JPS6060601A - Manufacture of plane lens - Google Patents

Manufacture of plane lens

Info

Publication number
JPS6060601A
JPS6060601A JP16813883A JP16813883A JPS6060601A JP S6060601 A JPS6060601 A JP S6060601A JP 16813883 A JP16813883 A JP 16813883A JP 16813883 A JP16813883 A JP 16813883A JP S6060601 A JPS6060601 A JP S6060601A
Authority
JP
Japan
Prior art keywords
substrate
lens
refractive index
ions
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16813883A
Other languages
Japanese (ja)
Inventor
Takeyuki Hiruma
健之 比留間
Koji Ishida
宏司 石田
Shinji Sakano
伸治 坂野
Hiroyoshi Matsumura
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16813883A priority Critical patent/JPS6060601A/en
Publication of JPS6060601A publication Critical patent/JPS6060601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the scatter loss of light at the connection point of a waveguide and a lens by tapering a mask and slanting a substrate in the incidence direction of ions, and implanting ions while rotating the substrate. CONSTITUTION:The mask 5 which is tapered or bored internally is provided onto a photoconductive radio wave layer 3 having a higher refractive index than the substrate 1 and ions are implanted from above to form a part with a larger dose, manufacturing a plane lens 4. In this case, the mask 5 is tapered or bored internally to smooth variation in refractive index from the higher-dose part to a lower-dose part, and the substrate 1 is slanted in the incidence direction of the ions; and the ions are implanted while the substrate 1 is rotated to obtain the lens which has no astigmatism and small scatter loss.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光通信、光情報処理分野で用いられる光集積
回路に必要な平面レンズ、特に非点収差が小さくかつ光
の散乱損失の小さい平面レンズの製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a flat lens necessary for optical integrated circuits used in the fields of optical communications and optical information processing, particularly a flat lens with small astigmatism and low light scattering loss. This invention relates to a method for manufacturing lenses.

〔発明の背景〕[Background of the invention]

近年、光通信の実用化が急速に進展しており、光部品の
小形化、高信頼化に対する研究開発が盛んに行なわれて
いる。光来積回路の構成要素である平面レンズは、超音
波加工法、スパッタリング法、イオン交換法等を用いて
作製されている。超音波加工法及びスパッタリング法は
、基板上の平面光導波路の一部を所望の幾何#的形状に
作製し、導波光に対して凸レンズないし凹レンズの作用
をもたせるようにする方法である。イオン交換法は、た
とえば、’l’t” 、Ag” 、K” 、Li+など
のイオンを含む溶解塩に、Naを含むソーダ若灰ガラス
や硼硅酸ガラスなどの基板を浸し、電界熱拡散によシT
t” 、Ag” 、K” 、Li+などのイオンを基板
中に導入させ、その部分の屈折率を基板よシ数パーセン
ト高くして平面光導波路を形成するものである。ここで
形成した平面光導波路の一部に、特に上記イオンの濃度
が商い領域を設け、導波光に対してレンズ作用をもつよ
う屈折率の高い部分を作製して平面レンズとすることが
できる。
In recent years, the practical application of optical communications has progressed rapidly, and research and development are actively being carried out to make optical components smaller and more reliable. A plane lens, which is a component of an optical product circuit, is manufactured using an ultrasonic processing method, a sputtering method, an ion exchange method, or the like. The ultrasonic processing method and the sputtering method are methods in which a part of a planar optical waveguide on a substrate is formed into a desired geometric shape so that the guided light acts as a convex lens or a concave lens. In the ion exchange method, for example, a substrate such as soda ash glass or borosilicate glass containing Na is immersed in a dissolved salt containing ions such as 'l't'', Ag'', K'', and Li+, and electrothermal diffusion is performed. Yoshi T
A planar optical waveguide is formed by introducing ions such as t'', Ag'', K'', Li+ into the substrate, and increasing the refractive index of that portion by several percent compared to the substrate. A plane lens can be obtained by providing a region in which the concentration of the above-mentioned ions is particularly high in a part of the wave path, and creating a region with a high refractive index so as to have a lens effect on the guided light.

