication Critical patent/JPS6062281A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To constitute a stop system semielectronically and obtain a constant image pickup output regardless of the intensity of incident light by using a charge transfer element which has a longitudinal overflow drain as an image pickup element, and controlling the potential applied to a semiconductor substrate on the basis of the level of the image pickup output. CONSTITUTION:The charge transfer element CCD10 which has the longitudinal overflow drain is used as the image pickup element to be used for a solid-state image pickup device. The optical image of an object 11 is projected upon this CCD10 through an optical system 12. The image pickup output converted into an electric signal by this CCD10 is applied to an encoder 14 including a processor, exponent converting circuit, etc., through a preamplifier 14. The mean level VA of the image pickup output of the amplifier 13 is detected by a mean level detecting circuit 17 and compared with a reference level V0 by a comparing circuit 18, which is applied the comparison output VD to a control circuit 19. The circuit 19 outputs a substrate potential VB to the semiconductor substrate of the CCD10 to output the constant image pickup output regardless of the intensity of incident light.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は縦型オーバーフローPレインヲ有スる電荷転
送素子例えばCCDを使用した固体撮像装置の特にその
自動絞り系に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device using a charge transfer element such as a CCD having a vertical overflow P-rain, and particularly to an automatic aperture system thereof.

背景技術とその問題点 例えば、CODを撮像素子として使用した固体撮像装置
でも他の撮像装置と同様に入力光強度に拘わらず常に一
定の撮像出力を得るため、光学系に絞り装置を設け、撮
像出力レベルに応じてこの絞り装置を制御している。
Background technology and its problems For example, in a solid-state imaging device that uses COD as an imaging element, in order to always obtain a constant imaging output regardless of the input light intensity, like other imaging devices, an aperture device is provided in the optical system and the imaging device is This aperture device is controlled according to the output level.

従って、このよう万従米の固体撮像装置では、機緘的な
絞り装置を設ける必要がある上、この絞り装置を自動的
に調整するためのモータ、その駆動回路等を必要とする
ため、絞り装置全体が大型化し、重量も増す上、耐久性
の問題があった。さらに絞りを変えることにより被写体
の焦点深度が変り、絞シとは無関係に焦点深度が調整で
きないという欠点があった。
Therefore, in such conventional solid-state imaging devices, it is necessary to provide a mechanical aperture device, and a motor and drive circuit for automatically adjusting this aperture device are also required. The overall size and weight increased, and there were problems with durability. Furthermore, changing the aperture changes the depth of focus of the subject, and there is a drawback that the depth of focus cannot be adjusted independently of the aperture.

発明の目的 そこで、この発明では、絞p系を純電子的に構成して上
述の欠点を一掃したものである。
OBJECT OF THE INVENTION Therefore, in the present invention, the aperture p system is constructed purely electronically to eliminate the above-mentioned drawbacks.

発明の概要 そのため、この発明においては、特に撮像素子として縦
型めオーバーフロードレイン領域ヲモつ−CODを使用
し、このCODに供給された基板電位をコントロールす
ることによって、入力光強度に拘わらず常に一定の撮像
出力が得られるようにしたものである。
Summary of the Invention Therefore, in this invention, a COD with a vertical overflow drain region is used as an image sensor, and by controlling the substrate potential supplied to the COD, the potential is always constant regardless of the input light intensity. The system is designed to provide an imaging output of

実施例 続いて、この発明の一例を第1図以下を参照して詳細に
説明する。
EXAMPLE Next, an example of the present invention will be explained in detail with reference to FIG. 1 and subsequent figures.

この発明において使用される縦凰オーバーフロ−ドレイ
ン領域をもつCCDは、ブルーピングヲ抑圧するオーバ
ーフロードレインを二次元的な配置ではなく三次元的、
すなわち基板の深さ方向に配置するようにしたものであ
る。
The CCD with a vertical overflow drain region used in this invention has an overflow drain that suppresses blooping not in a two-dimensional arrangement but in a three-dimensional arrangement.
That is, they are arranged in the depth direction of the substrate.

