JPS6061147A - Method and device for producing continuously fine metallic wire - Google Patents

Method and device for producing continuously fine metallic wire

Info

Publication number
JPS6061147A
JPS6061147A JP16996883A JP16996883A JPS6061147A JP S6061147 A JPS6061147 A JP S6061147A JP 16996883 A JP16996883 A JP 16996883A JP 16996883 A JP16996883 A JP 16996883A JP S6061147 A JPS6061147 A JP S6061147A
Authority
JP
Japan
Prior art keywords
liquid
liquid layer
metallic wire
fine metallic
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16996883A
Other languages
Japanese (ja)
Other versions
JPH0478383B2 (en
Inventor
Teru Tanimura
谷村 暉
Hisayasu Tsubata
津幡 久保
Shoji Tamamura
玉村 昇司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP16996883A priority Critical patent/JPS6061147A/en
Publication of JPS6061147A publication Critical patent/JPS6061147A/en
Publication of JPH0478383B2 publication Critical patent/JPH0478383B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • B22D11/062Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces

Abstract

PURPOSE:To enable continuous production of a fine metallic wire by injecting a molten metal jet to a stable liquid layer formed by the spiral motion approximately equal to rotating motion to cool quickly and solidify said metal and taking out the resulted fine metallic wire at the water path of the above-described liquid. CONSTITUTION:A liquid is supplied from a nozzle 14 to a water path 13 having parts 13a, 13b, 13c drawing a spiral orbit and the motion equal to rotating motion is applied to the liquid to act centrifugal force thereby forming a stable liquid layer. The jet flow 12 of a molten metal injected from a nozzle attached to the tip of a molten furnace system 11 toward the loop 13b is quickly cooled and solidified in the liquid layer traveling by drawing the rotating orbit together with the path 13. The resulted fine metallic wire is taken out at one end 13d of the water path and is taken off to a winder 15. The continuous production of the fine metallic wire with high productivity at a low working cost is thus made possible.

Description

【発明の詳細な説明】 本発明は金材細線の連続製造方法及び装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for continuously manufacturing thin metal wires.

近年、溶融金属より円形断面を有する金属細線を製造す
る方法として、いわゆる回転液中紡糸法が提案され、そ
の技術確立か急速に進んでいる。
In recent years, a so-called rotating liquid spinning method has been proposed as a method for producing thin metal wires having a circular cross section from molten metal, and the technology is rapidly becoming established.

即ち、特開昭56−165016号、特開昭57−52
550号、特開昭57−79052 Jij等がある。
That is, JP-A-56-165016, JP-A-57-52
No. 550, JP-A-57-79052 Jij et al.

