JPH0478383B2 - - Google Patents
Info
- Publication number
- JPH0478383B2 JPH0478383B2 JP16996883A JP16996883A JPH0478383B2 JP H0478383 B2 JPH0478383 B2 JP H0478383B2 JP 16996883 A JP16996883 A JP 16996883A JP 16996883 A JP16996883 A JP 16996883A JP H0478383 B2 JPH0478383 B2 JP H0478383B2
- Authority
- JP
- Japan
- Prior art keywords
- thin metal
- cooling liquid
- liquid layer
- water channel
- waterway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 53
- 239000002184 metal Substances 0.000 claims description 48
- 239000007788 liquid Substances 0.000 claims description 18
- 239000000110 cooling liquid Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 3
- 238000010924 continuous production Methods 0.000 claims description 2
- 238000007712 rapid solidification Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 238000009987 spinning Methods 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 6
- 229910008423 Si—B Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
- B22D11/062—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/005—Continuous casting of metals, i.e. casting in indefinite lengths of wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/01—Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】
本発明は金属細線の連続製造方法及び装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for continuously manufacturing thin metal wires.
近年、溶融金属より円形断面を有する金属細線
を製造する方法として、いわゆる回転液中紡糸法
が提案され、その技術確立が急速に進んでいる。
即ち、特開昭56−165016号、特開昭57−52550号、
特開昭57−79052号等がある。これらの技術の特
徴は、回転する円筒状ドラム内周面に遠心力によ
る液体層を形成し、その液体層中に溶融金属ジエ
ツトとして噴出し、その溶融金属を急冷凝固させ
て金属細線を製造することであり、この方法は断
面が円形で、且つ優れた諸性質を有する金属細線
が容易に得られ、従来法に比し冷却速度を著しく
大きくすることができ、非晶質金属或いは微細結
晶粒含有金属を材料とする金属細線の製造に特に
適していることが知られている。本発明者等は、
前記開示文献等の如き回転液中紡糸法の製造装置
並びに製造技術の開発に鋭意研究を続けてきた
が、ここにきて大きな障壁にぶつかつたのであ
る。即ち、該回転液中紡糸法は、回転する円筒状
ドラム内周面に遠心力で冷却液体層を形成し、こ
の冷却液体層の表面並びに内部を安定に保つこと
により、ジエツトとして噴出した溶融金属流が乱
れることなく安定に該冷却液体層へ浸入せしめ、
且つ溶融金属流が急冷凝固した後、遠心力により
円筒状ドラムの内壁に安定して巻き取られて所望
の金属細線となることを特徴とするものである。
従つて従来のこの回転液中紡糸法によつて金属細
線を製造する手順は、第1図に示す如く先ず、予
じめ準備した所定の合金組成を有する母合金の所
定量を加熱装置1についた溶融炉2の中に仕込
み、加熱溶融して溶融金属3となり溶融炉2の先
端部に付設する所定の孔径を有するノズル4から
の噴出を待機する。次に、円筒状ドラム5を所定
の回転数で回転させ、図示しない供給装置より所
定量の冷却液体6を供給する。続いて、溶融炉系
〔加熱装置1及び溶融炉2〕を図のように円筒状
ドラム5の内側の空間部の所定位置にセツトす
る。しかる後に、溶融炉2に導通する管7より所
定の圧力で不活性ガスを導入し、溶融金属に圧力
をかけ、ノズル4よりジエツト8として噴出す
る。ジエツト8は回転する冷却液体に浸入し、急
冷凝固して金属細線9(断面を示す)となり、円
筒状ドラム5の内壁に巻き取られる。通常、ある
程度の長さの金属細線を巻き取る必要があるの
で、溶融炉系〔加熱装置1及び溶融炉2〕は円筒
状ドラム5の幅方向〔矢印10方向〕にトラバー
スされる。最初に仕込んだ母合金が全部噴出され
終つた後、溶融炉系を円筒状ドラム5の空間内よ
り外へ移動し、続いて円筒状ドラム5の回転を止
め、落下する冷却液体を図示しない受け容器で受
けた後に、製造された金属細線の束を取り出す。
上記した手順を1サイクルとするバツチ式の製造
方法が、回転液中紡糸法の従来の方法であつた。
従つて容易に推察されるように、機械設備の大き
さから受ける制約のために1バツチ当りの金属細
線の量が制限されること、1バツチ毎の前準備及
び後処理の作業に時間を要すること等の理由によ
り、非常に生産性の低いのが従来の回転液中紡糸
法の欠点であり、到底企業化し得ないのが実情で
あつた。 In recent years, a so-called rotating liquid spinning method has been proposed as a method for producing thin metal wires having a circular cross section from molten metal, and the establishment of this technology is progressing rapidly.
