JPS61268972A - Method of controlling operation of helium liquefying and refrigerating device - Google Patents

Method of controlling operation of helium liquefying and refrigerating device

Info

Publication number
JPS61268972A
JPS61268972A JP60109578A JP10957885A JPS61268972A JP S61268972 A JPS61268972 A JP S61268972A JP 60109578 A JP60109578 A JP 60109578A JP 10957885 A JP10957885 A JP 10957885A JP S61268972 A JPS61268972 A JP S61268972A
Authority
JP
Japan
Prior art keywords
cryogenic environment
gas
heat load
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60109578A
Other languages
Japanese (ja)
Other versions
JPH0446350B2 (en
Inventor
正明 赤松
浅原 一彦
佃 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60109578A priority Critical patent/JPS61268972A/en
Publication of JPS61268972A publication Critical patent/JPS61268972A/en
Publication of JPH0446350B2 publication Critical patent/JPH0446350B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はヘリウム液化舎冷凍装置の運転制御方法に関し
、詳細には極低温環境部で急激な熱負荷の変動があった
場合でも冷凍出力の過不足を発生することなく安定した
運転状!出を維持できる様なヘリウム液化・冷凍装置の
運転制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the operation of a helium liquefaction building refrigeration system, and more specifically, the present invention relates to a method for controlling the operation of a helium liquefaction building refrigeration system, and in particular, it is possible to control the refrigeration output even when there is a sudden change in heat load in a cryogenic environment. Stable operating conditions without excess or deficiency! The present invention relates to a method for controlling the operation of a helium liquefaction/refrigeration system that maintains the amount of helium produced.

[従来の技術] ヘリウム(以下「He」と表記する)液化・冷凍装置は
、約15〜20気圧まで圧縮された高圧のHeガスの一
部を膨張機で等エントロピー膨張させることによって寒
冷を発生させ、該寒冷を利用してHeガスの残部を熱交
換作用により所定の低温度(いわゆる逆転温度)まで段
階的に予冷した後、ジュールトムソン(以下JTという
)弁に通し、JT効果を利用した冷却作用によりHeガ
スの液化を行ない、液体He温度即ち極低温を得る様に
したものである。こうして得られた液体Heを製品とし
て取り出す形式とすれば液化装置となり、一方液体He
を取り出すことなく閉回路的に循環使用する様にし、該
液体HeのMI熱を利用して極低温環境部(冷凍負荷部
分)内の被冷却体の熱負荷を吸収し、該環境部の温度を
一定に維持する形式とすれば冷凍装置となる。即ち冷凍
装置が液化装置と異なる点は、液化装置では低圧側He
(戻り側1(e )のガス流量が高圧側He(入り側H
e)のガス流量に比べて液化量分だけ少なくなるのに対
し、冷凍装置では、液化Heも蒸発して低圧側に戻るた
め高圧側と低圧側のHeガス流量が等しくなる点にある
。このため液化装置と冷凍装はとでは、装置本体内の熱
交換器及び膨張機の温度分布が異なり、それらの熱的設
計が異なってくるに過ぎず、装置の構造上、本質的な相
違はない。従って以下He冷凍装置を代表的にとり挙げ
て説明する。
[Prior art] Helium (hereinafter referred to as "He") liquefaction/refrigeration equipment generates cold by isentropically expanding a portion of high-pressure He gas compressed to approximately 15 to 20 atmospheres using an expander. Using the cooling, the remaining He gas was precooled in stages to a predetermined low temperature (so-called inversion temperature) by heat exchange action, and then passed through a Joule-Thomson (hereinafter referred to as JT) valve to utilize the JT effect. The He gas is liquefied by the cooling action, and the temperature of the liquid He, that is, the extremely low temperature is obtained. If the liquid He obtained in this way is taken out as a product, it will become a liquefaction device, and on the other hand, the liquid He
The liquid He is circulated in a closed circuit without being taken out, and the MI heat of the liquid He is used to absorb the heat load of the object to be cooled in the cryogenic environment section (refrigeration load section), thereby reducing the temperature of the environment section. A type of system that maintains a constant value would be a refrigeration system. In other words, the difference between a refrigeration system and a liquefaction system is that in a liquefaction system, the low-pressure side He
(The gas flow rate on the return side 1(e) is high pressure side He (inlet side H
Compared to e), the gas flow rate is reduced by the amount of liquefaction, whereas in the refrigeration system, the liquefied He also evaporates and returns to the low-pressure side, so the He gas flow rates on the high-pressure side and the low-pressure side become equal. For this reason, the temperature distribution of the heat exchanger and expander within the equipment body is different between the liquefaction equipment and the refrigeration equipment, and their thermal design is only different.There is no essential difference in the structure of the equipment. do not have. Therefore, the He refrigerating device will be described below as a representative example.