ここで従来法の欠点を超音波加工法について図を用いて
詳細に説明する。
Here, the drawbacks of the conventional method will be explained in detail with reference to the drawings regarding the ultrasonic processing method.

第1図は、超音波加工法によシ、平面レンズを作製する
方法である。第1図(a)に示すように基板1(例えば
G a A s :屈折率3.44)に、先端がレンズ
と同じ幾何学的形状をした超音波伝達用の棒(例えば、
焼き入れ硬化した鉄)を接触させ、基板1と棹2との接
触部に研摩材(例えば、カーボンランダムナ600を水
に溶かした液体)を滴下しながら超音波を発振させて基
板1を掘っていく。
FIG. 1 shows a method of manufacturing a plane lens using an ultrasonic processing method. As shown in FIG. 1(a), a rod for transmitting ultrasonic waves (for example, a rod for transmitting ultrasonic waves whose tip has the same geometric shape as a lens) is attached to a substrate 1 (for example, GaAs: refractive index 3.44).
The substrate 1 is excavated by oscillating ultrasonic waves while dripping an abrasive material (for example, a liquid made by dissolving Carbon Random Na 600 in water) onto the contact area between the substrate 1 and the rod 2 (quenched and hardened iron). To go.

基板が所望の深さ掘れたのち、第1図(b)に示すよう
に、上から基板よシも屈折率の筒い光学材料の膜3(例
えば、MOCVDによシ作製した4μm厚のG a A
 s高抵抗膜、屈折率=3.445)を付けると所望の
レンズ4が基板1の上に形成される。
After the substrate is dug to a desired depth, a film 3 of a cylindrical optical material with a refractive index (for example, a 4 μm thick G a A
By attaching a high resistance film (refractive index=3.445), a desired lens 4 is formed on the substrate 1.

従来法では、基板を加工中に基板と接触している超音波
伝達用棒の先端も同時に摩耗していくため、基板を所望
の幾何学的形状に掘ることが難しかった。このためレン
ズが正確な回転対称形にならず平面導波路を通してレン
ズに入れた光は、出力側において焦点を結ばず、光クア
イノ(へ挿入する際の結合損失が太きかった。
In conventional methods, the tip of the ultrasonic transmission rod that is in contact with the substrate also wears out during processing, making it difficult to carve the substrate into the desired geometric shape. For this reason, the lens did not have accurate rotational symmetry, and light entering the lens through the planar waveguide was not focused on the output side, resulting in large coupling losses when inserted into the optical quaino.

さらに、従来法ではレンズ領域とそれに接続する導波路
とを幾何学的になめらかな曲面で接続させることが離し
かったため、この接続点における光の散乱損失も太きか
った。
Furthermore, in the conventional method, it was difficult to connect the lens region and the waveguide connected thereto with a geometrically smooth curved surface, resulting in large light scattering loss at this connection point.

一方、イオン交換法においては、Tt“、Ag′″。On the other hand, in the ion exchange method, Tt", Ag'".

K+、Ll+などのイオンは通常、TlNO3゜AgN
O3,KNO3,LI2SOzの溶解塩中での電解熱拡
散によシ基板中に導入される。この工程では、溶解塩中
に正電極を置いて、基板ガラス裏面に負電極を取り付け
て高温下で電界を印加し、イオンを基板ガラス次面から
拡散させ、基板ガラス中のNa+との交換反応を起こさ
せる。この電解熱拡散においては基板の両側に印加する
電圧が溶解塩または溶解塩の蒸気を通して短絡しないよ
うに、特別の注意を払わなければならない欠点がある。
Ions such as K+ and Ll+ are usually TlNO3°AgN
It is introduced into the substrate by electrolytic thermal diffusion in a dissolved salt of O3, KNO3, and LI2SOz. In this process, a positive electrode is placed in a dissolved salt, a negative electrode is attached to the back surface of the substrate glass, and an electric field is applied at high temperature to diffuse ions from the back surface of the substrate glass, causing an exchange reaction with Na+ in the substrate glass. cause to happen. This electrolytic thermal diffusion has the disadvantage that special care must be taken to ensure that the voltages applied to both sides of the substrate do not short through the molten salt or molten salt vapor.

