JPS6060465A - Helium liquefying and refrigerating device - Google Patents

Helium liquefying and refrigerating device

Info

Publication number
JPS6060465A
JPS6060465A JP16999883A JP16999883A JPS6060465A JP S6060465 A JPS6060465 A JP S6060465A JP 16999883 A JP16999883 A JP 16999883A JP 16999883 A JP16999883 A JP 16999883A JP S6060465 A JPS6060465 A JP S6060465A
Authority
JP
Japan
Prior art keywords
temperature
helium
gas
expander
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16999883A
Other languages
Japanese (ja)
Other versions
JPH0247674B2 (en
Inventor
片岡 晋一
佃 淳二
志岐 紀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16999883A priority Critical patent/JPH0247674B2/en
Publication of JPS6060465A publication Critical patent/JPS6060465A/en
Publication of JPH0247674B2 publication Critical patent/JPH0247674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヘリウム液化・冷凍装置に関し、詳細には冷凍
負荷の変動特に複数設置された冷凍負荷部分の1つ以上
の冷却停止、およびその後の再冷却による冷凍負荷の変
動等があっても冷凍出力の過不足を発生ずることなく安
定した運転状態を維持できる様なヘリウム液化・冷凍装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a helium liquefaction and refrigeration system, and more particularly to fluctuations in refrigeration load due to cooling stoppage of one or more of multiple installed refrigeration load sections and subsequent recooling. The present invention relates to a helium liquefaction/refrigeration system that can maintain a stable operating state without causing excess or deficiency in refrigeration output even if the above conditions occur.

ヘリウム(以上「He」と表記する)液化・冷凍装置は
、約15〜20気圧まで圧縮された高圧のHeガスの一
部を1膨張機で等エントロピー膨張させることによって
寒冷を発生させ、該寒冷を利用してHeカスの残部を熱
交換作用により所定の低温度(いわゆる逆転温度)まで
段階的に予冷した後、ジュールI・ムソン(以下JTと
いう)弁に通し、JT効果を利用した冷却作用によりH
eカスの液化を行ない、液体He温度即ち極低温を得る
様にしたものである。こうして(すられた静体Heを製
品として取り出す形式とすれば液化装置となり、一方液
体Heを取り出すことなく閉回路的に循環使用する様に
し、該液体Heの潜熱を利川して極低温環境部(冷凍負
荷部分)内の被冷却体の熱負荷を吸収し、該環境部の温
度を−)PにM1持する形式とすれば冷凍装置となる。
Helium (hereinafter referred to as "He") liquefaction/refrigeration equipment generates cold by isentropically expanding a portion of high-pressure He gas compressed to approximately 15 to 20 atmospheres using one expander. The remainder of the He sludge is precooled step by step to a predetermined low temperature (so-called reversal temperature) by heat exchange, and then passed through a Joule I-Mousson (hereinafter referred to as JT) valve, where it is cooled using the JT effect. By H
The e-waste is liquefied to obtain a liquid He temperature, that is, an extremely low temperature. In this way, if the slicked static He is taken out as a product, it will become a liquefaction device, but on the other hand, the liquid He will be circulated in a closed circuit without being taken out, and the latent heat of the liquid He will be converted into a cryogenic environment. A refrigeration system can be obtained by absorbing the heat load of the object to be cooled in the refrigeration load section and maintaining the temperature of the environment by M1 at -)P.

即ち冷凍装置が液化装置δと異なる点は、液化装置では
低圧側He(戻り側He)のガス流量が高圧側He(入
り側He)のガス流却に比へて液化が分だけ少ないのに
対し、冷凍装置では、液化HeもA発して低圧側に戻る
ため高圧側と低圧側のHeガス流星か等しくなる点にあ
る。このため液化装置と冷凍装置とでは、装δ本体内の
熱交換器及び膨張機の温度分je+が異なり、それらの
熱的設計が異なってくるに過ぎず、装置の構造上、木質
的な相違はない。従って以下He冷凍装置を代表的にと
り挙げて説明する。
In other words, the difference between the refrigeration equipment and the liquefaction equipment δ is that in the liquefaction equipment, the gas flow rate on the low pressure side He (return side He) is smaller than the gas flow on the high pressure side He (inlet side He) by the amount of liquefaction. On the other hand, in a refrigeration system, liquefied He also emits A and returns to the low-pressure side, so there is a point where the He gas meteors on the high-pressure side and the low-pressure side become equal. For this reason, the liquefaction equipment and the refrigeration equipment differ in the temperature component je+ of the heat exchanger and expander in the main body of the δ unit, and their thermal designs are different. There isn't. Therefore, the He refrigerating device will be described below as a representative example.