この様なHe冷凍装置としては5例えば第3図に略示す
る様な構成のものが知られている。即ち第3図において
冷凍装置1は、熱交換器5a〜5e、1膨張機7a、7
b、JT弁6等が内蔵された装置本体2、該本体2人口
側に連結された圧縮機3及びM製器4.装置本体2の出
口側に連結された極低温環境部10等から構成されてい
る。モしてHeガスは圧li1機3で加圧された後、第
1〜第5の熱交換器5a〜5eを通過(以下この通過経
路を「高圧側経路」という)して熱交換を受けつつ冷却
され、更にJT弁6で大気圧近くまで断熱膨張すること
により一部液化してHeの気液混合状態、即ちHeミス
ト(以下単に「液体HeJということがある)となった
後、Heミスト供給管8から極低温環境部10内へ送ら
れ、該環境部lOの雰囲気を極低温まで冷却する。尚極
低温環境部10の具体的な用途としては1例えば極低温
下における金属材料の機械的性質を調べる為の極低温疲
労試験装置を代表的に挙げることができる。この場合に
は同試験装置内の液体Heが気化した場合にこれを再凝
縮させるための凝縮器を設けることもできる。
As such a He refrigerating apparatus, one having a configuration as schematically shown in FIG. 3, for example, is known. That is, in FIG. 3, the refrigeration system 1 includes heat exchangers 5a to 5e, 1 expander 7a,
b. A device main body 2 in which a JT valve 6 and the like are built-in, a compressor 3 and an M-made device 4 connected to the population side of the main body 2. It consists of a cryogenic environment section 10 connected to the outlet side of the main body 2 of the device. After the He gas is pressurized by the pressure Li1 unit 3, it passes through the first to fifth heat exchangers 5a to 5e (hereinafter, this passage route is referred to as the "high pressure side route") and undergoes heat exchange. The mixture of He is partially liquefied by adiabatic expansion to near atmospheric pressure in the JT valve 6, and becomes He mist (hereinafter simply referred to as "liquid HeJ"). The mist is sent into the cryogenic environment section 10 from the mist supply pipe 8, and cools the atmosphere in the environment section 10 to a cryogenic temperature.Specific applications of the cryogenic environment section 10 include 1, for example, the production of metal materials at cryogenic temperatures. A typical example is a cryogenic fatigue testing device for examining mechanical properties.In this case, a condenser may be installed to re-condense the liquid He in the test device if it evaporates. can.