また、イオンの交換が拡散という現象を利用しているた
め、平面レンズを形成するための屈折率分布の制御が非
常に難しい。
Furthermore, since ion exchange utilizes the phenomenon of diffusion, it is extremely difficult to control the refractive index distribution to form a flat lens.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の問題点を解決するためになされ
たものでおムレンズ部の屈折率を精密に制御し、非点収
差がなくかつ導波路とレンズとの接続点における光の散
乱損失の小さいレンズの製法を提供することにある。
The object of the present invention was to solve the above-mentioned problems, and it is an object of the present invention to precisely control the refractive index of the ophthalmic lens part, eliminate astigmatism, and eliminate light scattering loss at the connection point between the waveguide and the lens. The objective is to provide a method for manufacturing small lenses.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の構成は、イオン打込
法によ見幕板上に所望の屈折率分布をもたせることにあ
る。本発明は上記構成になるので、導波路を通してレン
ズに入射した光の果束性が良くかつ導波路とレンズとの
光の結合効率が極めて良好になる。
The structure of the present invention for achieving the above object is to provide a desired refractive index distribution on the blind plate by ion implantation. Since the present invention has the above-mentioned configuration, the flux of light incident on the lens through the waveguide is good, and the coupling efficiency of light between the waveguide and the lens is extremely good.

イオン打込法は、半導体集積回路製造工程において基板
上にキャリヤの高#度層を形成するために広く適用され
ている。光導波路形成にイオン打込法を適用した例とし
ては、たとえば、E 、GHrm i re他、 Ap
pl、 Phys、 Lett、 21(3)87 (
1972)がある。これは、n −GaAS (100
)基板表面にH+を1015cm−2打込み表面層のキ
ャリヤ数を補償して、高屈折率層とし平面光導波路を形
成するものである。
Ion implantation is widely applied to form a high-density layer of carriers on a substrate in the semiconductor integrated circuit manufacturing process. Examples of applying the ion implantation method to optical waveguide formation include E, GHrmire et al., Ap
pl, Phys, Lett, 21(3)87 (
1972). This is n-GaAS (100
) H+ is implanted into the surface of the substrate at a depth of 1015 cm-2 to compensate for the number of carriers in the surface layer to form a high refractive index layer and a planar optical waveguide.

平面レンズを形成するためには、レンズとなる部分への
イオンの打込量を精密に制御する必要〃ヌある。特に平
面レンズと平面光導波路との境界におけるレンズへの入
射光およびレンズからの出射光の散乱損失を小さくする
ために、この境界における屈折率あるいは、基板表面の
幾何学形状の変化をなめらかにする必要がある。
In order to form a plane lens, it is necessary to precisely control the amount of ions implanted into the portion that will become the lens. In particular, in order to reduce the scattering loss of light incident on the lens and light emitted from the lens at the boundary between the plane lens and the plane optical waveguide, changes in the refractive index or the geometry of the substrate surface at this boundary are made smooth. There is a need.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例によシ本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail by way of examples.

