JPS6061811A - Position correcting device for moving body - Google Patents

Position correcting device for moving body

Info

Publication number
JPS6061811A
JPS6061811A JP58169259A JP16925983A JPS6061811A JP S6061811 A JPS6061811 A JP S6061811A JP 58169259 A JP58169259 A JP 58169259A JP 16925983 A JP16925983 A JP 16925983A JP S6061811 A JPS6061811 A JP S6061811A
Authority
JP
Japan
Prior art keywords
guide
moving body
detection
detected
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169259A
Other languages
Japanese (ja)
Inventor
Hisashi Hozumi
久士 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58169259A priority Critical patent/JPS6061811A/en
Publication of JPS6061811A publication Critical patent/JPS6061811A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To set and change a run course easily and to guide a moving body which runs on a specific run course at low cost by providing a means which corrects the course deviation of the moving body automatically. CONSTITUTION:When the moving body 4 runs while deviating from the course by (l), a magnetic field produced around a guide line 2a is detected at a guide detection point P1. The moving body 4 runs along the guide line 2a by being steered so that the detection values of the magnetic field obtained by detection coils 5a and 5b arranged on the right and left of the moving body 4 are equal to each other, thus correcting the deviation. When the horizontal component of the magnetic field established around guide lines 2a and 2b are detected by the detection coils 5a and 5b, the detected voltages of the coils 5a and 5b are maximum in such a direction that the guide lines 2 and coils 5a and 5b cross each other at right angles, and drop extremely in a prallel direction. The guide detection point P3 is detected from the voltage drop to correct an error in the detection of run distance.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、外部から連続的な支援を受けずに自動走行を
行なうことができる移動体の位置補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a position correction device for a moving body that can automatically travel without receiving continuous support from the outside.

[発明の技術的背景とその問題点] 一般に走行車等の移動体の誘導制御方式としては、電磁
誘導方式および光反射テープ方式等か従来から知られて
いる。
[Technical Background of the Invention and Problems thereof] In general, electromagnetic induction methods, light reflective tape methods, and the like have been known as guidance control methods for moving objects such as traveling vehicles.

電磁誘導方式は、移動体の走行経路に沿って電磁誘導線
を敷設し、移動体にはこの誘導線周囲に発生する磁界を
検出する検出器を搭載して、検出器の検出信号にもとづ
き移動体のステアリング操作を行い、走行経路に沿って
自動走行するものである。
In the electromagnetic induction method, an electromagnetic induction wire is laid along the traveling route of the moving object, and the moving object is equipped with a detector that detects the magnetic field generated around the guiding wire, and the moving object moves based on the detection signal of the detector. The vehicle automatically travels along a route by steering the vehicle's body.

しかしながら、この電磁誘導方式は、床に深さ数cmの
溝を掘って電磁誘導線を埋設するため、床面の溝加工工
事が面倒であり、分岐の多い複雑な経路では数kmに及
ぶ工事が必要となり、膨大な経費と時間を要する欠点が
あるうえに経路の変更が困難になるといった問題点があ
る。
However, with this electromagnetic induction method, a groove several centimeters deep is dug in the floor and the electromagnetic induction wire is buried, so the work to create grooves on the floor surface is troublesome, and if the route is complicated and has many branches, the work can extend over several kilometers. This method requires a large amount of money and time, and has the disadvantage that it is difficult to change the route.

一方、光反射テープ方式は、移動体等の走行や塵埃によ
り床面が汚れると検出不可能となることも多いため、殆
んど実用化されていないのが実情である。
On the other hand, the light-reflecting tape method is rarely put into practical use because it often becomes impossible to detect when the floor surface is dirty due to movement of moving objects or dust.