これらの技術の特徴は、回転する円筒状ドラム内周面に
遠心力による液体層を形成し、その液体層中に溶融金属
ジェットとして噴出し、その溶融金属を急冷凝固させて
金属細線を製造することであり、この方法は断面か円形
で、且つ優れた諸性質を有する金網細線か容易に得られ
、従来法に比し冷却速度を著しく大きくすることかでき
、非晶質金員或いは微細結晶粒含有金属を材料とする金
属細線の製造に特に適していることか知られている。本
発明者等は、前記開示文献等の如き回転液中紡糸法の製
造装置並びに製造技術の開発に鋭意研究を続けてきたか
、ここにきて大きな障壁にぶつかったのである。即ち、
該回転液中紡糸法は、回転する円筒状ドラム内周向に遠
心力で冷却液体層を形成し、この冷却液体層の表面並び
に内部を安定に保つことにより、ジェットとして噴出し
た溶融金属流か乱れることなく安定に該冷却液体層へ浸
入せしめ、且つ溶融金属流か急冷凝固した後、遠心力に
より円筒状ドラムの内壁に安定して巻き収られて所望の
金属細線となることを特徴とするものである。従って従
来のこの回転液中紡糸法によって金属細線を製造する手
順は、第1図に示す如く先ず、予じめ準備した所定の合
金組成を有する母合金の所定量を加熱装置(1)のつい
た溶融炉(2)の中に仕込み、加熱溶融して溶融金属(
3)となし溶融炉(2)の先端部に付設する所定の孔径
を何するノズル(4)からの噴出を待機する。次に、円
筒状ドラム(5)を所定の回転数で回転させ、図示しな
い供給装置より所定量の冷却液体(6)を供給する。続
いて、溶融炉系〔加熱装置(1)及び溶融炉(2)1を
図のように円筒状ドラム(5)の内側の空間部の所定位
置にセットする。しかる後に、溶融炉(2)に導通ずる
管(7)より所定の圧力で不活性ガスを導入し、溶融金
属に圧力をかけ、ノズル(4)よりジェット(8)とし
て噴出する。ジェット(8)は回転する冷却液体に浸入
し、急冷凝固して金属細線(9)(断面を示す)となり
、円筒状ドラム(5)の内壁に巻き取られる。通常、あ
る程度の長さの金属細線を巻き取る必要かあるので、溶
融炉系〔加熱装置(1)及び溶融炉(2)〕は円筒状ド
ラム(5)の幅方向〔矢印叫方向)にトラバースされる
。最初に仕込んだ母合金が全部噴出され終った後、溶融
炉系を円筒状ドラム(5)の空間内より外へ移動し、続
いて円筒状ドラム(5)の回転を止め、落下する冷却液
体を図示しない受け容器で受けた後に、製造された金属
細線の束を収り出す。上記した手順を1サイクルとする
バッチ式の製造方法か、回転液中紡糸法の従来の方法で
あった。従って容易に推察されるように、機械設備の大
きさから受ける制約のために1バッチ当りの金属細線の
量が制限されること、1バツチ毎の前準備及び後処理の
作業に時間を要すること等の理由により、非常に生産性
の低いのか従来の回転液中紡糸法の欠点であり、側底企
業化し得ないのが実情であった。
The characteristics of these technologies are that a liquid layer is formed by centrifugal force on the inner peripheral surface of a rotating cylindrical drum, a jet of molten metal is ejected into the liquid layer, and the molten metal is rapidly solidified to produce thin metal wires. This method can easily obtain thin wire mesh wires with a circular cross section and excellent properties, and can significantly increase the cooling rate compared to conventional methods. It is known that it is particularly suitable for producing fine metal wires made of grain-containing metals. The inventors of the present invention have continued to conduct intensive research into the development of manufacturing equipment and manufacturing technology for spinning in a rotating liquid as disclosed in the above-mentioned disclosures, but they have now come across a major obstacle. That is,
This spinning method uses centrifugal force to form a cooling liquid layer along the inner periphery of a rotating cylindrical drum, and by keeping the surface and interior of this cooling liquid layer stable, a molten metal flow ejected as a jet is formed. The molten metal stream stably enters the cooling liquid layer without disturbance, and after the molten metal stream is rapidly solidified, it is stably wound around the inner wall of the cylindrical drum by centrifugal force to form the desired thin metal wire. It is something. Therefore, in the conventional procedure for manufacturing fine metal wires by this rotating liquid spinning method, as shown in FIG. The molten metal (
3) Wait for ejection from a nozzle (4) with a predetermined hole diameter attached to the tip of the tomato melting furnace (2). Next, the cylindrical drum (5) is rotated at a predetermined number of rotations, and a predetermined amount of cooling liquid (6) is supplied from a supply device (not shown). Subsequently, the melting furnace system [heating device (1) and melting furnace (2) 1 are set at predetermined positions in the space inside the cylindrical drum (5) as shown in the figure. Thereafter, an inert gas is introduced at a predetermined pressure through a pipe (7) connected to the melting furnace (2), and pressure is applied to the molten metal, which is ejected as a jet (8) from a nozzle (4). The jet (8) enters the rotating cooling liquid, rapidly solidifies into a thin metal wire (9) (shown in cross section), and is wound onto the inner wall of the cylindrical drum (5). Usually, it is necessary to wind up a certain length of thin metal wire, so the melting furnace system [heating device (1) and melting furnace (2)] traverses in the width direction [in the direction of the arrow] of the cylindrical drum (5). be done. After all the initially charged master alloy has been ejected, the melting furnace system is moved from the inside of the cylindrical drum (5) to the outside, and then the rotation of the cylindrical drum (5) is stopped and the cooling liquid falls. is received in a receiving container (not shown), and then the produced bundle of thin metal wires is collected. The conventional method was a batch-type production method in which the above-mentioned procedure is completed in one cycle, or a conventional method of spinning in a rotating liquid. Therefore, as can be easily inferred, the amount of thin metal wire per batch is limited due to constraints imposed by the size of the machinery and equipment, and preparatory and post-processing operations for each batch require time. For these reasons, the productivity is extremely low, and the conventional rotating liquid spinning method has its drawbacks, and the actual situation is that it cannot be turned into a bottom-end company.