That is, JP-A-56-165016, JP-A-57-52550,
There are Japanese Patent Application Laid-open No. 57-79052, etc. The characteristics of these technologies are that a liquid layer is formed by centrifugal force on the inner peripheral surface of a rotating cylindrical drum, a molten metal jet is ejected into the liquid layer, and the molten metal is rapidly solidified to produce thin metal wires. This method can easily obtain thin metal wires with a circular cross section and excellent properties, and can significantly increase the cooling rate compared to conventional methods. It is known that it is particularly suitable for manufacturing thin metal wires made of metals contained therein. The inventors,
Although we have continued to conduct intensive research into the development of manufacturing equipment and manufacturing technology for spinning in a rotating liquid as disclosed in the above-mentioned disclosure, we have now come across a major obstacle. That is, in the rotating liquid spinning method, a cooling liquid layer is formed on the inner peripheral surface of a rotating cylindrical drum by centrifugal force, and by keeping the surface and inside of this cooling liquid layer stable, the molten metal ejected as a jet is Allowing the cooling liquid to stably enter the cooling liquid layer without turbulence,
In addition, after the molten metal flow is rapidly solidified, it is stably wound around the inner wall of a cylindrical drum by centrifugal force to form a desired thin metal wire.
Therefore, the procedure for manufacturing thin metal wires by the conventional spin-in-spinning method is as shown in FIG. The metal is heated and melted to become a molten metal 3 and waits to be ejected from a nozzle 4 having a predetermined hole diameter attached to the tip of the melting furnace 2. Next, the cylindrical drum 5 is rotated at a predetermined number of rotations, and a predetermined amount of cooling liquid 6 is supplied from a supply device (not shown). Subsequently, the melting furnace system (heating device 1 and melting furnace 2) is set at a predetermined position in the space inside the cylindrical drum 5 as shown in the figure. Thereafter, an inert gas is introduced at a predetermined pressure through a pipe 7 communicating with the melting furnace 2 to apply pressure to the molten metal, and the molten metal is ejected as a jet 8 from the nozzle 4. The jet 8 enters the rotating cooling liquid, rapidly solidifies and becomes a thin metal wire 9 (cross section shown), which is wound around the inner wall of the cylindrical drum 5. Usually, it is necessary to wind up a certain length of thin metal wire, so the melting furnace system [heating device 1 and melting furnace 2] is traversed in the width direction of the cylindrical drum 5 [in the direction of arrow 10]. After all of the initially charged master alloy has been ejected, the melting furnace system is moved from the inside of the cylindrical drum 5 to the outside, and then the rotation of the cylindrical drum 5 is stopped, and the falling cooling liquid is collected in a receiver (not shown). After being received in a container, the produced bundle of thin metal wires is taken out.
A batch-type production method in which the above-described steps are performed in one cycle has been the conventional spinning solution spinning method.
Therefore, as can be easily surmised, the amount of thin metal wire per batch is limited due to constraints imposed by the size of the machinery and equipment, and preparatory and post-processing operations for each batch require time. For these reasons, the drawback of the conventional rotating liquid spinning method is that the productivity is extremely low, and the reality is that it cannot be commercialized at all.
本発明者らは上記した障害を克服し、且つ回転
液中紡糸法の基本的な特徴を生かした、生産性が
高く、加工コストの低い金属細線の連続製造方法
及び装置を提供するものである。 The present inventors have overcome the above-mentioned obstacles, and have provided a method and apparatus for continuously manufacturing fine metal wires with high productivity and low processing costs, which take advantage of the basic characteristics of the spinning method. .