実施例1 第2図には本発明による平面レンズの製造工程の概略を
示す。光集積回路基板となるn型G a A S基板(
100)(波長1.15μmの光に対する屈折率3.4
4.キャリヤ濃度1018cm −3) 1にH+を加
速電圧150に■、イオンビーム電流10μAで100
分間垂直入射させた。基板表向に打込まれたH+は表面
から深さ1.2μmのところに最大のピークをもつ濃度
分布を呈した。H+の全ド−ズ量は1016crn−2
でちる。H+は基板表面から約2μmの深さまで到達し
ておシ、H+の打込まれた基板表面では、キャリヤが補
償され、高抵抗層の平面光導波路3が形成された。この
基板1に81025をスパッタによって厚さDI−3μ
mっけ、第2図(a)に示すようにエツチングにょシ8
1025にすシ鉢状の穴゛ヲ掘った。この穴の外径はL
+=100μmφ、内径はR2=80μmφである。次
にこの5102の膜5をマスクにしてHlを加速電圧7
5kV、イオンビームを流10μAで1000秒間垂直
入射させた。その後5io25を取シ除き、高抵抗層3
の表面から深さ1.2μmの位置における屈折率分布を
めたところ第2図(b)に示すごとく、平面光導波路で
N2 = 3.443 。
Example 1 FIG. 2 schematically shows the manufacturing process of a flat lens according to the present invention. An n-type GaAs substrate (which becomes an optical integrated circuit board)
100) (Refractive index 3.4 for light with a wavelength of 1.15 μm
4. Carrier concentration 1018cm -3) 1 H+, acceleration voltage 150■, ion beam current 10μA 100
Vertical incidence was applied for 1 minute. H+ implanted into the surface of the substrate exhibited a concentration distribution with a maximum peak at a depth of 1.2 μm from the surface. The total dose of H+ is 1016 crn-2
Dechiru. The H+ particles reached a depth of about 2 μm from the substrate surface, and carriers were compensated on the substrate surface into which the H+ atoms were implanted, and a planar optical waveguide 3 of a high resistance layer was formed. 81025 was sputtered onto this substrate 1 to a thickness of DI-3μ.
Then, as shown in Figure 2 (a), the etched plate 8
I dug a bowl-shaped hole in 1025. The outer diameter of this hole is L
+=100 μmφ, and the inner diameter is R2=80 μmφ. Next, using this film 5 of 5102 as a mask, apply Hl to an accelerating voltage of 7
The ion beam was vertically incident at 5 kV with a current of 10 μA for 1000 seconds. After that, remove 5io25 and high resistance layer 3.
The refractive index distribution at a depth of 1.2 μm from the surface of the plane optical waveguide is N2 = 3.443, as shown in Figure 2(b).

Hlの打込み量の多いところでNt −3,450であ
ム2つの屈折率NlとN2の境界はなめらかに屈折率が
変化していた。これは、5i02のマスク5が開口部で
すシ鉢型のテーパ状になっているためで、SiO2が薄
い部分はどH4′の透過量が多かっただめである。この
高抵抗層3に波長1.15μmのHe−Neレーザ光を
3ケ所から平行に入射させたところ、高屈折率部を透過
した3本の光は1点で交わシ、この高屈折率部が平面レ
ンズになっていることが確認できた。また、上記3本の
レーザ光が交わった位置から、この平面レンズの焦点距
離はレンズの中心から3.3關であることがわかった。
Where the amount of Hl implanted was large, the refractive index changed smoothly at the boundary between the two refractive indexes Nl and N2 at Nt -3,450. This is because the opening of the mask 5 of 5i02 has a tapered shape, and the amount of H4' that passes through the thin SiO2 portion is large. When He-Ne laser beams with a wavelength of 1.15 μm are incident on this high-resistance layer 3 in parallel from three locations, the three beams that have passed through the high refractive index portion intersect at one point, and this high refractive index portion It was confirmed that the lens was a flat lens. Further, from the position where the three laser beams intersect, it was found that the focal length of this plane lens was 3.3 degrees from the center of the lens.