さて極低温環境fI6to内に存在する被冷却体の熱を
奪って気化したHeガスは、再び装置本体2の熱交換器
5a〜5eを逆方向に上昇(以下この通過経路を「低圧
側経路」という)シ、対向流の高圧側経路を流れるHe
を冷却した後、自らは常温常圧のHeガスとなって圧縮
機3に戻る。モしてHeがこの経路を循環することによ
って極低温環境部10を継続して極低温に保つ様になっ
ている。この様な従来のHe冷凍機では膨張機の処理量
の調節は手動で行ない、膨張機による寒冷の発生量を制
御しているので、負荷の変動を生じた場合や起動時など
にはその都度、流量調節を行なう必要があった。特に1
台のHe冷凍機に対し81数の極低温環境部(以下ユー
ザと言うことがある)を並列的に接続した冷凍システム
(以下マルチユーザシステムと言う)においては負荷の
変動が大きく、適切な膨張機処理隘の調節が行なわれな
ければ、過剰の寒冷発生によりエネルギーの浪費を生じ
ることがある。また冷却運転中のユーザのうち1基(メ
は2基以E)の冷却を停止したり再び冷却を開始する場
合には、これらの操作に伴ってHe冷凍装置の運転条件
が変動し、従来の手動操作では冷却運転中のユーザの温
度条件を一定に保つ様に運転するためには高度の熟練が
要求される。
Now, the He gas vaporized by absorbing the heat of the object to be cooled existing in the cryogenic environment fI6to rises again in the opposite direction through the heat exchangers 5a to 5e of the device main body 2 (hereinafter, this passage route is referred to as the "low pressure side route"). He flowing through the high-pressure side path of the counterflow
After being cooled, it returns to the compressor 3 as He gas at room temperature and pressure. Furthermore, by circulating He through this path, the cryogenic environment section 10 is continuously kept at a cryogenic temperature. In such conventional He refrigerators, the throughput of the expander is manually adjusted to control the amount of cold generated by the expander, so when there is a change in load or when starting up, etc. , it was necessary to adjust the flow rate. Especially 1
In a refrigeration system (hereinafter referred to as a multi-user system) in which 81 cryogenic environment units (hereinafter referred to as users) are connected in parallel to one He refrigerator, the load fluctuates greatly, and appropriate expansion is required. If machine processing capacity is not adjusted, excess refrigeration can result in wasted energy. In addition, when the user stops cooling one unit (or two or more units) or starts cooling again during cooling operation, the operating conditions of the He refrigeration system change due to these operations, and the Manual operation requires a high degree of skill in order to maintain a constant temperature condition for the user during cooling operation.

未発151はこうした事情に着目し、[11張機におけ
る過剰な寒冷の発生を抑えながらユーザの環境温度を一
定に保持するとともに、更にマルチユーザシステムにお
いては1基(又は2基以上)のユーザの冷却停止および
再冷却を他のユーザの運転条件に悪影響を及ぼすことな
く適正に行なうことのできる様なHe液化・冷凍装置を
提供しようとして種々研究を進めた結果、特願昭58−
189i9!98号に示す技術を開発した。
Focusing on these circumstances, the Unreleased 151 is designed to maintain a constant user environment temperature while suppressing the generation of excessive cold in the tension machine, and in addition, in a multi-user system, the user As a result of conducting various researches in an attempt to provide a He liquefaction/refrigeration system that can appropriately stop and recool the cooling of the Helium without adversely affecting the operating conditions of other users, a patent application filed in 1983 was published.
We have developed the technology shown in No. 189i9!98.

即ち第4図は該公開発明に係るHe冷凍装置を示す概略
全体図で、13は温度制御コントロ−ラ、14は圧力制
御コントローラ、15は測温点、16は圧力検出点を夫
々示す。
That is, FIG. 4 is a schematic overall view showing the He refrigeration system according to the disclosed invention, in which 13 shows a temperature control controller, 14 shows a pressure controller, 15 shows a temperature measurement point, and 16 shows a pressure detection point.