第1図はその一例を示すもので、これは通常のインター
ライン転送方式の固体撮像素子00を、信号転送と直角
な面で断面した図面である。この図において、P型基飯
(1)の表面近傍の所定位置には、バルクチャンネル(
埋込みチャンネル)形成用のN型領域(2)と、チャン
ネルストッパーC8用のP+型領域(3)が形成される
と共に、これら領域(2) 、 (3)の間には領域(
3)と接してセンサー領域S/EMSとなるN+領領域
4)が形成される。この領域(4)と基板(1)とによ
ってセンサー用のPN接合J8が形成される。
FIG. 1 shows an example of this, and is a cross-sectional view of a normal interline transfer type solid-state image sensor 00 along a plane perpendicular to signal transfer. In this figure, a bulk channel (
An N type region (2) for forming a buried channel) and a P+ type region (3) for forming a channel stopper C8 are formed, and a region (2) is formed between these regions (2) and (3).
An N+ area 4) which is in contact with 3) and becomes a sensor area S/EMS is formed. This region (4) and the substrate (1) form a PN junction J8 for the sensor.

基板(1)の上面にはStO□等の絶縁層(6)を介し
て垂直シフトレジスタVR用の転送電極(7)が被着形
成される。なお、領域(2)と(4)との間は読出し用
のコントロールダートCG用の領域となされる。
A transfer electrode (7) for a vertical shift register VR is formed on the upper surface of the substrate (1) via an insulating layer (6) such as StO□. Note that the area between areas (2) and (4) is used as a control dart CG area for reading.

P型の基板(1)の下面如はこの基板(1)とは異なる
導電型のN−型領域(8)が形成されて、この基板(1
)と領域(8)とによって形成されるPN接合J でオ
ーバフロートレインOFDに対するコントロールl’−
)領域が形成される。そのため、このPN接合J。には
外部より所定の逆バイアスが加えられる。VBがそのバ
イアス電圧(基板電圧)である◇この構成によれば、セ
ンサー領域5ENSに入射した光信号に基づく光信号電
荷が、PN接合J。にょって形成されるポテンシャルバ
リアを越える電荷量である場合には、その過剰の光信号
電荷量はN−型領域(8)中忙放出されてブルーピンク
が抑圧される。
An N-type region (8) of a conductivity type different from that of the substrate (1) is formed on the lower surface of the P-type substrate (1).
) and the region (8) to control the overflow train OFD at the PN junction J
) area is formed. Therefore, this PN junction J. A predetermined reverse bias is applied from the outside. VB is its bias voltage (substrate voltage). According to this configuration, the optical signal charge based on the optical signal incident on the sensor region 5ENS is applied to the PN junction J. If the amount of charge exceeds the potential barrier formed by this, the excess optical signal charge is emitted into the N-type region (8) and the blue-pink color is suppressed.

従って、一般には基板電位VBは一定である。この発明
はこの基板電位VBを入力光強度工、に応じて積極的に
可変することによりCOD (Iより得られる撮像出力
の平均レベルが入力光強度に拘わらず常如一定となるよ
うKしたものである。
Therefore, the substrate potential VB is generally constant. This invention actively varies the substrate potential VB according to the input light intensity so that the average level of the imaging output obtained from COD (I) remains constant regardless of the input light intensity. It is.

第2図は1つのセンサー領域5ENSにおける空乏化し
たときのポテンシャルを示す。
FIG. 2 shows the potential when one sensor region 5ENS is depleted.

この図において、横方向は基板(1)の深さ方向である
。曲線t、は基板電位VB75KVB、のときのポテン
シャルで、この基板電位VBをVBlよシも高めてVB
2にすると、そのときの空乏化した状態でのポテンシャ
ルは曲線t2のように変化する。最低ポテンシャルと最
高、II)テンシャルとの差(ポテンシャルバリヤー)
ΔPBは曲線t、よシも曲線t2の方が小さいから、曲
線t、のときのオーバーフローする直前の蓄積電荷量Q
。F、よシも曲線t2のときのオーバーフローする直前
の蓄積電荷量Q。F2の方が少なくなる。従って、基板
電位がVBlのときの蓄積電荷量がQ。F、である場合
に基板電位をVB2に高めれば、そのときの蓄積電荷量
はQ。F2まで減少するため、撮像出力は基板電位の変
化に対応して低下する。
In this figure, the horizontal direction is the depth direction of the substrate (1). Curve t is the potential when the substrate potential VB is 75KVB, and by increasing this substrate potential VB by more than VBl, VB
2, the potential in the depleted state changes as shown by curve t2. Difference between the lowest potential and the highest, II) tensile (potential barrier)
Since ΔPB is smaller for curve t than for curve t2, it is the amount of accumulated charge Q just before overflow at curve t.
. F: The amount of accumulated charge Q immediately before overflow when the curve t2 is shown. F2 has less. Therefore, the amount of accumulated charge when the substrate potential is VBl is Q. If the substrate potential is raised to VB2 in the case of F, the amount of accumulated charge at that time is Q. Since it decreases to F2, the imaging output decreases in response to the change in substrate potential.