本発明者らは上記した障害を克服し、且つ回転液中紡糸
法の基本的な特徴を生かした、生産性か高く、加工コス
トの低い金属細線の連続製造方法及び装置を提供するも
のである。
The present inventors have overcome the above-mentioned obstacles, and have provided a continuous manufacturing method and apparatus for thin metal wires with high productivity and low processing costs, which take advantage of the basic characteristics of the spinning method. .

以下に本発明の実施例について図面に基づいて説明する
。第2図は本発明を原理的に示した概略図である。図に
おいてaυは金属の溶融炉系、(2)は該溶融炉系Ql
)の先端部に付設するノズルより噴出する溶融金属ジェ
ット流、(2)は(taa)(tab)(xac)の如
き螺旋軌道を描いて走行する水路であり、例えばゴムベ
ルトに溝を9設し、一定形状の冷却液体層を保持し得る
構造である。α膏は該水路(6)に液体を供給するノズ
ルであり、走行する水路@の速度、形状等の条件によっ
て液体の供給量を調整し得るものである。図の如<、(
18b)のループ内で噴出せしめた溶融金属ジェット流
(6)は水路(至)と共に回転軌道を描きなから走行す
る冷却液体層の中で急冷凝固し、しかも遠心力の働らき
によって、水路0の底部に引き取られ、金属細線となっ
て(taC)のループを経由して水路(至)の一端(1
8d)の部分で液体層と分離し、巻取機0!19に巻き
取られる。
Embodiments of the present invention will be described below based on the drawings. FIG. 2 is a schematic diagram showing the principle of the present invention. In the figure, aυ is the metal melting furnace system, and (2) is the melting furnace system Ql.
) is a molten metal jet stream ejected from a nozzle attached to the tip of the molten metal jet stream, and (2) is a waterway that runs in a spiral trajectory such as (taa), (tab), and (xac), for example, a rubber belt with nine grooves. , a structure that can maintain a cooling liquid layer of a certain shape. The α paste is a nozzle that supplies liquid to the waterway (6), and the amount of liquid supplied can be adjusted depending on conditions such as the speed and shape of the running waterway. As shown in the figure
The molten metal jet stream (6) ejected in the loop of 18b) rapidly cools and solidifies in the cooling liquid layer that travels in a rotating orbit with the waterway (to), and due to the action of centrifugal force, the molten metal jet stream (6) It is taken up to the bottom of the waterway, becomes a thin metal wire, passes through the loop of (taC), and passes through the end (1) of the waterway.
It separates from the liquid layer at the part 8d) and is wound up by winder 0!19.

水路−を形成するゴムベルトは方向転換し、エンドレス
で水路(至)に液体を供給する他端位置(1:1le)
に戻る。水路(至)に螺旋軌道を描かせる方法としては
、例えば第8図(8)の如きレールユニットαQを連結
することによって螺旋軌道を描く固定レールを作成し、
そのレールに第8図の)の如き形状を有するエンドレス
のベルトaηを装着する方法がある。
The rubber belt that forms the waterway changes direction and reaches the other end position (1:1le) that endlessly supplies liquid to the waterway.
Return to As a method for drawing a spiral trajectory in the waterway, for example, a fixed rail drawing a spiral trajectory is created by connecting rail units αQ as shown in FIG. 8 (8),
There is a method of attaching an endless belt aη having a shape as shown in FIG. 8 to the rail.

ここで該固定レール上を該ベルトσηが走行するに際し
、摩擦抵抗を減らしその走行を滑らかにするため、圧搾
空気を導入管(ト)よシ該レールに導き、該レールとベ
ルト@との摺#面に空気層を形成せしめる所謂エアーベ
アリンジ方式を採用する方法がある。又第4図(A)(
B)に示すように車輪Q(Jによる走行方式、或いは第
5図囚の)に示すように電磁石…Q1走行方式等を採用
することもできる。第2図でt;L−(18a)(18
c)の8個のループ部分を有する水路0を示したか、必
ずしもこれに限定することばなく、例えば水路時の走行
速度か速い場合の液体層の安定化に必要なループの故を
任意に選べば良く、シかも前記したレールユニットを組
み合わせれば容易に装置を製作することかできる。
Here, when the belt ση runs on the fixed rail, in order to reduce frictional resistance and make the running smooth, compressed air is guided to the rail through the introduction pipe (T), and the sliding between the rail and the belt @ is There is a method that employs the so-called air bearing method in which an air layer is formed on the # side. Also, Figure 4 (A) (
As shown in B), it is also possible to adopt a running system using wheels Q (or J, or an electromagnet Q1 running system as shown in Figure 5). In Figure 2, t;L-(18a)(18
The water channel 0 having 8 loop portions in c) is shown, but it is not necessarily limited to this, but for example, if the loop portion necessary for stabilizing the liquid layer when the running speed in the water channel is high, it may be selected arbitrarily. The device can be easily manufactured by combining the rail units described above.