圧縮機3のHeガス吐出側の系統L2の高圧Heガスの
一部は膨張機7a、7bにより寒冷を発生し、この寒冷
により冷却された残部のHeガスはJT弁6を通過して
JT効果によりHeミストを発生して極低温環境部10
の雰囲気を極低温まで冷却する。ここで低温側の膨張@
7bから吐出されたHeガスG、と極低温環境部lOか
らの戻りガスG2との合流点より下流側に測温点15を
設け、a温点15における測温値を温度制御コントロー
ラ13に入力し該測温値の高低に応じて低温側膨張機7
bの処理量を調節する。即ち測温値が設定値より高い場
合には膨張機7bによる寒冷発生量が不足していること
を意味するので温度制御コントローラ13から膨張a7
bへ出力増大の指令を発信し膨張機7bの処理量を増大
させて寒冷発生量を増加しこれにより測温点15の温度
を低下させる。一方測温値が設定値より低い場合には膨
張機7bによる寒冷発生量が過剰であることを、a味す
るので温度制御コントローラ13から膨張機7bへ出力
減少の指令を発信し膨張機7bの処理量を減少させて寒
冷発生量を減少し、これにより測温点15の温度を高め
る。この様にして測温点15の温度が一定に保持される
。その結果熱交換器5dにおいて冷媒である高圧側He
ガスは一定の設定温度をもつ冷却剤である所の低圧側H
eガスによって安定した冷却作用を受けるので、熱交換
後の温度は所定の温度を保つことができ、これによって
運転条件の変動にかかわらず極低温環境部10は一定の
温度に保持される。尚測温点15は合流点と直後の熱交
換器の入口部間(入口部を含む)に設けるものとし1合
流点と測温点15の間には吐出ガスG、と戻すガスG2
の混合をよくするために混合器を設けることもある。
A part of the high-pressure He gas in the system L2 on the He gas discharge side of the compressor 3 is cooled by the expanders 7a and 7b, and the remaining He gas cooled by this cold passes through the JT valve 6 and is subjected to the JT effect. generates He mist and cools the cryogenic environment section 10.
The atmosphere is cooled to an extremely low temperature. Here, expansion on the low temperature side @
A temperature measurement point 15 is provided downstream from the confluence of the He gas G discharged from 7b and the return gas G2 from the cryogenic environment section 1O, and the temperature measurement value at the temperature point 15 is input to the temperature control controller 13. The low temperature side expander 7
Adjust the processing amount of b. That is, if the measured temperature value is higher than the set value, it means that the amount of cold generated by the expander 7b is insufficient, so the temperature control controller 13 controls the expansion a7.
A command to increase the output is sent to the expander 7b to increase the throughput of the expander 7b, thereby increasing the amount of cold generation, thereby lowering the temperature at the temperature measuring point 15. On the other hand, if the measured temperature value is lower than the set value, it means that the amount of cold generated by the expander 7b is excessive, so the temperature control controller 13 sends a command to reduce the output to the expander 7b. The amount of processing is reduced to reduce the amount of cold generation, thereby increasing the temperature at the temperature measuring point 15. In this way, the temperature at the temperature measurement point 15 is maintained constant. As a result, in the heat exchanger 5d, the high pressure side He, which is a refrigerant,
The low pressure side H where the gas is a refrigerant with a constant set temperature
Since the e-gas provides a stable cooling effect, the temperature after heat exchange can be maintained at a predetermined temperature, and thereby the cryogenic environment section 10 is maintained at a constant temperature regardless of fluctuations in operating conditions. The temperature measurement point 15 shall be provided between the confluence point and the inlet of the heat exchanger immediately after (including the inlet).1 Between the confluence point and the temperature measurement point 15, the discharge gas G and the returned gas G2 are provided.
A mixer may be installed to improve mixing.

但し、圧縮機3の吐出量が一定の場合には膨張a7bの
処理量を冷凍負荷に応じて変化させてもHe冷凍装置の
所要動力は変らず、特に冷凍負荷が減少した場合にはエ
ネルギー原単位が低下する。この低下を防止するために
該He冷凍装置では圧縮機3の吐出圧力を圧力検出点1
6にて検出し、この圧力を一定に保つ様に圧力制御コン
トローラ14により圧縮機3の吐出量をIIFJする様
にしである。これによって冷凍負荷が減少した場合には
JT弁のみを絞れば、膨張機7bの処理量は冷凍負荷に
応じて低下するので、圧縮機3の吐出圧力を一定に保つ
様に圧力制御コントローラ14の作用により吐出風量が
減少することにより、エネルギー原単位の低下を防止し
、省エネルギー運転を行なうことができる。
However, if the discharge amount of the compressor 3 is constant, the required power of the He refrigeration system will not change even if the throughput of the expansion a7b is changed according to the refrigeration load, and especially when the refrigeration load decreases, the energy source will change. Units decrease. In order to prevent this drop, in this He refrigeration system, the discharge pressure of the compressor 3 is set at the pressure detection point 1.
6, and the discharge amount of the compressor 3 is controlled by the pressure controller 14 to keep this pressure constant. If the refrigeration load decreases as a result, by throttling only the JT valve, the throughput of the expander 7b will decrease in accordance with the refrigeration load. By reducing the discharge air volume due to this action, it is possible to prevent a decrease in the energy consumption rate and to perform energy-saving operation.