以下に本発明の実施例について図面に基づいて
説明する。第2図は本発明を原理的に示した概略
図である。図において11は金属の溶融炉系、1
2は該溶融系11の先端部に付設するノズルより
噴出する溶融金属ジエツト流、13は13a,1
3b,13cの如き螺旋軌道を描いて走行する水
路であり、例えばゴムベルトに溝を穿設し、一定
形状の冷却液体層を保持し得る構造である。14
は該水路13に液体を供給するノズルであり、走
行する水路13の速度、形状等の条件によつて液
体の供給量を調整し得るものである。図の如く、
13bのループ内で噴出せしめた溶融金属ジエツ
ト流12は水路13と共に回転軌道を描きながら
走行する冷却液体層の中で急冷凝固し、しかも遠
心力の働らきによつて、水路13の底部に引き取
られ、金属細線となつて13cのループを経由し
て水路13の一端13dの部分で液体層と分離
し、巻取機15に巻き取られる。水路13を形成
するゴムベルトは方向転換し、エンドレスで水路
13に液体を供給する他端位置13eに戻る。水
路13に螺旋軌道を描かせる方法としては、例え
ば第3図Aの如きレールユニツト16を連結する
ことによつて螺旋軌道を描く固定レールを作成
し、そのレールに第3図Bの如き形状を有するエ
ンドレスのベルト17を装着する方法がある。こ
こで該固定レール上を該ベルト17が走行するに
際し、摩擦抵抗を減らしその走行を滑らかにする
ため、圧搾空気を導入管18より該レールに導
き、該レールとベルト17との摺動面に空気層を
形成せしめる所謂エアーベアリング方式を採用す
る方法がある。又第4図A,Bに示すように車輪
19による走行方式、或いは第5図A,Bに示す
ように電磁石20,21走行方式等を採用するこ
ともできる。第2図では13a〜13cの3個の
ループ部分を有する水路13を示したが、必ずし
もこれに設定することはなく、例えば水路13の
走行速度が速い場合の液体層の安定化に必要なル
ープの数を任意に選べば良く、しかも前記したレ
ールユニツトを組み合わせれば容易に装置を製作
することができる。 Embodiments of the present invention will be described below based on the drawings. FIG. 2 is a schematic diagram showing the principle of the present invention. In the figure, 11 is a metal melting furnace system;
2 is a molten metal jet flow spouted from a nozzle attached to the tip of the melting system 11; 13 is a molten metal jet flow 13a;
3b and 13c, which run in a spiral trajectory, and have a structure in which, for example, grooves are bored in a rubber belt and can hold a cooling liquid layer of a certain shape. 14
is a nozzle that supplies liquid to the water channel 13, and the amount of liquid supplied can be adjusted depending on conditions such as the speed and shape of the water channel 13 running. As shown in the diagram,
The molten metal jet stream 12 ejected in the loop 13b is rapidly solidified in the cooling liquid layer that runs along a rotating orbit along with the water channel 13, and is drawn to the bottom of the water channel 13 by the action of centrifugal force. It becomes a thin metal wire, passes through the loop 13c, separates from the liquid layer at one end 13d of the water channel 13, and is wound up by the winder 15. The rubber belt forming the water channel 13 changes direction and returns to the other end position 13e, which endlessly supplies liquid to the water channel 13. As a method for making the waterway 13 draw a spiral trajectory, for example, a fixed rail that draws a spiral trajectory is created by connecting rail units 16 as shown in FIG. 3A, and a shape as shown in FIG. 3B is formed on the rail. There is a method of wearing an endless belt 17 having the following. Here, when the belt 17 runs on the fixed rail, in order to reduce frictional resistance and make the run smooth, compressed air is guided to the rail through the introduction pipe 18 and applied to the sliding surface between the rail and the belt 17. There is a method that uses a so-called air bearing method that forms an air layer. It is also possible to adopt a traveling system using wheels 19 as shown in FIGS. 4A and 4B, or a traveling system using electromagnets 20 and 21 as shown in FIGS. 5A and 5B. Although FIG. 2 shows the water channel 13 having three loop portions 13a to 13c, this is not necessarily the case; for example, the loops necessary for stabilizing the liquid layer when the running speed of the water channel 13 is fast. The number of rail units can be selected arbitrarily, and the device can be easily manufactured by combining the above-mentioned rail units.