以上述べた如く、本発明は回転運動と略等しい螺旋運動
によって形成される安定な液体層に向けて溶融金属ジェ
ット流を噴出し、急冷凝固させて金属細線を作ると共に
、液体層を形成する水路の一部より、該金属細線を取り
出すことか可能であることによって、金属細線の連続製
造を可能ならしめたものであり、生産性か高く、金属細
線を安価に提供できる。
As described above, the present invention jets a molten metal jet stream toward a stable liquid layer formed by a spiral motion that is substantially equivalent to a rotational motion, rapidly solidifies the molten metal jet flow to create a thin metal wire, and also provides a channel for forming a liquid layer. Since it is possible to take out the thin metal wire from a part of the wire, it is possible to continuously manufacture the thin metal wire, and the productivity is high and the thin metal wire can be provided at low cost.

実施例 第2図及び第8図に示した装置を用い、Fe75S目0
Bls(&字は原子%)なる組成の合金を連続的に13
20℃で溶解し、Q、15wOの直径を有するノズルよ
り4BKgfkiの圧力をかけて連続的に噴出した。ベ
ルトは幅20寵、深さ15mmの形状を有し、水供給ノ
ズルより5℃の水を連続的に供給し、ゴムベルトの溝に
一杯になる如く供給量を調整し、づムベtルトを700
1m1nの速度で走行させた。ゴムベルトは8個の略5
00 tm直径の螺旋を描かせ、その中間の螺旋の部分
で上記噴出位置を設定した。ベルトの全長は26mとし
た。巻き取った金属細線は直径0.15mでその断面は
略真円であり、又実質的に非晶質であった。又金属細線
の連続性は巻き取りでのドツフィング時の強制切替えを
除いて、延べ線長420,000m即ち10時間に達し
た。
Example Using the apparatus shown in Fig. 2 and Fig. 8, Fe75S 0
Continuously 13 alloys with the composition Bls (& is atomic%)
It was melted at 20° C. and continuously spouted from a nozzle with a diameter of Q, 15 wO under a pressure of 4 BKgfki. The belt has a shape of 20 cm wide and 15 mm deep.Water at 5℃ is continuously supplied from the water supply nozzle, and the amount of water supplied is adjusted so that the grooves of the rubber belt are full.
It was run at a speed of 1m1n. There are 8 rubber belts (approximately 5)
A spiral with a diameter of 0.00 tm was drawn, and the ejection position was set at the middle of the spiral. The total length of the belt was 26 m. The wound thin metal wire had a diameter of 0.15 m, a substantially perfect circle in cross section, and was substantially amorphous. Furthermore, the continuity of the thin metal wire reached a total wire length of 420,000 m, or 10 hours, excluding forced switching during dotting during winding.