[発明が解決しようとする問題点] ところが、低温側膨張機から送給されるHeガスG、と
極低温環境部からの戻りガスG2との合流点より下流側
の測定点における温度は、極低温環境部における熱負荷
変動の発生後、若干遅れて変化するものであり、上記の
制御法では、極低温環境部で熱負荷が急激に変化した場
合制御に遅れが出てくる。しかも極低温環境部の熱負荷
変動にもかかわらずその寒冷状態を安定に維持する為に
は、前記膨張機の処理量を制御しただけでは不十分であ
り、もしJT弁から極低温環境部への寒冷供給量が不足
すると該極低温環境部の冷却状態が不安定となり、逆に
JT弁から極低温環境部への寒冷供給量が多過ぎると寒
冷過剰となって省エネルギー化の目的が果たせなくなる
[Problems to be Solved by the Invention] However, the temperature at the measurement point downstream of the confluence of the He gas G fed from the low-temperature side expander and the return gas G2 from the cryogenic environment section is extremely low. The change occurs with a slight delay after the heat load fluctuation occurs in the low-temperature environment, and with the above control method, if the heat load changes suddenly in the cryogenic environment, there will be a delay in control. Moreover, in order to maintain the cold state stably despite heat load fluctuations in the cryogenic environment section, simply controlling the throughput of the expander is insufficient; If the amount of cold supplied from the JT valve to the cryogenic environment is insufficient, the cooling state of the cryogenic environment will become unstable, and conversely, if the amount of cold supplied from the JT valve to the cryogenic environment is too large, there will be excessive cooling and the purpose of energy saving will not be achieved. .

本発明はこの様な状況のもとで、極低温環境部における
熱負荷が急変した場合でも、その急変に応じて冷凍装置
の寒冷発生量を迅速且つ適正に制御することができ、し
かも極低温環境部における寒冷を安定に維持することの
できる運転制御法を提供しようとするものである。
Under such circumstances, even if the heat load in the cryogenic environment section suddenly changes, the present invention can quickly and appropriately control the amount of cold generated by the refrigeration system in accordance with the sudden change. The purpose is to provide an operation control method that can stably maintain the cold in the environment.

[問題点を解決する為の手段] 上記の様な目的を達成し得た本発明運転制御方法の構成
は1例えば第4図に示した如く、ヘリウムガスの等エン
トロピー膨張によって得られた寒冷を利用する熱交換作
用により常温高圧のヘリウムガスを段階的に予冷した後
、ジュールトムソン弁に通すことによって液化させるヘ
リウム液化・冷凍装置の運転制御方法において、極低温
環境部に熱負荷変動検出器を設けると共に、ヘリウム液
化も冷凍装置における高圧ヘリウムガス供給回路に設け
た膨張機の吐出ガスと極低温環境部からの戻りガスの合
流点よりも下流側に温度測定器を設け、上記熱負荷変動
検出器によって求められる極低温環境部の熱負荷変動に
基づいて前記膨張機からの必要寒冷発生量を算出して制
御すると共に、該制御を上記温度測定器による測温結果
で補正する他、上記熱負荷変動を基に極低温環境部にお
ける寒冷の安定化に必要な冷媒流量を算出してジュール
トムソン弁の開度を調整するところに要旨を有するもの
である。
[Means for Solving the Problems] The configuration of the operation control method of the present invention that achieves the above objects is as follows: 1. For example, as shown in FIG. 4, cooling obtained by isentropic expansion of helium gas is In a method for controlling the operation of a helium liquefaction/refrigeration system in which helium gas at room temperature and high pressure is precooled in stages by a heat exchange action and then liquefied by passing it through a Joule-Thomson valve, a thermal load fluctuation detector is installed in the cryogenic environment section. In addition, for helium liquefaction, a temperature measuring device is installed downstream of the confluence of the discharge gas of the expander installed in the high-pressure helium gas supply circuit in the refrigeration equipment and the return gas from the cryogenic environment section, and the above-mentioned thermal load fluctuation detection is performed. In addition to calculating and controlling the necessary cold generation amount from the expander based on the heat load fluctuation of the cryogenic environment section determined by the The gist of this method is to calculate the refrigerant flow rate necessary for stabilizing the cold in the cryogenic environment based on load fluctuations and adjust the opening degree of the Joule-Thompson valve.