そこで新誘導方式の171発が望まれている。移動体の
誘導制御の理想的な姿は、外部から支援を一切受けずに
目標地点に到達できる完全自律型の走行である。これは
車輪の回転から移動距離を検出し自己位置を判断し自動
走行する方法があるが、車輪のすべりが誤差となるため
ずれてしまい長距離走行には不適当である。
Therefore, 171 bullets with a new guidance system are desired. The ideal form of guidance and control for moving objects is completely autonomous driving that allows the object to reach its destination without any external support. There is a method for automatically traveling by detecting the distance traveled from the rotation of the wheels and determining the self-position, but this is not suitable for long-distance travel because the slippage of the wheels causes an error.

また、ジャイロを使って自己の姿勢を検出しながら走行
するジャイロ航法式などのアイデアが提唱されているが
、小形ジャイロの開発、精度および価格等、種々の問題
点があり実用化には至っていないのが実情である。
In addition, ideas such as a gyro navigation system that uses a gyro to detect one's own attitude while driving have been proposed, but they have not been put into practical use due to various problems such as the development of small gyros, accuracy, and cost. That is the reality.

し発明の目的] 本発明は上記従来の問題点を解決するためになされたも
ので、走行経路設定、変更が容易でかつコストが低い移
動体の誘導を行うことができる移動体の位置補正装置を
提供することを目的とする。
OBJECT OF THE INVENTION] The present invention has been made to solve the above-mentioned conventional problems, and provides a position correction device for a moving object that can easily set and change a travel route and guide a moving object at low cost. The purpose is to provide

[発明の概要] 本発明は上記目的を達成するために、所定の走行経路を
自動走行する移動体のコースずれ補正を行うことができ
る手段を施したもので、前記走行経路の決められた位置
に発振器と電磁誘導線あるいは光反射帯からなるガイド
(基準点)を設け、移動体の軌道修正と、移動体の検出
距離すなわちエンコーダの出力パルス数の計数値補正を
自動的に行い、当所の走行制御データで引つづき自動走
行ができる移動体の位置補正装置である。
[Summary of the Invention] In order to achieve the above object, the present invention provides means for correcting the course deviation of a moving object that automatically travels along a predetermined travel route. A guide (reference point) consisting of an oscillator and an electromagnetic induction wire or an optical reflection band is installed at the oscillator, and the trajectory of the moving object is corrected and the detected distance of the moving object, that is, the count value correction of the encoder output pulse number is automatically corrected. This is a position correction device for a moving body that can continue to automatically travel using travel control data.

[発明の実施例] 以下本発明に係る移動体の位置補正装置の各々の実施例
を図面によって詳しく説明する。
[Embodiments of the Invention] Hereinafter, each embodiment of the position correction device for a moving body according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例を示したもので、走行経
路1上にガイド2として電磁誘導線2a。
FIG. 1 shows a first embodiment of the present invention, in which an electromagnetic induction wire 2a is provided as a guide 2 on a travel route 1.

2bが設けられている。誘導線2aには発振器3が接続
されている。また移動体4の左右には検出コイル5a 
、5bが設置されている。ガイド2はガイド位置Pとし
てガイド検出点PI、P2、P3の長さを有している。
2b is provided. An oscillator 3 is connected to the guide wire 2a. Furthermore, detection coils 5a are located on the left and right sides of the moving body 4.
, 5b are installed. The guide 2 has guide detection points PI, P2, and lengths of P3 as the guide position P.

誘導線2a、2bには発振器3の出力、例えば10kH
z程度の低周波電流を流す。また第1図のように誘導線
2a、2bを敷設した場合、誘導線2aと2bは同方向
の電流が流れる。1−なわち誘S線2a、2bの周囲に
発生する磁界の方向は同一となる。
The output of the oscillator 3, for example 10kHz, is connected to the guide wires 2a and 2b.
Flow a low frequency current of about z. Further, when the guide wires 2a and 2b are laid as shown in FIG. 1, current flows in the same direction through the guide wires 2a and 2b. 1- That is, the directions of the magnetic fields generated around the induced S wires 2a and 2b are the same.