この様なHe冷凍装若としては、例えは第1図に略示す
る様な構成のものが知られている。即ち第1図において
冷凍装置1は、熱交換器5a〜5e、膨張機7a、7b
、JT弁6等が内蔵された装置本体2、該本体2人口側
に連結された圧縮機3及び精製器4.装置本体2の出口
側に連結された極低温環境部10等から構成されている
。そしてHeカスはJに縮機3で加圧された後、第1〜
第5の熱交換器5a〜5eを降下(以下この鋒下経路を
「高圧側経路」という)して熱交換を受けつつ冷却され
、更にJT弁6で大気圧近くまで断熱膨張することによ
り一部液化してHeの気液混合状態、即ちHeミスト(
以下単に[液体HeJということがある)となった後、
Heミスト供給!6・8から極低温環境部10内へ送ら
れ、該環境部10の雰囲気を極低温まで冷却する。尚極
低温環境部10の具体的な用途としては、例えば極低温
下における金属材料の機械的性質を調べる為の極低温疲
労試験装器を代表的に挙げることができる。この場合に
は同試験装置内の液体Heが気化した場合にこれをi’
f凝縮させるための凝縮器を設けることもできる。
As such a He refrigeration system, one having a configuration as schematically shown in FIG. 1 is known, for example. That is, in FIG. 1, the refrigeration system 1 includes heat exchangers 5a to 5e, expanders 7a and 7b.
, a device main body 2 having a built-in JT valve 6, etc., a compressor 3 and a purifier 4 connected to the population side of the main body 2. It consists of a cryogenic environment section 10 connected to the outlet side of the main body 2 of the device. Then, after the He waste is pressurized by compressor 3 in J,
It descends through the fifth heat exchangers 5a to 5e (hereinafter referred to as the "high-pressure side route") and is cooled while undergoing heat exchange, and is further adiabatically expanded to near atmospheric pressure at the JT valve 6. Partially liquefied He into a gas-liquid mixed state, that is, He mist (
After becoming simply [sometimes referred to as liquid HeJ],
He mist supply! 6 and 8 into the cryogenic environment section 10, and cools the atmosphere of the environment section 10 to a cryogenic temperature. A typical example of a specific use of the cryogenic environment section 10 is a cryogenic fatigue test device for examining the mechanical properties of metal materials at cryogenic temperatures. In this case, if the liquid He in the test device evaporates, it is
It is also possible to provide a condenser for condensing f.