一方、第2図(a)の8102のマスク5の穴をテーパ
状にせず直径90μmの円筒状にして、前と同じ条件で
H+を打込んでレンズ部となる高屈折率層を形成したと
ころ、平面光導波路とレンズとの屈折率はステップ状に
変化していることがわかった。この平面光導波路層に波
長1.15μmのHe−Neレーザ光を入射させたとこ
ろ、レンズの端部に入射したレーザ光の一部が散乱され
ていることがわかった。しかし、第2図(b)のように
、平面光導波路とレンズとの接続点における屈折率の変
化がステップ状でなく、ゆるやかに変化しているレンズ
では、レンズに入射するレーザ光の散乱の度合いは非常
に小さくなっていた。
On the other hand, the hole in the mask 5 of 8102 in Fig. 2(a) was made into a cylindrical shape with a diameter of 90 μm instead of a tapered shape, and H+ was implanted under the same conditions as before to form a high refractive index layer that would become a lens part. It was found that the refractive index of the planar optical waveguide and the lens changes stepwise. When He--Ne laser light with a wavelength of 1.15 μm was incident on this planar optical waveguide layer, it was found that a portion of the laser light incident on the end of the lens was scattered. However, as shown in Figure 2(b), in a lens where the refractive index at the connection point between the planar optical waveguide and the lens changes gradually rather than in a step-like manner, the scattering of the laser light incident on the lens is The degree was very small.

実施例2 実施例1と同様にn型G a A s基板(100)(
波長1.15μmの光に対する屈折率3.44 、キャ
リヤ濃度10” cm −3) 1にH+を加速電圧1
50kV、イオンビーム電流10μAで100分間垂直
入射して、基板表面に基板よシも屈折率の高い光導波層
となる高抵抗層を形成した。次に第3図に示すように、
高抵抗層3の上に金属Wマスク5を基板に密着するよう
においた。このWマスク5は厚さDa=200μmで、
直径R3= 2. Otranφの穴を設けてあシ、こ
の穴の周辺は直径R4−2,4咽φ、深さD2=120
μmのところまで、内側を削っである。この基板1をH
+の入射方向に対して、10度傾けて基板1を40回転
毎分で回転させながら加速電圧75kVでH+を100
0秒間垂直入射妊せた。このときH+は、Wマスク5の
穴を通して、θ=10度の角度分散をもって基板1に入
射することになシ、高抵抗層3中のH+のドーズ分布は
Wマスク開口部端に近い部分でなめらかに変化する。高
抵抗層3のレンズ部断面の屈折率分布は第2図(b)に
示すように屈折率断差部でなめらかに変化している。こ
の高抵抗層3に波長1.15μmのHe−NeV−ブー
光全3ケ所から平行に入射させたところ、レンズ部を透
過したレーザー光はレンズの中心から7咽離れた点で父
わった。次にこの平面レンズをH2雰囲気中、450℃
で30間アニールしたところ、光導波層3の伝搬損失が
アニール前の6dB/crnから2dB/Crn減シ4
dB/crnとなった。またレンズ部とそれに接続する
光導波層との接続点における散乱損失もさらに減少する
ことがわかった。
Example 2 As in Example 1, an n-type GaAs substrate (100) (
The refractive index for light with a wavelength of 1.15 μm is 3.44, and the carrier concentration is 10" cm -3).
By vertically injecting the ion beam at 50 kV and an ion beam current of 10 μA for 100 minutes, a high resistance layer was formed on the substrate surface to serve as an optical waveguide layer having a high refractive index as well as the substrate. Next, as shown in Figure 3,
A metal W mask 5 was placed on the high resistance layer 3 so as to be in close contact with the substrate. This W mask 5 has a thickness Da=200 μm,
Diameter R3=2. A hole of Otranφ is provided, the diameter around this hole is R4-2, 4mmφ, depth D2=120
The inside has been ground down to a depth of μm. This board 1 is
While rotating the substrate 1 at 40 revolutions per minute at an angle of 10 degrees with respect to the incident direction of
I got pregnant with vertical incidence for 0 seconds. At this time, H+ is incident on the substrate 1 through the hole in the W mask 5 with an angular dispersion of θ=10 degrees, and the H+ dose distribution in the high resistance layer 3 is in the portion near the opening end of the W mask. Changes smoothly. The refractive index distribution in the cross section of the lens portion of the high resistance layer 3 changes smoothly at the refractive index difference portion, as shown in FIG. 2(b). When He-NeV-Boo light with a wavelength of 1.15 .mu.m was applied to this high resistance layer 3 in parallel from all three locations, the laser light that passed through the lens part stopped at a point 7 degrees away from the center of the lens. Next, this flat lens was heated at 450°C in an H2 atmosphere.
When annealing was performed for 30 minutes at
dB/crn. It was also found that the scattering loss at the connection point between the lens part and the optical waveguide layer connected thereto was further reduced.