ところで本発明に適用される金属としては、純粋な金属
、微量の不純物を含有する金属、或いはあらゆる合金か
あげられるか、特に急冷固化することにより優れた性質
を有する合金、例えば非晶質相を形成する合金又は非平
衡結晶質相を形成する合金等が最も好ましい合金である
。その非晶質相を形成する合金の具体例としては、例え
ば「+jイエンス」第8号、1978年682頁、日本
金属学会会報15巻第3号、1976年151−206
頁や、「佃」1971年12月1日号、’1B−’IS
頁等の文献や特開昭49−91014号、特開昭50−
101215号、特開昭49−185820号、特開昭
51−8812号、特開昭51−4017次特開昭51
−4018号、特開昭51−4019号、特開昭51−
65012号、特開昭51−78920す、特開昭51
−78923号、特開昭51−78705号、特開昭5
1−79618号、特開昭52−5620号、特開昭5
2−114421号、特開昭54−99085号等多く
の公報に記載されているとおりである。それらの合金の
中で、非晶質形成能が優れ、しかも実用的合金としての
代表としては、Fe−3i−B系、Fe−P−C系、F
e−P−B系、Co−8i−B系、Ni−5i−B系等
があげられるが、その種類は金量−半金属の組合せ、金
属−金属の組合せから非常に多く選択できることはいう
までもない。ましてや、その組成の特徴を生かして、従
来の結晶質金属では得られない優れた特性を有する合金
の組立ても可能である。又、非平衡結晶質相を形成する
合金の具体例としては、例えば「鉄と鋼」第66巻(1
980)第3号、882−’+89頁、「日本金、属学
会誌」第44巻第3号、1980手24ト郭4頁、「T
動画5ACTION 0FTf(E JAPAN lN
5TITUTE OF METALSJ VOL、 2
0 No、 8August 19794611h47
1頁、日本金属学会秋期大会一般閘演概要集(1979
年10月)850頁、851真に記載のFe−Cr−A
/系合金、Fe−Al!−C系合金や、日本金属学会秋
期大会一般祠演概要集(1981年11月)428〜4
25頁に記載のMn−Al−C系合金、Fe−Cr−A
l!系合金、F e−Mn−Al−C系合金等かあげら
れる。
By the way, metals applicable to the present invention include pure metals, metals containing trace amounts of impurities, and all alloys. In particular, alloys that have excellent properties when rapidly solidified, such as those with an amorphous phase. The most preferred alloys are alloys that form or alloys that form non-equilibrium crystalline phases. Specific examples of alloys that form the amorphous phase include "+J Iens" No. 8, 1978, p. 682, Bulletin of the Japan Institute of Metals, Vol. 15, No. 3, 1976, 151-206.
Pageya, "Tsukuda" December 1, 1971 issue, '1B-'IS
Documents such as pages and JP-A-49-91014, JP-A-50-
101215, JP 49-185820, JP 51-8812, JP 51-4017, JP 51
-4018, JP-A-51-4019, JP-A-51-
No. 65012, JP-A-51-78920S, JP-A-51
-78923, JP-A-51-78705, JP-A-5
No. 1-79618, JP-A-52-5620, JP-A-5
This is as described in many publications such as No. 2-114421 and JP-A-54-99085. Among these alloys, Fe-3i-B system, Fe-P-C system, F-3i-B system, Fe-P-C system, F
Examples include the e-P-B system, Co-8i-B system, Ni-5i-B system, etc., but it is important to note that there are many types to choose from, such as combinations of gold content and semimetals, and combinations of metals and metals. Not even. Moreover, by taking advantage of its compositional characteristics, it is possible to assemble an alloy with excellent properties that cannot be obtained with conventional crystalline metals. Further, as a specific example of an alloy that forms a non-equilibrium crystalline phase, for example, "Tetsu to Hagane" Vol. 66 (1)
980) No. 3, p. 882-'+89, "Journal of the Japanese Metal Society," Vol. 44, No. 3, 1980, p. 24, p. 4, "T
Video 5ACTION 0FTf(E JAPAN lN
5TITUTE OF METALSJ VOL, 2
0 No, 8August 19794611h47
Page 1, Summaries of the General Conference of the Japan Institute of Metals (1979)
(October) 850 pages, 851 Fe-Cr-A described in
/ series alloy, Fe-Al! -C-based alloys and general presentation summaries of the Autumn Conference of the Japan Institute of Metals (November 1981) 428-4
Mn-Al-C alloy, Fe-Cr-A described on page 25
l! Examples include Fe-Mn-Al-C alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法を示す概略図、第2図は本発明の一実
施例を示す概略図、第8図(8)の)〜第5図面(6)
は本発明における各種の水路装置例の概略斜視図である
。 Qυ・・・溶融炉系、(6)・・・溶融金属ジェット流
、Ql・・・水路、(18aト08c)・・・水路中の
ループ部分、Q4)・・・液体供給ノズル、四・・・巻
取機、aす・・・レールユニット、αη・・・ベルト、
(至)・・・導入管、QI・・・車輪、(7)■υ・・
・電磁石 代理人 森 木 義 弘 第1図 第2図 第3図 (A) (B) 第4図 <A) ”ノ 第5 (A) (3)
Fig. 1 is a schematic diagram showing a conventional method, Fig. 2 is a schematic diagram showing an embodiment of the present invention, Fig. 8 (8)) to Fig. 5 (6)
1 is a schematic perspective view of various examples of waterway devices according to the present invention. Qυ... Melting furnace system, (6)... Molten metal jet stream, Ql... Channel, (18a to 08c)... Loop part in the channel, Q4)... Liquid supply nozzle, 4. ... Winder, asu... rail unit, αη... belt,
(To)...Introduction pipe, QI...Wheel, (7)■υ...
・Electromagnet agent Yoshihiro Moriki Figure 1 Figure 2 Figure 3 (A) (B) Figure 4<A) 5 (A) (3)