さて極低温環境部10内に存在する被冷却体の熱を奪っ
て気化したHeガスは、再び装置本体2の熱交換器5a
〜5eを逆方向に上A(以下このに昇経路を「低圧側経
路」という)し、対向流の高圧側経路を揄れるHeを冷
却した後、自らは略常温常圧のHeカスとなって圧縮機
3に戻る。そしてHeがこの経路を循環することによっ
て極低温環境7fl110を継続して極低温に保つ様に
なっている。この様な従来のHe冷凍機では膨張機の処
理品、の調節は手動で行ない、i膨張機による寒冷の発
生量を制御しているので負荷の変動を生じた場合や、起
動時なとにはその都度、流量調1かを行なう必要かあっ
た。特に1台のHe冷凍機に対し複数の極低温環境部(
以下ユーザと言うことがある)を並列的に接続した冷凍
システム(以下マルチューザシステムと言う)において
は負荷の変動か大きく、適切な膨張機処理楢の調節か1
1なわれなければ、過剰の寒冷発生によりエネルギーの
浪費を生しることかある。また冷却運転中のユーザのう
ち1 )、L (又は2基以」−)の冷却を曽・圧した
り再び冷却を開始する場合には、これらの操作にイ゛1
ってHe冷凍装置の運転条件が変動し、従来の手動操作
では冷却運転中のユーザの温度条件を一定に保つ様に運
転するためには高度の熟練が要求される。
Now, the He gas vaporized by taking away the heat of the object to be cooled existing in the cryogenic environment section 10 is transferred again to the heat exchanger 5a of the apparatus main body 2.
~5e in the opposite direction (hereinafter, the ascending path is referred to as the "low pressure side path"), and after cooling the He flowing in the high pressure side path of the counterflow, it becomes He scum at approximately room temperature and normal pressure. and return to compressor 3. By circulating He through this path, the cryogenic environment 7fl110 is continuously maintained at a cryogenic temperature. In such conventional He refrigerators, the amount of processed products in the expander is manually adjusted and the amount of cold generated by the I-expander is controlled, so if there is a change in load or when starting up, etc. It was necessary to adjust the flow rate each time. In particular, multiple cryogenic environment sections (
In a refrigeration system (hereinafter referred to as Malthusa system) in which multiple users (hereinafter sometimes referred to as "users") are connected in parallel, there are large load fluctuations, and it is necessary to adjust the expander processing oak appropriately.
If this is not done, excessive refrigeration may result in wasted energy. In addition, if a user during cooling operation wants to turn on the cooling of 1), L (or 2 or more units) or start cooling again, it is necessary to perform these operations.
Therefore, the operating conditions of the He refrigeration system fluctuate, and conventional manual operation requires a high level of skill in order to maintain the user's temperature conditions constant during the cooling operation.

本発明はこうした事情に着目してなされたものであって
、1膨張機における過剰な寒冷の発生を抑えながらユー
ザの環境温度を一定に保持するとともに、更にマルチユ
ーザシステムにおいては1基(又は2基以L)のユーザ
の冷却停止および再冷却を他のユーザの運転条件に悪影
響を及ぼすことなく適正に行なうことのできる様なHe
液化・冷凍装置を提供しようとするものである。
The present invention has been made with attention to these circumstances, and it is possible to maintain the user's environmental temperature constant while suppressing the generation of excessive cold in one expander, and furthermore, in a multi-user system, it is possible to keep the user's environment constant. He is such that it is possible to properly stop cooling and recool the user of the original L) without adversely affecting the operating conditions of other users.
The aim is to provide liquefaction/refrigeration equipment.

しかしてト記目的を達成した本発明のHe液化・冷凍装
置は、Heカスの等エンタルピー膨張によって得られた
寒冷を利用する熱交換作用により常温高圧のHeカスを
段階的に予冷した後、JT弁に通すことによって液化H
eを発生する採にしたHe液化・冷凍装置において、最
低温度膨張機の排出カスと極低温環境部からの戻りカス
との合流点よりド流側に設けられた温度測定器により検
出された温度に応じて前記膨張機の処理量を制御する様
にした点に要旨が存在する。
Thus, the He liquefaction/refrigeration system of the present invention, which has achieved the above objectives, pre-cools He scum at room temperature and high pressure in stages by a heat exchange action that utilizes the cold obtained by isenthalpic expansion of He scum, and then Liquefaction H by passing through the valve
In a He liquefaction/refrigeration system designed to generate The gist lies in that the throughput of the expander is controlled in accordance with the above.

以下実施例図面に沿って本発明の構成及び作用効果を説
明するか、図は代表例であって本発明を限定する性質の
ものではなく1例えばHe液化・冷凍装置本体に内蔵さ
れる熱交換器や膨張@等の基体的な構成及び配置、ある
いは極低温環境部の構造等を必要に応じて変更すること
等はいずれも本発明の技術的範囲に含まれる。
The configuration and effects of the present invention will be explained below with reference to the drawings. The drawings are representative examples and do not limit the present invention. Changes in the basic configuration and arrangement of the container, expansion @, etc., or the structure of the cryogenic environment section, etc., as necessary, are all included within the technical scope of the present invention.