1だ、同じ基板電位■8を印加している場合のオー・ぐ
−フローと蓄積電荷量とは次のような関係にあることが
知られている。
1. It is known that the following relationship exists between the O-G flow and the amount of accumulated charge when the same substrate potential (1)8 is applied.

すなわち、第3図曲線q、をオーバーフロー開始時のポ
テンシャルとすると、このときの入力光強度よりもさら
に強い入力光強度でのポテンシャルは曲線q2 t 1
13のようになって、オーバーフローする電荷量に比べ
、N+領領域4)に形成されるポテンシャルウェルに新
たに蓄えられる電荷量の方が多くなり、従って既にオー
バーフローしている入力光強度以上の入力光強度でも、
その入力光強度に対応して撮像出力レベルが増加する。
That is, if the curve q in Figure 3 is the potential at the start of overflow, the potential at an input light intensity stronger than the input light intensity at this time is the curve q2 t 1
13, the amount of charge newly stored in the potential well formed in the N+ region 4) is greater than the amount of charge that overflows, and therefore the input light intensity exceeds the input light intensity that has already overflowed. Even the light intensity
The imaging output level increases corresponding to the input light intensity.

従って、今CCDαOに投影された被写体のある水平ラ
インにおける入力光強度(撮像出力も対応する)が第4
図曲線taのような場合で、しがも水平位置T(aでの
入力光強度で本来オーバーフローしているとした場合で
も、この入力光強度よりさらに強い入力光強度のところ
(例えば水平位ff?Hb)ではこの入力光強度に応じ
た撮像出力が得られることになる。この状態で、基板電
位VBを高くすると、オーバーフローする直前の蓄積電
荷量が投影領域の全域に亘って減少し、しかも減少する
蓄積電荷量1d第3図から明らかなように夫々のセンサ
ー領域INsに入射した入力光強度に依存して変化する
ので、基板電位を高くしても入力光強度が強いところで
は弱いところよりも蓄積電荷量が多いことには変シがな
く、それに応じて撮像出力レベルが相違する。このため
、基板電位を高くすると、そのときの撮像出力レベルは
曲線tbのように全体として低レベル側にシフトした形
となる。
Therefore, the input light intensity (corresponding to the imaging output) at the horizontal line where the subject is currently projected on the CCDαO is the fourth
In the case of curve ta in the figure, even if it is assumed that the input light intensity at horizontal position T (a) originally overflows, if the input light intensity is stronger than this input light intensity (for example, horizontal position ff ?Hb), an imaging output corresponding to this input light intensity is obtained.In this state, if the substrate potential VB is increased, the amount of accumulated charge immediately before overflow decreases over the entire projection area, and As is clear from Fig. 3, the amount of accumulated charge 1d decreases depending on the intensity of input light incident on each sensor region INs, so even if the substrate potential is raised, the amount of accumulated charge 1d will be lower in areas where the input light intensity is stronger than in areas where it is weaker. There is no change in the fact that there is a large amount of accumulated charge, and the imaging output level differs accordingly.For this reason, when the substrate potential is increased, the imaging output level at that time will be on the lower level side as a whole, as shown by curve tb. The shape is shifted to .

そこで、例えば第4図直線t。を撮像出力の基準レベル
(平均レベル)voと定め、平均レベルがこれよりも高
いときは基板電位を高め、低いときは逆に基板電位を低
めるようにコン)o−ルすれば、入力光強度に拘わらず
常に一定の撮像出力(平均レベル)にすることができる
Therefore, for example, the straight line t in FIG. is set as the reference level (average level) vo of the imaging output, and if the average level is higher than this, the substrate potential is increased, and when it is lower than this, the substrate potential is conversely lowered. It is possible to always maintain a constant imaging output (average level) regardless of the situation.

そのためには、C0D(Inの入力光強度I、に対する
餐檀電荷量、従って撮像出力、が通常の場合よりも早く
オーバーフローするように設計すればよい。
To this end, the design may be such that the amount of electric charge relative to the input light intensity I of C0D (In), and therefore the imaging output, overflows earlier than in the normal case.