[作用] 後記実施例でも明らかにする通り1本発明の基本的な寒
冷f#mal!構はtfSJ図に示した技術と類似して
いるが1本発明では、第4図の例の様に、極低温環境部
における熱負荷変動の影響を受けて変化する該極低温環
境部からの戻りガスの温度変化に応じて高圧Heガス供
給回路に設けた膨張機からの寒冷発生量(吐出ガスfI
t)を制御するのではなく、木質的な制御要素として、
極低温環境部に設けた熱負荷変動検出器(例えば液体H
eの液位やガス圧等)による熱負荷変動を直接検出し、
この熱負荷変動に基づいて前記膨4Ii機からの必要寒
冷発生量を算出して制御するものである。しかも検出さ
れる該熱負荷変動を基にして極低温環境部における寒冷
消費量を算出し、極低温環境部における寒冷状態の安定
化に必要な冷媒供給量を割り出してJT弁を適正に自動
制御するものである。
[Function] As will be made clear in the examples below, 1. Basic cold f#mal! of the present invention. The structure is similar to the technology shown in the tfSJ diagram, but in the present invention, as in the example shown in Fig. 4, the heat load from the cryogenic environment part changes due to the influence of heat load fluctuation in the cryogenic environment part. The amount of cold generation (discharge gas fI) from the expander installed in the high-pressure He gas supply circuit changes according to the temperature change of the return gas.
t), but as a woody control element,
A heat load fluctuation detector installed in the cryogenic environment section (e.g.
Directly detects heat load fluctuations due to liquid level, gas pressure, etc.
Based on this heat load variation, the required amount of cold generation from the Expansion 4Ii machine is calculated and controlled. Furthermore, the amount of refrigeration consumed in the cryogenic environment section is calculated based on the detected heat load fluctuations, and the amount of refrigerant supplied necessary to stabilize the cold state in the cryogenic environment section is determined, and the JT valve is automatically controlled appropriately. It is something to do.

即ち本発明では極低温環境部における熱負荷変動を直接
検知してHe液化舎冷凍装置の寒冷発生装置の冷却効率
を制御すると共に、該極低温環境部への寒冷供給量を制
御するものであり、前記第4図に示した様な方法に比べ
て熱負荷変動に対する応答が極めて早く、急激な熱負荷
変動があった場合でもHe液化φ冷凍装置側で遅れが生
じる様なことがない、しかも上記熱負荷の変動を基に極
低温環境部における寒冷消費量を直ちに算出し、寒冷能
力を安定に雑持し得る量の冷媒が該極低温環境部へ供給
される様にJT弁の開度を自動制御する構成としている
ので、極低温環境部に寒冷能力が低下して冷却効率が低
下したり、或は寒冷過剰によるロス等を生ずることもな
くなる。
That is, in the present invention, the heat load fluctuation in the cryogenic environment section is directly detected to control the cooling efficiency of the cold generation device of the He liquefaction building refrigeration system, and the amount of cold supply to the cryogenic environment section is controlled. Compared to the method shown in FIG. 4, the response to heat load fluctuations is extremely fast, and even if there is a sudden heat load fluctuation, there will be no delay on the He liquefaction φ refrigeration equipment side. The amount of refrigeration consumed in the cryogenic environment section is immediately calculated based on the above fluctuations in heat load, and the opening of the JT valve is adjusted so that an amount of refrigerant that can stably maintain the cooling capacity is supplied to the cryogenic environment section. Since the system is configured to automatically control the temperature, there is no possibility that the cooling capacity of the cryogenic environment section will decrease, resulting in a decrease in cooling efficiency, or that there will be no loss due to excessive cooling.