第2図は、誘導線2a12bの周囲に発生する磁界の水
平成分を移動体4に設置した検出コイル5aあるいは5
bで検出した場合の特性図である。
FIG. 2 shows the horizontal component of the magnetic field generated around the guide wire 2a12b detected by a detection coil 5a or 5 installed on the moving body 4.
It is a characteristic diagram when detected by b.

第2図(イ)はガイド位置Pの検出点P1からP2位置
の検出特性である。それぞれ誘導線2aおよび2bの上
部が最大検出値となる。一方策2図(ロ)はガイド位置
Pの検出点P2からP3位置の検出特性である。誘導線
2a 、2bに発生する磁界の方向が同一であるから合
成される。
FIG. 2(A) shows the detection characteristics from the detection point P1 to the P2 position of the guide position P. The maximum detection value is at the top of the guide lines 2a and 2b, respectively. On the other hand, Figure 2 (b) shows the detection characteristics from the detection point P2 to P3 position of the guide position P. Since the directions of the magnetic fields generated in the guide wires 2a and 2b are the same, they are combined.

ここで移動体4が所定の位置より第1図中βだけずれ1
C状態で走行すると、ガイド検出点P+’地点で、誘導
線2a周囲に発生する磁界を検出する。
Here, the moving body 4 is shifted by β in FIG. 1 from the predetermined position.
When the vehicle travels in state C, a magnetic field generated around the guide wire 2a is detected at the guide detection point P+'.

この誘導線28周囲に発生ずる磁界を移動体4の左右に
設置した検出コイル5a、5bの検出値が等しくなるよ
うに移動体4のステアリング操作を行うことにより、移
動体4は誘導線2aに沿って走行する。ずなわち軌道を
修正することができる。
By steering the moving body 4 so that the magnetic field generated around the guiding wire 28 becomes equal to the detected values of the detection coils 5a and 5b installed on the left and right sides of the moving body 4, the moving body 4 is moved to the guiding wire 2a. run along. In other words, the trajectory can be corrected.

移動体4のずれ方向が逆の場合は誘導m 2 bに沿っ
て走行し、軌道を修正する。
When the moving body 4 is shifted in the opposite direction, it travels along the guide m 2 b and corrects the trajectory.

また、誘導線2a、2bの周囲に発生ずる磁界の水平成
分を検出コイル5a 、5bで検出覆る場合誘導線2と
検出コイル5a、5bが直交する向きが検出電圧最大と
なり、誘導線2a 、2bと検出コイル5a 、5bが
平行になると著しく検出電圧が低下する特性がある(第
3図)。この電圧低下でガイド検出点P3を検出して、
走行距離の検出誤差を補正する。
Furthermore, when detecting and covering the horizontal component of the magnetic field generated around the guide wires 2a and 2b with the detection coils 5a and 5b, the detection voltage is maximum in the direction in which the guide wire 2 and the detection coils 5a and 5b are orthogonal, and the detection voltage is maximum when the guide wires 2a and 2b are perpendicular to each other. There is a characteristic that when the detection coils 5a and 5b are parallel to each other, the detection voltage decreases significantly (FIG. 3). Guide detection point P3 is detected by this voltage drop,
Corrects the detection error of mileage.

第4図は移動体とガイドとの制御系を示すブロツク図で
ある。検出コイル5a 15bの検出信号は誘導回路1
1とこの誘導回路11を介して距離補正回路12に入力
される。誘導回路11と距離補正回路12のそれぞれの
出力はインターフェース13を介してマイクロコントロ
ーラ14に入力される。
FIG. 4 is a block diagram showing a control system for the movable body and the guide. The detection signals of the detection coils 5a and 15b are the induction circuit 1
1 and is input to the distance correction circuit 12 via the induction circuit 11. The respective outputs of the guidance circuit 11 and the distance correction circuit 12 are input to the microcontroller 14 via the interface 13.