第2図は本発明のHe冷凍装置の実施例を示す概略全体
図で、13は温度制御コントローラ、14は圧力制御コ
ントローラ、15は測温点、16は圧力検出点を夫々示
す。
FIG. 2 is a schematic overall view showing an embodiment of the He refrigeration system of the present invention, in which 13 shows a temperature control controller, 14 shows a pressure control controller, 15 shows a temperature measurement point, and 16 shows a pressure detection point.

圧縮機3のHeカス吐出側の系統L2の高圧Heガスの
一部は膨張機7a、7bにより寒冷を発生し、この寒冷
により冷却された残部のHeガスはJT(F6を通過し
てJT効果によりHeミストを発生して極低温環境部l
Oの雰囲気を極低温まで冷却する。ここで低温側の膨張
機7bからυ1出されたHeガスG1と極低温環境部1
0からの戻りカスG2との合流点より下流側に測温点1
5を設け、測温点15における測温値を温度制御コント
ローラ13に入力し該測温値の高低に応して低温側膨張
機7bの処理量を調節している。即ち測温値が設定1+
fiより高い場合には膨張機7bによる寒冷発生量が不
足していることを意味するので温度制御コントローラ1
3から膨張機7bへ出力増大の指令を発信し膨張機7b
の処理が:を増大させて寒冷発生(−を増加しこれによ
り測温点15の温度を低下させる。一方fllll温値
が設定値より低い場合には膨張@7bによる寒冷発生量
が過剰であることを意味するので温度制御コントローラ
13から膨張機7bへ出力減少の指令を発信し膨張機7
bの処理用を減少させて寒冷発生量を減少し、これによ
り測温点15の温度を高める。この様にして測温点15
の温度が一定に保持される。その結果熱交換器5dにお
いて冷奴である高圧側Heカスは一定の設定温度をもつ
冷却剤である所の低圧側Heガスによって畠に安定した
冷却作用を受けるので、熱交換後の温度は所定の温度を
保つことができる。これによって運転条件の変動にかか
わらず極低温環境部10は容易に一定の温度に保持され
る。尚測温点15は合流点と直後の熱交換器の人11部
間(入口部を含む)に設けるものとし、合流点と7I+
11温点15の間には利用カスGlと戻りガスG2のI
Xy合をよくするために混合器を設けることもでSる。
A part of the high-pressure He gas in the system L2 on the He waste discharge side of the compressor 3 is cooled by the expanders 7a and 7b, and the remaining He gas cooled by this cold passes through the JT (F6 and undergoes the JT effect). generates He mist and cools the cryogenic environment.
The O atmosphere is cooled to an extremely low temperature. Here, the He gas G1 υ1 discharged from the expander 7b on the low temperature side and the cryogenic environment section 1
Temperature measurement point 1 is located downstream from the confluence with the return waste G2 from 0.
5 is provided, and the measured temperature value at the temperature measuring point 15 is input to the temperature control controller 13, and the throughput of the low temperature side expander 7b is adjusted according to the level of the measured temperature value. In other words, the temperature value is set to 1+
If it is higher than fi, it means that the amount of cold generated by the expander 7b is insufficient, so the temperature control controller 1
3 sends a command to increase the output to the expander 7b, and the expander 7b
The process increases cold generation (-), thereby lowering the temperature at temperature measurement point 15. On the other hand, if the fllll temperature value is lower than the set value, the amount of cold generation due to expansion @7b is excessive. This means that the temperature control controller 13 sends a command to reduce the output to the expander 7b.
The amount of cold generation is reduced by reducing the processing use of b, thereby increasing the temperature at the temperature measuring point 15. In this way, temperature measurement point 15
temperature is maintained constant. As a result, in the heat exchanger 5d, the high-pressure side He scum, which is cold, is subjected to a stable cooling effect by the low-pressure side He gas, which is a coolant with a constant set temperature, so that the temperature after heat exchange remains at a predetermined temperature. Can maintain temperature. As a result, the cryogenic environment section 10 can be easily maintained at a constant temperature regardless of fluctuations in operating conditions. The temperature measurement point 15 shall be installed between the confluence point and the heat exchanger section 11 (including the inlet) immediately after the confluence point, and
Between temperature point 11 and temperature point 15, there is I of the utilized gas Gl and the return gas G2.
It is also possible to provide a mixer to improve the Xy combination.