例えば、第5図に示すように基板電位VBを固定して動
作させていたときにオーバーフローする入力光強層重、
。よシも遥かに低い入力光強度IPO’(例えば屋内光
源使用時の強度)ですでにオーバーフローするように設
計すると共に、撮像出力の基準レベルV。を図示のよう
な位置に定めることによって実現できる。このような入
出力特性はN型不純物の拡散濃度や拡散の深さの比(x
:x+y )(第2図参照)を適当に選釈することによ
って比較的容易に得ることができる。
For example, as shown in FIG. 5, when operating with a fixed substrate potential VB, the input light intensity layer overflows,
. It is also designed to already overflow at a much lower input light intensity IPO' (for example, the intensity when using an indoor light source), and the reference level V of the imaging output. This can be achieved by positioning as shown in the figure. Such input/output characteristics depend on the diffusion concentration of N-type impurity and the ratio of diffusion depth (x
:x+y) (see Figure 2) can be obtained relatively easily by appropriately selecting.

第6図は上述のような入出力特性をもったCODα0を
使用したこの発明に係る固体撮像装置の一例を示すもの
で、被写体α℃の光学像は光学系02を介してccv 
60に投影され、このCCD (]、C)で電気信号に
変換された撮像出力はノリアンゾθ葎を介してプロセッ
サ、指数変換回路等を含むエンコーダα→に供給される
。従って、端子05には周知の例えばカラー映像信号が
出力される。なお、エンコーダα4において、指数変換
回路を設けたのは、第5図に示す特性をり゛ニアな特性
に変換するためである。
FIG. 6 shows an example of a solid-state imaging device according to the present invention using a COD α0 having the input/output characteristics as described above, in which an optical image of a subject α° C.
The imaging output projected onto the CCD 60 and converted into an electric signal by the CCD (], C) is supplied to an encoder α→ including a processor, an index conversion circuit, etc. via a Norianzo θ encoder. Therefore, a well-known, for example, color video signal is output to the terminal 05. The reason why the index conversion circuit is provided in the encoder α4 is to convert the characteristic shown in FIG. 5 into a linear characteristic.

プリアンプα)の撮像出力はさらに、平均値検出回路0
ηに供給されて元信号が電気信号に変換された全画面に
おける撮像出力の平均レベルがめられ、この検出出力■
□がレベル比較回路α→だ供給されて基準レベルV。と
比較される。そしてこの比較出力v9が電圧制御回路θ
珪に供給されて、N−型領域(8)に供給される基板電
位VBが制御される。基板電位V、の制御は上述したよ
うに、vA>Voのとき高く、vA<voのとき低くな
るように制御される。
The imaging output of the preamplifier α) is further processed by the average value detection circuit 0.
The average level of the imaging output over the entire screen where the original signal is converted into an electrical signal by being supplied to η is determined, and this detection output ■
□ is supplied to the level comparison circuit α→ and is the reference level V. compared to And this comparison output v9 is the voltage control circuit θ
The substrate potential VB supplied to the silicon and the N-type region (8) is controlled. As described above, the substrate potential V is controlled to be high when vA>Vo and low when vA<vo.

なお、上述したC0D(10の導電型は一例に過ぎない
Note that the conductivity type of C0D (10) described above is only an example.

発明の詳細 な説明したようにこの発明によれば、基板電位VBを入
力元強度によってコントロールすることにより、入力光
強度に拘わらず常に一定の撮像出力が得られるので、純
電子的に絞シ装置を構成できる。
As described in detail, according to the present invention, by controlling the substrate potential VB by the input source intensity, a constant imaging output is always obtained regardless of the input light intensity. can be configured.

そのため、機械的な絞り装置の欠点、すなわち装置の大
型化、保守点検、耐久性の問題点を一掃できると共に、
装置全体の軽量化を達成できる。
Therefore, the disadvantages of mechanical drawing devices, namely the large size of the device, maintenance and inspection problems, and durability problems can be eliminated, and
The weight of the entire device can be reduced.

なお、シャッタそのものは他の理由(直射日光によるC
CDの損傷防止等)から付設すべきである。
In addition, the shutter itself may be damaged due to other reasons (C due to direct sunlight).
It should be added to prevent damage to CDs, etc.).