誘導回路11は入力バッファ15a、15bと増幅回路
16a、16bと整流回路17a117bおよび合成回
路18で構成されている。一方、距離補正回路12は比
較回路1つと基準信号発生回路20で構成されている。
The induction circuit 11 includes input buffers 15a and 15b, amplifier circuits 16a and 16b, rectifier circuits 17a and 117b, and a synthesis circuit 18. On the other hand, the distance correction circuit 12 includes one comparison circuit and a reference signal generation circuit 20.

次にこの動作を説明する。移動体4が所定の位置より℃
だけずれてガイド位置Pの検出点P1にさしかかると、
誘導m2aの周囲に発生した磁界が検出コイル5aおよ
び5bに検出される。検出コイル5a’、5bは磁界の
強度に応じて所定の大きさの検出信号をそれぞれ出力す
る。検出信号は該入力バッファ15a、15.bを介し
て該増幅回路16a、16bで増幅されたのち該整流回
路17a 、17bでそれぞれ整流される。該整流回路
17a、17bの出力端子はそれぞれ合成回路18に接
続されている。合成回路18では、整流回路17aの出
力信号と整流回路17bの出力信号の差、すなわち雨検
出コイル5a、5bからの信号差をとってインタフェー
ス13を介してマイクロコントローラ14に送出する。
Next, this operation will be explained. The moving body 4 is at a temperature lower than the predetermined position.
When it reaches the detection point P1 of the guide position P with a deviation of
The magnetic field generated around the induction m2a is detected by the detection coils 5a and 5b. The detection coils 5a' and 5b each output a detection signal of a predetermined magnitude depending on the strength of the magnetic field. The detection signal is sent to the input buffers 15a, 15. After being amplified by the amplifying circuits 16a and 16b via the amplifier circuit b, the signals are rectified by the rectifying circuits 17a and 17b, respectively. The output terminals of the rectifying circuits 17a and 17b are connected to a combining circuit 18, respectively. The synthesis circuit 18 takes the difference between the output signal of the rectifier circuit 17a and the output signal of the rectifier circuit 17b, that is, the difference in signals from the rain detection coils 5a and 5b, and sends it to the microcontroller 14 via the interface 13.

マイクロコントローラ14ではこの合成回路18の出力
、ずなわち検出コイル5a 、5bの検出信号差が小さ
くなるよう図示はしないがステアリングモータを駆動し
、ステアリング操作を行う。その結果、移動体4はガイ
ド位置Pの検出点P1から誘導線2aに沿って走行し、
軌道修正することができる。
The microcontroller 14 drives the steering motor (not shown) to perform steering operation so that the output of the synthesis circuit 18, that is, the difference in detection signals between the detection coils 5a and 5b becomes small. As a result, the moving body 4 travels along the guide line 2a from the detection point P1 of the guide position P,
It is possible to correct the course.

また、整流回路17a、17bの出力、この第4図の実
施例では17bの出ノj信号は距離補正回路12の比較
回路19に入力される。この比較回路19の一方の入力
端子には基準信号発生回路の出力端子が接続している。
Further, the outputs of the rectifying circuits 17a and 17b, and the output j signal of 17b in the embodiment shown in FIG. One input terminal of this comparison circuit 19 is connected to an output terminal of a reference signal generation circuit.

比較回路1つは整流回路1711の出力信号と基準信号
発生回路20の出力信号を比較し、整流回路17bの出
力信号の高、低を検出し、インタフェース13を介して
マイクロコントローラ14に送出づ−る。そこでマイク
ロコントローラ14では、ガイド位置Pの検出点P1に
移動体4がさしかかったことを比較回路19の出力から
判断し、移動体4の走行制御を所定のプログラム走行か
ら、前記合成回路18の出力信号に基づいて制御し、軌
道修正を行う。ざらにガイド位置Pの検出点P3を過ぎ
たことを比較回路19の出力から判断し、移動体の走行
距離情報データを補正し、再び所定のプログラム走行を
行う。
One comparison circuit compares the output signal of the rectification circuit 1711 and the output signal of the reference signal generation circuit 20, detects high or low of the output signal of the rectification circuit 17b, and sends it to the microcontroller 14 via the interface 13. Ru. Therefore, the microcontroller 14 determines from the output of the comparison circuit 19 that the moving object 4 has approached the detection point P1 of the guide position P, and controls the traveling of the moving object 4 from the output of the synthesis circuit 18 according to a predetermined program. Control based on signals and make trajectory corrections. It is determined from the output of the comparison circuit 19 that the vehicle has roughly passed the detection point P3 of the guide position P, the travel distance information data of the moving object is corrected, and the predetermined program travel is performed again.