しかし、圧縮機3の吐出量が一定の場合には1膨張機7
bの処理量を冷凍負荷に応じて変化させてもHe冷凍装
置の所要動力は変らず、特に冷凍負荷が減少した場合に
はエネルギー原単位が低下する。この低下を防止するた
めに本発明のHe冷凍装置では圧縮機3の吐出圧力を圧
力検出点16にて検出し、この圧力を一定に保つ様に圧
力制御コントローラ14により圧縮機3の吐出量、を調
節する様にしである。これによって冷凍負荷が減少した
場合にはJTゴtのみを絞れば、膨張機7bの処理♀も
冷凍負荷に応じて低下し圧縮機3の吐出圧力を一定に保
つ様に圧力制御コントローラ14の作用により吐出風量
が減少することにより、エネルギー原単位の低下を防止
し、省エネルギー運転を行なうことができる。
However, when the discharge amount of compressor 3 is constant, 1 expander 7
Even if the throughput of b is changed according to the refrigeration load, the required power of the He refrigeration system does not change, and especially when the refrigeration load decreases, the energy consumption rate decreases. In order to prevent this decrease, in the He refrigeration system of the present invention, the discharge pressure of the compressor 3 is detected at the pressure detection point 16, and the discharge amount of the compressor 3 is adjusted by the pressure control controller 14 so as to keep this pressure constant. It is designed to adjust. When the refrigeration load decreases as a result, if only the JT Got is throttled down, the processing ♀ of the expander 7b will also decrease in accordance with the refrigeration load, and the pressure control controller 14 will work to keep the discharge pressure of the compressor 3 constant. By reducing the discharge air volume, it is possible to prevent a decrease in the energy consumption rate and to perform energy-saving operation.

第3図は本発明に係る再凝縮方式のマルチユーザシステ
ムの例を示す概略全体図で、1基の冷凍装置2に再凝縮
機11e 、 llfを内装したユーザ10e 、 1
0fが2基接わりされている。尚本発明に係るマルチユ
ーザシステムは多くのユーザを並列に接続するものを含
むが、第3図例は理解の便宜を考慮して2基のユーザを
持つシステムを例示した。
FIG. 3 is a schematic overall diagram showing an example of a recondensing multi-user system according to the present invention, in which users 10e and 1 have recondensers 11e and llf installed in one refrigeration device 2.
Two 0fs are connected. Although the multi-user system according to the present invention includes a system in which many users are connected in parallel, the example in FIG. 3 illustrates a system with two users for ease of understanding.