以上述べた如く、本発明は回転運動と略等しい
螺旋運動によつて形成される安定な液体層に向け
て溶融金属ジエツト流を噴出し、急冷凝固させて
金属細線を作ると共に、液体層を形成する水路の
一部より、該金属細線を取り出すことが可能であ
ることによつて、金属細線の連続製造を可能なら
しめたものであり、生産性が高く、金属細線を安
価に提供できる。 As described above, the present invention jets a molten metal jet stream toward a stable liquid layer formed by a spiral motion that is approximately equivalent to a rotational motion, rapidly solidifies the molten metal jet to create a thin metal wire, and forms a liquid layer. By being able to take out the thin metal wire from a part of the waterway, continuous production of the thin metal wire is possible, and the productivity is high and the thin metal wire can be provided at low cost.
実施例
第2図及び第3図に示した装置を用い、
Fe75Si10B15(添字は原子%)なる組成の合金を連
続的に1320℃で溶解し、0.15mmφの直径を有する
ノズルより4.3Kgf/cm2の圧力をかけて連続的に
噴出した。ベルトは幅20mm、深さ15mmの形状を有
し、水供給ノズルより5℃の水を連続的に供給
し、ゴムベルトの溝に一杯になる如く供給量を調
整し、ゴムベルトを700m/minの速度で走行さ
せた。ゴムベルトは3個の略500mm直径の螺旋を
描かせ、その中間の螺旋の部分で上記噴出位置を
設定した。ベルトの全長は25mとした。巻き取つ
た金属細線は直径0.15mmでその断面は略真円であ
り、又実質的に非晶質であつた。又金属細線の連
続性は巻き取りでのドツフイング時の強制切替え
を除いて、延べ線長420000m即ち10時間に達し
た。Example Using the apparatus shown in FIGS. 2 and 3,
An alloy having a composition of Fe 75 Si 10 B 15 (subscripts are atomic %) was continuously melted at 1320° C. and continuously ejected from a nozzle having a diameter of 0.15 mm by applying a pressure of 4.3 Kgf/cm 2 . The belt has a shape of 20 mm wide and 15 mm deep.Water at 5℃ is continuously supplied from the water supply nozzle, and the supply amount is adjusted so that the grooves of the rubber belt are filled, and the rubber belt is moved at a speed of 700 m/min. I ran it with The rubber belt was formed into three spirals with a diameter of approximately 500 mm, and the above-mentioned ejection position was set at the middle of the spirals. The total length of the belt was 25 m. The wound thin metal wire had a diameter of 0.15 mm, a substantially perfect circular cross section, and was substantially amorphous. Furthermore, the continuity of the thin metal wire reached a total wire length of 420,000 m, or 10 hours, excluding forced switching during dotting during winding.
ところで本発明に適用される金属としては、純
粋な金属、微量の不純物を含有する金属、或いは
あらゆる合金があげられるが、特に急冷固化する
ことにより優れた性質を有する合金、例えば非晶
質相を形成する合金又は非平衡結晶質相を形成す
る合金等が最も好ましい合金である。その非晶質
相を形成する合金の具体例としては、例えば「サ
イエンス」第8号、1978年62〜72頁、日本金属学
会会報15巻第3号、1976年151〜206頁や、「金属」
1971年12月1日号、73〜78頁等の文献や特開昭49
−91014号、特開昭50〜101215号、特開昭49−
135820号、特開昭51−3312号、特開昭51−4017
号、特開昭51−4018号、特開昭51−4019号、特開
昭51−65012号、特開昭51−73920号、特開昭51−
73923号、特開昭51−78705号、特開昭51−79613
号、特開昭52−5620号、特開昭52−114421号、特
開昭54−99035号等多くの公報に記載されている
とおりである。それらの合金の中で、非晶質形成
能が優れ、しかも実用的合金としての代表として
は、Fe−Si−B系、Fe−P−C系、Fe−P−B
系、Co−Si−B系、Ni−Si−B系等があげられ
るが、その種類は金属−半金属の組合せ、金属−
金属の組合せから非常に多く選択できることはい
うまでもない。ましてや、その組成の特徴を生か
して、従来の結晶質金属では得られない優れた特
性を有する合金の組立ても可能である。又、非平
衡結晶質相を形成する合金の具体例としては、例
えば「鉄と鋼」第66巻(1980)第3号、382〜389
頁、「日本金属学会誌」第44巻第3号、1980年245
〜254頁、「TRANSACTION OF THE
JADAN INSTITUTE OF METALS」
VOL.20No.8August1979 468〜471頁、日本金属学
会秋期大会一般講演概要集(1979年10月)350頁、