これはアニールによってイオン打込み時に基板表面に加
えられたダメージが回復したためである。
This is because the damage done to the substrate surface during ion implantation was recovered by annealing.

実施例3 今厩は、溶融石英基板(波長6328 人の光に対する
屈折率1.46)を用いて、基板表面にLi+7を30
0kvの加速電圧で5分iJJ打込み、ドーズ量10”
 / ctlなる表面層を形成した。これに波長632
8人のHe−NeV−ブー光を入射させたところ、光は
表面層を導波し、L L + 7が打込まれた基板表面
に平面光導波路が形成されていることが確認できた。次
に、この基板上に、実施例1と同様なテーバのついたマ
スクを5i02で形成し、さらにLi+7を300kV
の加速電圧で5分間打込み直径200μmの平面レンズ
を形成した。その後、SiO2のマスクを取シ除き、平
面光導波路に波長6328人のHe−NeV−ザー光を
3ケ所から平行に入射させたところ、レンズ部を透過し
た3本のレーザー光はレンズの中心から38離れた一点
で交わった。また平面光導波路の伝送損失は2.0dB
/cInであったが、300Cで1時間アニールを施し
た後は0.2dB/cm以下に低減した。
Example 3 Imaya uses a fused silica substrate (wavelength 6328, refractive index 1.46 for human light) and deposits 30% Li+7 on the surface of the substrate.
iJJ implantation for 5 minutes at 0kv acceleration voltage, dose 10”
/ctl surface layer was formed. This has a wavelength of 632
When eight He-NeV-Boo lights were incident, the light was guided through the surface layer, and it was confirmed that a planar optical waveguide was formed on the substrate surface into which L L + 7 was implanted. Next, a tapered mask similar to that in Example 1 was formed using 5i02 on this substrate, and Li+7 was further applied at 300 kV.
A planar lens with a diameter of 200 μm was formed by implantation for 5 minutes at an accelerating voltage of . After that, the SiO2 mask was removed and He-NeV laser beams with a wavelength of 6328 people were made to enter the plane optical waveguide in parallel from three places. They intersected at a point 38 apart. Also, the transmission loss of the planar optical waveguide is 2.0 dB.
/cIn, but after annealing at 300C for 1 hour, it was reduced to 0.2 dB/cm or less.

なお溶融石英基板のかわりにLiNbO3基板を用いて
 rpj+4をイオン打込みしても同様な平面レンズを
作製することができた。また本実施例では光導波層3を
イオン打込みでのみ作製する方法について述べたが、あ
らかじめ基板上にi’viQcVD法等により基板より
屈折率の高い光導波層をもうけてから、イオン打込みに
よシ平面レンズを作製してもよい。
Note that a similar planar lens could be fabricated by using a LiNbO3 substrate instead of the fused silica substrate and implanting rpj+4 ions. Furthermore, in this embodiment, a method was described in which the optical waveguide layer 3 was fabricated only by ion implantation, but after forming an optical waveguide layer with a higher refractive index than the substrate on the substrate by i'viQcVD method etc., ion implantation was performed. A flat lens may also be fabricated.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で示したように、本発明によれば非点収差
が小さく、かつ平面光導波路と平面レンズとの境界にお
ける光の散乱損失の小さいレンズを作製することができ
る。
As shown in the above embodiments, according to the present invention, it is possible to produce a lens with small astigmatism and small light scattering loss at the boundary between the planar optical waveguide and the planar lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は従来の平面レンズの作製工程
の一部を示す断面図、第2図(a)は本発明の一実施例
に使用した製造工程の一部を示した断面図、(b)は平
面レンズの屈折率分布を示す図、8g3図は本発明の一
実施例に使用した製造工程の一部を示した断面図である
。 1・・・基板、2・・・超音波伝達棒、3・・・高屈折
率膜、第 1 何 (0−) ゆ) 郵 2L¥1 (ユJ z3 巴
Figures 1 (a) and (b) are cross-sectional views showing part of the manufacturing process of a conventional plane lens, and Figure 2 (a) shows part of the manufacturing process used in an embodiment of the present invention. 8g3 is a cross-sectional view showing a part of the manufacturing process used in an embodiment of the present invention. FIG. 1...Substrate, 2...Ultrasonic transmission rod, 3...High refractive index film,