次に第5図から第7図を参照して本発明の第2の実施例
を説明する。なお、第1図と同一部分は同一符号で示し
重複する部分の説明は省略する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 5 to 7. Note that the same parts as in FIG. 1 are indicated by the same reference numerals, and the explanation of the overlapping parts will be omitted.

第5図はガイド2としての誘導線を平行な2本の誘導線
2C12dとなるように設置したものである。誘導線2
c、2dはそれぞれ逆方向に発振器3の電流が流れるた
め、第6図に示すような特性どなる。ずなわら、誘導線
2Gと2dの周囲に発生する磁界の強度が同じで向きが
逆方向となるため誘導線2Cと2dの中央では検出電圧
が零となり誘導!!!2Gあるいは2dに近づくにつれ
て検出電圧が高くなる。そこで前記合成回路18の出力
、すなわち検出コイル5a 、5bの信号差が小さくな
るようにステアリング操作を行う。そこで移動体4は第
7図に示すように、誘導線2C12dの中央に向かって
走行し、軌道修正することができる。
In FIG. 5, the guide wires as the guide 2 are installed so as to form two parallel guide wires 2C12d. Guide wire 2
Since the currents of the oscillator 3 flow in the opposite directions at the points c and 2d, the characteristics are as shown in FIG. 6. However, since the magnetic fields generated around the guiding wires 2G and 2d have the same strength and are in opposite directions, the detected voltage becomes zero at the center of the guiding wires 2C and 2d, leading to induction! ! ! The detection voltage increases as it approaches 2G or 2d. Therefore, the steering operation is performed so that the output of the combining circuit 18, that is, the signal difference between the detection coils 5a and 5b becomes small. Therefore, as shown in FIG. 7, the moving body 4 can travel toward the center of the guide line 2C12d and correct its trajectory.

第8図は本発明の第3の実施例を示したもので、ガイド
に光反射帯(テープ)21.21a 、21bを用い、
移動体4にラインセンサ22を用い、ガイド位置P1で
光反射テープ21aあるいは21bを検出し、該光反射
テープ21a、2コbに沿って走行制御を行い、軌道を
修正するものである。
FIG. 8 shows a third embodiment of the present invention, in which light reflective bands (tapes) 21, 21a and 21b are used as guides,
A line sensor 22 is used in the moving body 4 to detect the light reflecting tape 21a or 21b at the guide position P1, and the trajectory is corrected by controlling travel along the light reflecting tape 21a or 2b.

その他の説明は第1の実施例とほぼ同様なので省略する
Other explanations will be omitted since they are almost the same as those in the first embodiment.

[発明の効果] 以上説明したように本発明によれば、移動体の移動距離
検出を車輪等の回転軸に連結したエンコーダ等で検出し
、この検出値をもとに所定の走行経路を走行制御データ
でプログラム走行する方式において、適所に設けたガイ
ドで移動体の向き、ずれを自動修正すると同時に検出距
離の誤差も補正づるものであるから、所定の走行制御デ
ータで引き続き自動走行ができる。
[Effects of the Invention] As explained above, according to the present invention, the moving distance of a moving object is detected by an encoder connected to a rotating shaft such as a wheel, and based on this detected value, the moving object is driven along a predetermined traveling route. In the system of programmatic driving using control data, the orientation and deviation of the moving object are automatically corrected using guides placed in appropriate locations, and at the same time, errors in detected distance are also corrected, so automatic driving can continue using predetermined driving control data.