圧縮機3のHe吐出側の常温高圧He供給系統L2は膨
i3%機へ至る系統L4とユーザ10elTIJT弁6
e及びユーザ10fj[JT弁6fにそれぞれ導入され
る系統Le 、Lfに分岐されており、後者の各系統の
常温部にはHeの流れ方向に沿ってストップ弁17e 
、 17f及び流−オ調筒針+2e 、 +2fが夫々
介設されている。尚JT弁の開度調整は流量調節計12
e 、 12fによって行なわれる。そしてユーザIO
e、10fからの戻りガスG1と低温側膨張機7bから
り出されるガスG2が合流する点より下流側に測温点1
5bを設けると共に、本例では該合流ガスG3と高温側
膨張機7aから排出されるガスG4との合流点より下流
側にも測温点15aを設けており、旧つ夫々の測温点1
5b、15aに対応して温度制御コントローラ13b 
、 13aを設置している。尚当然ながら測温点+5a
は省略することもできる。又i′iif例と同じく圧力
検出点16を圧縮機3の吐出側に設けると共に該圧力検
出点16に対応する圧力制御コントローラ14を設置し
ている。
The room temperature high pressure He supply system L2 on the He discharge side of the compressor 3 is connected to the system L4 leading to the i3% expansion machine and the user 10elTIJT valve 6.
e and user 10fj [JT valve 6f, respectively, are branched into systems Le and Lf, and a stop valve 17e is installed in the room temperature section of each latter system along the flow direction of He.
, 17f and flow-o adjustment cylinder needles +2e, +2f are provided, respectively. The opening of the JT valve is adjusted using the flow controller 12.
e, 12f. and user IO
e, a temperature measurement point 1 downstream from the point where the return gas G1 from 10f and the gas G2 taken out from the low temperature side expander 7b join;
5b, and in this example, a temperature measuring point 15a is also provided downstream from the confluence point of the combined gas G3 and the gas G4 discharged from the high temperature side expander 7a,
Temperature control controller 13b corresponding to 5b and 15a
, 13a is installed. Of course, temperature measurement point +5a
can also be omitted. Also, as in example i'iif, a pressure detection point 16 is provided on the discharge side of the compressor 3, and a pressure control controller 14 corresponding to the pressure detection point 16 is provided.

]−記41ft dのマルチユーザシステムにおいて、
2ノ、(のユーザの中1)J、、例えばユーザlGfの
み運転する場合はストフプ(+17eを閉じるとユーザ
foeには冷媒である高圧Heは供給されなくなり冷凍
魚6;1は所定の172となる。従って膨張a7b。
] - In the multi-user system of 41ft d,
2, (user 1) J, For example, when only user lGf is operated, if +17e is closed, high-pressure He, which is a refrigerant, will no longer be supplied to user foe. Therefore, expansion a7b.

7aの処理早か所定の場合は寒冷発生量は過剰となり、
+!111温点15b 、 +5aの温度か所定の(+
r口こ比ベト降するのでこの温度を所定の温度にもとす
様に温度制御コントローラ13b 、 13aが作動し
て膨張機7b、7aの処理量を低下させる。以」−の作
動によりHe冷凍機の高圧Heガスの所定jiが減少す
るので、圧力検出点16の圧力を一定に保つ様に、圧力
制御コントローラ14が作動して圧縮機以上の如くマル
チユーザシステムにおいて、一部のユーザを杯)Iする
場合はその系統のストンプ弁(上述の例では17e)を
閉しるだけで、寒冷発生量、圧縮機吐出量が自動的に調
節され、容易に常に最適条件での運転を行なうことによ
り省エネルギーをはかることができる。
If 7a is processed early or as specified, the amount of cold generated will be excessive,
+! 111 temperature point 15b, +5a or a predetermined temperature (+
Since the sludge ratio decreases, the temperature controllers 13b and 13a operate to bring the temperature down to a predetermined temperature, thereby reducing the throughput of the expanders 7b and 7a. As the predetermined ji of the high-pressure He gas in the He refrigerator decreases due to the above operation, the pressure control controller 14 operates to keep the pressure at the pressure detection point 16 constant, and the multi-user system If some users want to use the system, just close the stomp valve (17e in the example above) for that system, and the cold generation amount and compressor discharge amount will be automatically adjusted, making it easy to always Energy savings can be achieved by operating under optimal conditions.

又ユーザlofを冷却運転中にユーザ10eを極低温に
冷却する場合には、ユーザIOeを例えば液体窒素で予
冷後、ストップ弁17eを徐々に開き、冷奴Heを供給
すると冷凍負荷の増加により測温点15b 、 +5a
の温度か」−昇するので、この温度上昇を検知して温度
制御コントローラ13b、+3aの作動により、膨張a
7b、7aの処理量を増加して発生基冷却をふやし測温
点15b 、 +5aの温度を所定値に保つ様にする。
In addition, when cooling the user 10e to a cryogenic temperature during the cooling operation of the user lof, after pre-cooling the user IOe with liquid nitrogen, the stop valve 17e is gradually opened and chilled He is supplied. Point 15b, +5a
Since the temperature rises, this temperature rise is detected and the temperature control controllers 13b and +3a are operated to control the expansion a.
The throughput of 7b and 7a is increased to increase the cooling of the generating group, and the temperature of temperature measuring points 15b and +5a is maintained at a predetermined value.