Claims (1)

【特許請求の範囲】[Claims] 1、基板よシも屈折率の高い光導波唐土に、テーバのつ
いたマスクまたは内ぐシのしであるマスクを設け、上か
らイオンを入射させてドーズ量のさらに多い部分を形成
して平面レンズを製造する方法において、イオンのドー
ズ量が高い部分から低い部分への屈折率の変化がなめら
かになるよう、マスクにテーパをつけるがまたは、内ぐ
シのしであるマスクを設け、基板をイオンの入射方向に
対して傾け、かつ基板を回転しながらイオン打込みする
ことを特徴とする平面レンズの製造方法。
1. A tapered mask or an inner mask is provided on the optical waveguide clay, which has a high refractive index as well as the substrate, and ions are injected from above to form a portion with a higher dose to form a flat surface. In the method of manufacturing lenses, the mask is tapered so that the change in refractive index from a region with a high ion dose to a region with a low ion dose is smooth. A method for manufacturing a flat lens, characterized by implanting ions while tilting the substrate with respect to the direction of ion incidence and rotating the substrate.
JP16813883A 1983-09-14 1983-09-14 Manufacture of plane lens Pending JPS6060601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16813883A JPS6060601A (en) 1983-09-14 1983-09-14 Manufacture of plane lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16813883A JPS6060601A (en) 1983-09-14 1983-09-14 Manufacture of plane lens

Publications (1)

Publication Number Publication Date
JPS6060601A true JPS6060601A (en) 1985-04-08

Family

ID=15862536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16813883A Pending JPS6060601A (en) 1983-09-14 1983-09-14 Manufacture of plane lens

Country Status (1)

Country Link
JP (1) JPS6060601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348757B1 (en) * 1999-10-06 2002-08-17 최종국 Heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348757B1 (en) * 1999-10-06 2002-08-17 최종국 Heater

Similar Documents

Publication Publication Date Title
US5951731A (en) Laser processing method to a micro lens
US4711514A (en) Product of and process for forming tapered waveguides
KR100357011B1 (en) Process for Polishing Diamond Surface and Products Made by the Same
US4111520A (en) Fabrication of optical waveguides
JPS6060601A (en) Manufacture of plane lens
US6008467A (en) Laser processing method to an optical waveguide
JPS63136618A (en) Energy irradiation
US10197732B2 (en) Methods for forming ion-exchanged waveguides in glass substrates
JPH0244041B2 (en)
JPS6146408B2 (en)
JPH04251804A (en) Formation of optical waveguide
JPS59178414A (en) Production of plane lens
JP4156136B2 (en) Method for manufacturing buried optical waveguide
RU2073659C1 (en) Method for manufacturing of integral microlenses
JPH0531123B2 (en)
JPH0723238B2 (en) How to make an optical lens
SU1765129A1 (en) Transparent material for electronic-radial formation of refraction integrated-optical elements and structures in it
JP2002131795A (en) Wavelength conversion element and method of manufacturing for the same
JPS62247306A (en) Optical waveguide element
JPS62295003A (en) Optical waveguide microlens
JPS5963734A (en) Manufacture of semiconductor device
JPS59171907A (en) Production of optical guide
JPS6481918A (en) Manufacture of three-dimensional optical circuit element
EP0241162A2 (en) Optical waveguide lenses
JPS58159508A (en) Manufacture of line for optical integrated circuit