またガイド間は走行制御データを修正するだけで自由に
コース変更ができる。
Additionally, the course can be changed freely between guides by simply modifying the travel control data.

さらに連続して誘導線等を敷設する必要がないため、メ
ンテナンスの面倒が少なく、故障の発生も少ない移動体
の位置補正装置を提供することができる。
Furthermore, since there is no need to continuously lay guide wires or the like, it is possible to provide a position correction device for a moving body that requires less maintenance and less occurrence of failure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例における走行経路とガイドを示す
平面図、第2図および第3図は第1図にお【プる検出コ
イルの検出特性図、第4図は第1図における制御系を示
すブロック図、第5図は第2の実施例における走行経路
とガイドを示す平面図、第6図は第5図における検出コ
イルの検出特性図、第7図は第5図にお【プる誘導線と
検出コイルとの関係を示す概念図、第8図は第3の実施
例におけるガイドに光反躬帝を用いた例を示す平面図で
ある。 1・・・・・・・・・・・・・・・走行経路2・・・・
・・・・・・・・・・・ガイド2a 、 2b 、 :
2G 、2d ・・・・・・・・・・・・・・・電磁誘導線(誘導線)
3・・・・・・・・・・・・・・・発振器4・・・・・
・・・・・・・・・・移動体5a 、5b・・・検出コ
イル P・・・・・・・・・・・・・・・ガイド位置PI、P
2、P3・・・ガイド検出点 11・・・・・・・・・・・・誘導回路12・・・・・
・・・・・・・距離補正回路13・・・・・・・・・・
・・インタフェース14・・・・・・・・・・・・マイ
クロコントローラ21.21a、21b・・・光反射帯
(テープ)22・・・・・・・・・・・・ラインセンザ
代理人弁理士 則 近 憲 佑 (ぽか1名〉 第6図 第7図 第8図 h P2 P3
Fig. 1 is a plan view showing the running route and guide in the first embodiment, Figs. 2 and 3 are detection characteristic diagrams of the detection coil shown in Fig. 1, and Fig. 4 is a plan view showing the traveling route and guide in the first embodiment. FIG. 5 is a block diagram showing the control system, FIG. 5 is a plan view showing the travel route and guide in the second embodiment, FIG. 6 is a detection characteristic diagram of the detection coil in FIG. 5, and FIG. 7 is the same as in FIG. [A conceptual diagram showing the relationship between the guide wire and the detection coil. FIG. 8 is a plan view showing an example in which a light guide is used as a guide in the third embodiment. 1・・・・・・・・・・・・・・・Driving route 2・・・・
・・・・・・・・・Guide 2a, 2b, :
2G, 2d ・・・・・・・・・・・・Electromagnetic induction wire (guidance wire)
3・・・・・・・・・・・・・Oscillator 4・・・・
......Moving body 5a, 5b...Detection coil P...Guide position PI, P
2, P3...Guide detection point 11...Induction circuit 12...
・・・・・・Distance correction circuit 13・・・・・・・・・・
...Interface 14...Microcontroller 21.21a, 21b...Light reflective band (tape) 22...Linesenza agent patent attorney Noriyuki Chika (Poka 1 person) Figure 6 Figure 7 Figure 8 h P2 P3

Claims (1)