以上の作動によりHe冷凍機の高圧Heカスの所定礒が
増加するので、圧力検出点16の圧力を一定に保つ様に
圧力制御コントローラ14が作動して圧縮機3の吐出風
量を調節する。
Due to the above operation, the predetermined amount of high-pressure He scum in the He refrigerator increases, so the pressure controller 14 operates to adjust the discharge air volume of the compressor 3 so as to keep the pressure at the pressure detection point 16 constant.

以]−のごとくマルチユーザシステムにおいて、体11
−中のユーザを再冷却する場合にはその系統のストンプ
ゴr(上述の例では+7e)を徐々に開くだけで、運転
中の他のユーザ10fの正常な運転を乱すことなく、寒
冷発生量、圧縮機の吐出量が自動的に調整され容易に再
冷却を行なうことができる。
]- In a multi-user system, the body 11
- When re-cooling a user inside, simply open the stomp gor (+7e in the above example) of that system gradually, and the amount of cold generated can be reduced without disturbing the normal operation of the other user 10f who is driving. The discharge amount of the compressor is automatically adjusted and recooling can be easily performed.

本発明は以上の様に構成ネれており、以下に要約する効
果を得ることができる。
The present invention is constructed as described above, and the effects summarized below can be obtained.

(1)冷凍負荷の変動等の運転条件に対して膨張機の寒
冷発生量を最適に保つ様に増減させるので、最良の運転
状態を保つことができ、極低温環境部の温度を所定の値
に保士りしながら最低のエネルギー原単位で運転するこ
とができる。
(1) The amount of cold generated by the expander is increased or decreased to keep it optimal in response to operating conditions such as fluctuations in refrigeration load, so the best operating conditions can be maintained and the temperature of the cryogenic environment section can be maintained at a predetermined value. It is possible to operate with the lowest energy consumption rate while maintaining safety.

(2)マルチユーザシステムにおいて、運転中の複数の
ユーザのうち1基(又は2基以−に)のユーザの停止・
再起動を他のユーザの2V転状・態を乱すことなく容易
に行なうことかてき
(2) In a multi-user system, if one (or two or more) of the multiple users operating the
You can easily restart the system without disturbing the 2V state of other users.

【図面の簡単な説明】[Brief explanation of drawings]