捷だ、入力元強度そのものは全く制御していないので、
自動絞りの動作中でも焦点深度を常に一定にすることが
できる。
Unfortunately, the input source strength itself is not controlled at all, so
The depth of focus can always be kept constant even when the automatic aperture is in operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はkl型オーバーフロードレインヲモっ撮像用C
ODの一例を示す断面図、第2図〜第5図はこの発明に
適用されるCODの動作説明図、第6図はこの発明に係
る固体撮像装置の一例を示す系統図である。 α1はCCD 、αηは平均レベル検出回路、(181
はレベル比較回路、(1ツは基板電位(電圧)VBの制
御回路である。 第1図 J。 第5図 第2図 ↓ B 第3図
Figure 1 shows the kl type overflow drain.
FIGS. 2 to 5 are cross-sectional views showing an example of an OD, FIGS. 2 to 5 are diagrams for explaining the operation of a COD applied to the present invention, and FIG. 6 is a system diagram showing an example of a solid-state imaging device according to the present invention. α1 is a CCD, αη is an average level detection circuit, (181
is a level comparison circuit, (one is a control circuit for substrate potential (voltage) VB. Fig. 1 J. Fig. 5 Fig. 2 ↓ B Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 縦型オーバーフロードレインを有する電荷転送素子を撮
像素子として使用すると共に、その半導体基板に与えら
れる基板電位を撮像出力レベルに応じてft1l:御す
るようにした固体撮像装置。
A solid-state imaging device that uses a charge transfer element having a vertical overflow drain as an imaging element, and controls a substrate potential applied to a semiconductor substrate thereof according to an imaging output level.
JP58170476A 1983-09-14 1983-09-14 Solid-state image pickup device Pending JPS6062281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170476A JPS6062281A (en) 1983-09-14 1983-09-14 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170476A JPS6062281A (en) 1983-09-14 1983-09-14 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6062281A true JPS6062281A (en) 1985-04-10

Family

ID=15905651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170476A Pending JPS6062281A (en) 1983-09-14 1983-09-14 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6062281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191383U (en) * 1987-12-10 1989-06-15
JPH02257777A (en) * 1988-11-17 1990-10-18 Samsung Electron Devices Co Ltd Image pickup device
JPH0474073A (en) * 1990-07-13 1992-03-09 Matsushita Electric Ind Co Ltd Drive method for solid-state image pickup device
JPH07298141A (en) * 1994-04-22 1995-11-10 Lg Semicon Co Ltd Automatic variable anti-blooming bias circuit
US7931923B2 (en) 2002-10-18 2011-04-26 Rheon Automatic Machinery Co., Ltd. Apparatus and method for manufacturing a loaf of bread

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191383U (en) * 1987-12-10 1989-06-15
JPH02257777A (en) * 1988-11-17 1990-10-18 Samsung Electron Devices Co Ltd Image pickup device
JPH0474073A (en) * 1990-07-13 1992-03-09 Matsushita Electric Ind Co Ltd Drive method for solid-state image pickup device
JPH07298141A (en) * 1994-04-22 1995-11-10 Lg Semicon Co Ltd Automatic variable anti-blooming bias circuit
US7931923B2 (en) 2002-10-18 2011-04-26 Rheon Automatic Machinery Co., Ltd. Apparatus and method for manufacturing a loaf of bread

Similar Documents

Publication Publication Date Title
US7235831B2 (en) Light-receiving element and photoelectric conversion device
US6465859B1 (en) CMOS-type solid state imaging device that prevents charge inflow into optical black
US7164447B2 (en) Solid state image pickup device
US20030016296A1 (en) Solid-state imaging device
US20170221957A1 (en) Imaging device and electronic apparatus
JPH02168670A (en) Solid-state image sensing device and manufacture thereof
US4980735A (en) Solid state imaging element
US6803614B2 (en) Solid-state imaging apparatus and camera using the same apparatus
JPH0518265B2 (en)
CA1125422A (en) Solid-state imaging device
US8102443B2 (en) CCD image sensor having charge storage section between photodiode section and charge transfer section
JPS6062281A (en) Solid-state image pickup device
JP6578834B2 (en) Imaging device and imaging apparatus
US5150189A (en) Semiconductor apparatus
US8817145B2 (en) Hybrid CCD—CMOS camera adapted for forming images of moving scenes
JPH01500471A (en) Electronic shutter for image sensor using photodiode
JP3178148B2 (en) Image sensor
US7522204B2 (en) Solid-state imaging device and electronic still camera
JP2884195B2 (en) Solid-state imaging device
JPS60174582A (en) Solid-state image pickup device
JPS60180160A (en) Solid-state image pickup element
JPS5897972A (en) Solid-state image pickup device
JPS6373659A (en) Solid-state image sensor
JPS5897973A (en) Semiconductor image pickup device
JPH0595101A (en) Semiconductor photoelectric conversion device