351頁に記載のFe−Cr−Al系合金、Fe−Al−C
系合金や、日本金属学会秋期大会一般講演概要集
(1981年11月)428〜425頁に記載のMn−Al−C
系合金、Fe−Cr−Al系合金、Fe−Mn−Al−C
系合金等があげられる。 By the way, metals that can be applied to the present invention include pure metals, metals containing trace amounts of impurities, and all kinds of alloys. In particular, alloys that have excellent properties when rapidly solidified, such as amorphous phase The most preferred alloys are alloys that form or alloys that form non-equilibrium crystalline phases. Specific examples of alloys that form the amorphous phase include "Science" No. 8, 1978, pp. 62-72, Bulletin of the Japan Institute of Metals, Vol. 15, No. 3, 1976, pp. 151-206, and "Metals ”
Documents such as the December 1, 1971 issue, pages 73-78, and JP-A-49
−91014, JP-A-1973-101215, JP-A-49-
No. 135820, JP-A-51-3312, JP-A-51-4017
No., JP-A-51-4018, JP-A-51-4019, JP-A-51-65012, JP-A-51-73920, JP-A-51-
No. 73923, JP-A-51-78705, JP-A-51-79613
No. 52-5620, Japanese Patent Application Laid-open No. 114421-1982, Japanese Patent Application Laid-open No. 99035-1984, and many other publications. Among these alloys, Fe-Si-B system, Fe-P-C system, Fe-P-B system, Fe-Si-B system, Fe-P-B system,
type, Co-Si-B system, Ni-Si-B system, etc., but the types include metal-semimetal combination, metal-semi-metal combination,
Needless to say, there are a large number of metal combinations to choose from. Moreover, by taking advantage of its compositional characteristics, it is possible to assemble an alloy with excellent properties that cannot be obtained with conventional crystalline metals. Further, as a specific example of an alloy that forms a non-equilibrium crystalline phase, for example, "Tetsu to Hagane" Vol. 66 (1980) No. 3, 382-389
Page, “Journal of the Japan Institute of Metals,” Vol. 44, No. 3, 1980, 245
~page 254, “TRANSACTION OF THE
JADAN INSTITUTE OF METALS”
VOL.20No.8August1979 pages 468-471, Japan Institute of Metals Autumn Conference General Lecture Summary (October 1979) page 350,
Fe-Cr-Al alloy, Fe-Al-C described on page 351
Mn-Al-C described in the Japan Institute of Metals Autumn Conference General Lecture Abstracts (November 1981) pages 428-425
alloy, Fe-Cr-Al alloy, Fe-Mn-Al-C
Examples include alloys.
第1図は従来方法を示す概略図、第2図は本発
明の一実施例を示す概略図、第3図A,B〜第5
図A,Bは本発明における各種の水路装置例の概
略斜視図である。
11……溶融炉系、12……溶融金属ジエツト
流、13……水路、13a〜13c……水路中の
ループ部分、14……液体供給ノズル、15……
巻取機、16……レールユニツト、17……ベル
ト、18……導入管、19……車輪、20,21
……電磁石。
Fig. 1 is a schematic diagram showing a conventional method, Fig. 2 is a schematic diagram showing an embodiment of the present invention, and Figs.
Figures A and B are schematic perspective views of various examples of waterway devices according to the present invention. 11... Melting furnace system, 12... Molten metal jet flow, 13... Water channel, 13a to 13c... Loop portion in water channel, 14... Liquid supply nozzle, 15...
Winding machine, 16...Rail unit, 17...Belt, 18...Introduction pipe, 19...Wheel, 20, 21
……electromagnet.