Claims (1)

【特許請求の範囲】 ■、螺旋軌道を描く部分を有する水路において走行する
液体に円周運動と同等な運動を与えることによって遠心
力を働かせ、安定な液体層を形成せしめ、該液体層に溶
融系より噴出した溶融金属ジェット流を浸入せしめ、急
冷凝固せしめることにより金属細線を該水路の一部より
取り出して引取ることを特徴とする金属細線の連続製造
方法。 2、水路に螺旋軌道を形成する複数のループ部分を有せ
しめ、この水路に液体を供給するノズルを設け、この水
路に供給された液体により形成された液体層に前記ルー
プ部分の適所において溶融金属ジェット流を噴出させる
手段を設け、前記液体層により凝固された金属を前記水
路の適所より収り出し巻き取る巻取機を設けたことを特
徴とする金属細線の連続製造装置。
[Claims] (1) A centrifugal force is exerted on a liquid running in a water channel having a portion that describes a spiral trajectory by giving a motion equivalent to a circumferential motion, forming a stable liquid layer, and melting the liquid into the liquid layer. 1. A method for continuous production of thin metal wire, characterized in that a jet stream of molten metal ejected from a system enters the system and is rapidly cooled and solidified, thereby taking out the thin metal wire from a part of the waterway and pulling it out. 2. A water channel has a plurality of loop portions forming a spiral trajectory, a nozzle is provided for supplying liquid to the water channel, and molten metal is added to the liquid layer formed by the liquid supplied to the water channel at an appropriate location of the loop portion. 1. A continuous manufacturing apparatus for thin metal wire, characterized in that a means for ejecting a jet stream is provided, and a winder is provided for collecting and winding the metal solidified by the liquid layer from a suitable position in the water channel.
JP16996883A 1983-09-13 1983-09-13 Method and device for producing continuously fine metallic wire Granted JPS6061147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16996883A JPS6061147A (en) 1983-09-13 1983-09-13 Method and device for producing continuously fine metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16996883A JPS6061147A (en) 1983-09-13 1983-09-13 Method and device for producing continuously fine metallic wire

Publications (2)

Publication Number Publication Date
JPS6061147A true JPS6061147A (en) 1985-04-08
JPH0478383B2 JPH0478383B2 (en) 1992-12-11

Family

ID=15896150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16996883A Granted JPS6061147A (en) 1983-09-13 1983-09-13 Method and device for producing continuously fine metallic wire

Country Status (1)

Country Link
JP (1) JPS6061147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308014A (en) * 1987-06-09 1988-12-15 Toray Ind Inc Water-soluble photochromic polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308014A (en) * 1987-06-09 1988-12-15 Toray Ind Inc Water-soluble photochromic polymer

Also Published As

Publication number Publication date
JPH0478383B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US3726331A (en) Continuous casting process
JPS6061147A (en) Method and device for producing continuously fine metallic wire
JPH0478390B2 (en)
KR101778400B1 (en) Amorphous material coiling apparatus
JPS61119354A (en) Method and device for production of fine metallic wire
JPH0420692B2 (en)
JPS62161443A (en) Casting method for fine metallic wire
JPH01313152A (en) Manufacture of metallic thin sheet
JPS6116219B2 (en)
JPH0478388B2 (en)
JPS59107752A (en) Device for producing fine metallic wire
JPH03133543A (en) Continuous casting method
JP2599177B2 (en) Metal wire manufacturing equipment
JPS6372450A (en) Device for continous production of thin metallic wire
JPH0413450A (en) Manufacture of fine alloy wire
JPS5928428B2 (en) Foil metal tape manufacturing method
JPH03248751A (en) Injection nozzle and production of metal or alloy fine wire using this
KR890005116B1 (en) Manufacturing method of a fine round shape wire for a bonding wires
JPH01143745A (en) Method and apparatus for producing metal fine wire
JPS59104250A (en) Production of fine metallic wire
JPS61253147A (en) Method and apparatus for continuous production of fine metallic wire
JPH0375255B2 (en)
JPH05185190A (en) Production of metal fine wire
JPS63104757A (en) Production of metal fine wire
JPH0757412B2 (en) Method for manufacturing thin metal wires