【特許請求の範囲】 (1)所定の走行経路を自動走行する移動体の位置補正
装置において、前記走行経路の決められた位置に、前記
走行経路からずれた移動体の軌道を修正させるためのガ
イドを設け、このガイドの位置内ではガイドに従って走
行する誘導回路と、このガイド通過に応じて走行距離の
検出誤差を補正する距離補正回路とを具備したことを特
徴とする移動体の位置補正装置。 (2)ガイドは、電磁誘導線を用い、前記走行経路の左
右近傍から所定の位置まで同方向の磁界が発生ずるよう
に前記電磁誘導線を設置したことを特徴とする特許請求
の範囲第1項記載の移動体の位置補正装置。 (3〉ガイドは、電磁誘導線を用い、前記走行経路の左
右近傍から所定の位置の左右等距離位置まで逆方向の磁
界が発生するように前記電磁誘導線を設置したことを特
徴とする特許請求の範囲第1項記載の移動体の位置補正
装置。 (4)ガイドは、光反射帯を用い、前記走行経路の左右
近傍から所定の位置まで光反射帯を設置したことを特徴
とする特許請求の範囲第1項記載の移動体の位置補正装
置。
[Scope of Claims] (1) In a position correction device for a moving object that automatically travels along a predetermined travel route, the device is configured to correct the trajectory of a mobile object that has deviated from the travel route to a determined position on the travel route. A position correction device for a moving body, characterized in that a guide is provided, and a guidance circuit that travels according to the guide within the position of the guide, and a distance correction circuit that corrects a detection error in travel distance according to passage of the guide. . (2) The guide uses an electromagnetic induction wire, and the electromagnetic induction wire is installed so that a magnetic field is generated in the same direction from the left and right vicinity of the travel route to a predetermined position. A position correction device for a moving body as described in 2. (3) A patent characterized in that the guide uses an electromagnetic induction wire, and the electromagnetic induction wire is installed so that a magnetic field in the opposite direction is generated from the left and right vicinity of the travel route to a position equidistant to the left and right of a predetermined position. A position correction device for a moving body according to claim 1. (4) A patent characterized in that the guide uses a light reflection band, and the light reflection band is installed from the left and right vicinity of the traveling route to a predetermined position. A position correction device for a moving body according to claim 1.
JP58169259A 1983-09-16 1983-09-16 Position correcting device for moving body Pending JPS6061811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169259A JPS6061811A (en) 1983-09-16 1983-09-16 Position correcting device for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169259A JPS6061811A (en) 1983-09-16 1983-09-16 Position correcting device for moving body

Publications (1)

Publication Number Publication Date
JPS6061811A true JPS6061811A (en) 1985-04-09

Family

ID=15883186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169259A Pending JPS6061811A (en) 1983-09-16 1983-09-16 Position correcting device for moving body

Country Status (1)

Country Link
JP (1) JPS6061811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165407A (en) * 1990-03-28 1992-06-11 Komatsu Ltd Detection device for course deviation of moving body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165407A (en) * 1990-03-28 1992-06-11 Komatsu Ltd Detection device for course deviation of moving body

Similar Documents

Publication Publication Date Title
JPS6233612B2 (en)
JPS6233613B2 (en)
JPS6061811A (en) Position correcting device for moving body
JP2001209429A (en) Device for correcting position and direction of unmanned conveying vehicle
JPS60175117A (en) Device for correcting posture of unmanned carrying car
JP3735897B2 (en) Unmanned vehicle guidance system
JPS61151421A (en) Calibration of direction detector of unmanned piloting of vehicle
JPH1020934A (en) Guide steering device for unmanned driving vehicle
JP3206312B2 (en) Unmanned vehicle branching system
JPH03127105A (en) Steering device of magnetic induction type unmanned carrying car
JP2987858B2 (en) Travel control method for carrier vehicles
JPH036521B2 (en)
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JP3846828B2 (en) Steering angle control device for moving body
JPH036524B2 (en)
JPS61110210A (en) Guiding path and running system of unmanned carrier car
KR100287834B1 (en) Method and Apparatus for Guiding a Driverless Vehicle Using a Sensor Tracking a Cable Emitting and Electromagnetic Field
JPS60230211A (en) Automatic running car
JPS62221707A (en) Gyro-guide type unmanned carrier
JPH09145393A (en) Position detector for unattended autonomous traveling carrier
JPS62175813A (en) Method for guiding curved route of unmanned vehicle
JPS6341081B2 (en)
JP2582655B2 (en) Moving body course deviation detection device
JPS61136110A (en) Guiding device on unmanned truck
JPS6327203Y2 (en)