Claims (1)
ンドレスベルトの水路内に冷却液体を供給して冷
却液体に円周運動と同等な運動を与えることによ
つて遠心力を働かせ、安定な液体層を形成せし
め、該液体層に溶融系より噴出した溶融金属ジエ
ツト流を浸入せしめ、急冷凝固せしめることによ
り金属細線を該水路の一部より取り出して引取る
ことを特徴とする金属細線の連続製造方法。 2 螺旋状レールユニツト内にエンドレスベルト
を走行自在に装着して、前記エンドレスベルトの
水路内に冷却液体を供給するノズルを設け、この
水路に供給された冷却液体により形成された液体
層の螺旋状ループ部分の適所において溶融金属ジ
エツト流を噴出させる手段を設け、前記液体層に
より凝固された金属を前記水路の適所より取り出
し巻き取る巻取機を設けたことを特徴とする金属
細線の連続製造装置。[Claims] 1. Cooling liquid is supplied into the water channel of the endless belt running in the spiral rail unit, and centrifugal force is exerted by applying a motion equivalent to circumferential motion to the cooling liquid, resulting in stable operation. A series of thin metal wires, characterized in that a liquid layer is formed, a molten metal jet flow ejected from a molten system is infiltrated into the liquid layer, and the thin metal wires are taken out from a part of the waterway and taken out by rapid solidification. Production method. 2. An endless belt is installed in a spiral rail unit so that it can run freely, and a nozzle for supplying cooling liquid is provided in a waterway of the endless belt, and a liquid layer formed by the cooling liquid supplied to this waterway is formed in a spiral shape. An apparatus for continuous production of thin metal wire, characterized in that a means for spouting a molten metal jet flow at a suitable position in the loop portion is provided, and a winder is provided for taking out and winding the metal solidified by the liquid layer from a suitable position in the water channel. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16996883A JPS6061147A (en) | 1983-09-13 | 1983-09-13 | Method and device for producing continuously fine metallic wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16996883A JPS6061147A (en) | 1983-09-13 | 1983-09-13 | Method and device for producing continuously fine metallic wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6061147A JPS6061147A (en) | 1985-04-08 |
JPH0478383B2 true JPH0478383B2 (en) | 1992-12-11 |
Family
ID=15896150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16996883A Granted JPS6061147A (en) | 1983-09-13 | 1983-09-13 | Method and device for producing continuously fine metallic wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6061147A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2503016B2 (en) * | 1987-06-09 | 1996-06-05 | 東レ株式会社 | Water-soluble photochromic polymer |
-
1983
- 1983-09-13 JP JP16996883A patent/JPS6061147A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6061147A (en) | 1985-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3881540A (en) | Method of forming metallic filament cast on interior surface of inclined annular quench roll | |
JPH0372375B2 (en) | ||
US4607683A (en) | Method of manufacturing thin metal wire | |
JPH0478390B2 (en) | ||
JPH0478383B2 (en) | ||
US2838814A (en) | Method and apparatus for casting | |
JPS59307B2 (en) | Metal wire injection manufacturing equipment | |
JP3489986B2 (en) | Method for switching winding roll of rapidly solidified ribbon with magnetism | |
JPH0420692B2 (en) | ||
JPH0478388B2 (en) | ||
JPS6116219B2 (en) | ||
JPS61119354A (en) | Method and device for production of fine metallic wire | |
JPS6315055B2 (en) | ||
EP0183220A2 (en) | Method of forming disordered filamentary materials | |
JPS60166147A (en) | Apparatus for producing continuously fine metallic wire | |
JPH031098B2 (en) | ||
JPH0452169B2 (en) | ||
JPS63104757A (en) | Production of metal fine wire | |
JPS5947049A (en) | Method and device for casting thin sheet | |
JP3047109B2 (en) | Method and apparatus for manufacturing thin metal wires | |
JPH0413450A (en) | Manufacture of fine alloy wire | |
JP2599177B2 (en) | Metal wire manufacturing equipment | |
JPS61253147A (en) | Method and apparatus for continuous production of fine metallic wire | |
JPS6372450A (en) | Device for continous production of thin metallic wire | |
JPH03243246A (en) | Method and apparatus for producing metal fiber |