第1(4は従メくのHe冷凍装置を示す概略全体図、第
2図は未発り1に係るHe冷凍装置を示す概略全体図、
第3図は本発明に係るマルチユーザシステムのHe冷凍
装置を示す概略全体IΔである。 2・・・冷凍装置本体 3・・・圧縮機5a〜5e・・
・熱交換器 6・・・JT弁7a・・・高温側膨張機 
7b・・・低温側膨張機10・・・極低温環境部(ユー
ザ) 13 、13a 、 13b・・・温度制御コンI・ロ
ーラ14・・・圧力制御コントローラ +5 、 +5a 、 +5b・・・測温点 16・・
・圧力検出点出願人 41学技術庁長官官房会計課長第
1図 ル コーニ 第2図 1
1 (4 is a schematic overall diagram showing the conventional He freezing device, FIG. 2 is a schematic overall diagram showing the He freezing device according to the unreleased 1),
FIG. 3 is a schematic overall IΔ showing the He refrigerating device of the multi-user system according to the present invention. 2... Refrigeration equipment main body 3... Compressors 5a to 5e...
・Heat exchanger 6...JT valve 7a...High temperature side expander
7b...Low temperature side expander 10...Cryogenic environment section (user) 13, 13a, 13b...Temperature control controller I/roller 14...Pressure control controller +5, +5a, +5b...Temperature measurement Point 16...
・Pressure detection point applicant 41 Science and Technology Agency Director General Accounting Division Figure 1 Luconi Figure 2 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)ヘリウドガスの等エントロピー11杉弓長によっ
て得られた寒冷を利用する熱交換作用により常温高圧の
ヘリウムカスを階段的に予冷した後、ジュールトムソン
弁に通すことによって液化ヘリウドを発生する様にしj
こヘリウム液化・冷d)装置において、最低温度1膨張
機の摺出ガスと極低温環境部からの戻りガスとの合流点
より下節側に設けられた温度測定器による測温結果に応
して前記膨張機における処理量を制御する様に構成した
ことを4.+j徴とするヘリウム液化・冷凍装;イ1゜
(2、特許請求の範囲第1項の装置において、常温高圧
のヘリウムカスを製造する圧縮機の吐出側圧力を検出す
ると共にその検出値か一定となる様に圧縮機を制御する
様に構成してなるヘリウム液化・冷凍装置。
(1) After pre-cooling the helium gas at room temperature and high pressure in a stepwise manner by a heat exchange action that utilizes the cold obtained by the isentropy of heliud gas, the helium gas is passed through a Joule-Thomson valve to generate liquefied helium.
In this helium liquefaction/cooling d) equipment, the lowest temperature is determined by the temperature measurement result from the temperature measuring device installed below the confluence of the extruded gas from the expander and the return gas from the cryogenic environment section. 4. The expander is configured to control the throughput in the expander. +j Helium liquefaction/refrigeration system; A1 (2. In the device according to claim 1, the pressure on the discharge side of the compressor for producing helium scum at room temperature and high pressure is detected, and the detected value is constant. A helium liquefaction/refrigeration system configured to control a compressor so that
JP16999883A 1983-09-13 1983-09-13 HERIUMUEKIKA * REITOSOCHI Expired - Lifetime JPH0247674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16999883A JPH0247674B2 (en) 1983-09-13 1983-09-13 HERIUMUEKIKA * REITOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16999883A JPH0247674B2 (en) 1983-09-13 1983-09-13 HERIUMUEKIKA * REITOSOCHI

Publications (2)

Publication Number Publication Date
JPS6060465A true JPS6060465A (en) 1985-04-08
JPH0247674B2 JPH0247674B2 (en) 1990-10-22

Family

ID=15896689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16999883A Expired - Lifetime JPH0247674B2 (en) 1983-09-13 1983-09-13 HERIUMUEKIKA * REITOSOCHI

Country Status (1)

Country Link
JP (1) JPH0247674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268972A (en) * 1985-05-21 1986-11-28 株式会社神戸製鋼所 Method of controlling operation of helium liquefying and refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268972A (en) * 1985-05-21 1986-11-28 株式会社神戸製鋼所 Method of controlling operation of helium liquefying and refrigerating device
JPH0446350B2 (en) * 1985-05-21 1992-07-29 Kobe Steel Ltd

Also Published As

Publication number Publication date
JPH0247674B2 (en) 1990-10-22

Similar Documents

Publication Publication Date Title
US4048814A (en) Refrigerating plant using helium as a refrigerant
US3735601A (en) Low temperature refrigeration system
US3850004A (en) Cryogenic helium refrigeration system
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
US3307370A (en) Cooling device for helium
KR20130065255A (en) Natural gas liquefaction system
JPS6060465A (en) Helium liquefying and refrigerating device
US3161232A (en) Refrigeration-heating circuit
Benoit et al. Dilution refrigerator for space applications with a cryocooler
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JPH08128745A (en) Supercritical helium cooling system and method for operating the same
JPH0446350B2 (en)
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
US20230204258A1 (en) Apparatus and method for generating cryogenic temperatures and use thereof
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
Dalakov et al. Innovative neon refrigeration unit operating down to 30 K
JPH08121892A (en) Operation controlling method for turbine type expansion unit
JP2510637B2 (en) Operation control method of cryogenic refrigeration refrigeration system
CN117553465A (en) Temperature control system and control method thereof
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH01150759A (en) Method of controlling cryogenic liquefying refrigerator
JPH07270062A (en) Helium refrigerating and liquidizing machine and operating method therefor
JPH03247963A (en) Cryogenic refrigerator
JPH0379623B2 (en)