尚本発明においても、高圧Heガス供給回路に設けたI
&IIjIi機の吐出ガスと極低温環境部からの戻りガ
スの合流点よりも下流側に温度測定器を設け、その測温
結果を上記膨張機における処理量の制御要素として利用
するが、この測温結果を主たる制御要素とすると前述の
如く熱負荷変動に対する応答が遅れることに鑑み、本発
明では該測温結果を、前記熱負荷変動から算出される必
要寒冷発生量制御値が適正であるか否かを確認する為の
確認要素として利用し、該必要寒冷発生量制御値を補正
することによって制御をより正確に行ない得る様にして
いる。
Also in the present invention, the I provided in the high pressure He gas supply circuit
A temperature measuring device is installed downstream of the confluence of the discharged gas of the Ii machine and the return gas from the cryogenic environment section, and the temperature measurement results are used as a control element for the throughput in the expander. In view of the fact that if the result is used as the main control element, the response to heat load fluctuations will be delayed as described above, in the present invention, the temperature measurement results are used to determine whether the required cold generation amount control value calculated from the heat load fluctuations is appropriate. This is used as a confirmation element to check whether the required cold generation amount control value is corrected or not, so that the control can be performed more accurately.

かくして極低温環境部における熱負荷の変動に応じてH
e液化拳冷凍装置の運転制御を極めて迅速且つ的確に実
施し得ることになった。
Thus, as the heat load changes in the cryogenic environment, H
It has become possible to control the operation of the e-liquefied fist refrigeration system extremely quickly and accurately.

C実施例] 第1図は本発明の実施例を示す概略フロー図であり、基
本的な構成は第4図の例と同様であるので、同一の部分
には同一の符号を付している6本例でも、圧縮Ja3で
昇圧した後精製装置4で精製されたHeガスはランイL
2から液化・冷凍装置本体2へ送り込まれ、高圧側経路
に沿って熱交換器5a〜5eを順次通過しながら徐々に
冷却された後JT弁6で断熱膨張により一部が液化され
て極低温環境部10へ供給される。極低温環境部lOで
は1例えば極低温疲労試験等による寒冷負荷を受けて一
部の液化Heが気化し、この低圧Heガスは再び装置本
体2の熱交換器5a〜5eを逆方向に流れて、対向流の
高圧側経路を流れるHeガスを冷却した後、自らは常温
常圧のHeガスとなってラインL、から圧縮機3に戻る
。ここで、装置本体2内における冷却不足を補う為、高
圧側経路内のHeガスの一部をバイパスさせ膨張機7a
、7bを経て低圧側経路へ送り込む様に構成する他、高
圧側経路内におけるHeガスの圧力低下を防止する為、
圧縮機3の吐出圧力を圧力検出点16で検出し、この圧
力を一定に保つ様に圧力制御コントローラ14で圧m機
の吐出量を調節し得る様に構成した点は、荊記第4図の
従来例と同様である。
Embodiment C] FIG. 1 is a schematic flow diagram showing an embodiment of the present invention, and the basic configuration is the same as the example in FIG. 4, so the same parts are given the same reference numerals. 6 In this example as well, the He gas purified by the purifier 4 after being pressurized by the compressor Ja3 is transferred to the run L.
2 to the liquefaction/refrigeration equipment main body 2, and is gradually cooled while passing through heat exchangers 5a to 5e sequentially along the high-pressure side path, and is partially liquefied by adiabatic expansion at the JT valve 6, and becomes extremely low temperature. It is supplied to the environment department 10. In the cryogenic environment section 1O, part of the liquefied He is vaporized under the cold load caused by, for example, a cryogenic fatigue test, and this low-pressure He gas flows again in the opposite direction through the heat exchangers 5a to 5e of the apparatus main body 2. After cooling the He gas flowing through the high-pressure side path of the counterflow, it returns to the compressor 3 from the line L as He gas at normal temperature and normal pressure. Here, in order to compensate for the lack of cooling in the device main body 2, a part of the He gas in the high pressure side path is bypassed to expander 7a.
, 7b to the low pressure side path, and in order to prevent the pressure drop of He gas in the high pressure side path,
The discharge pressure of the compressor 3 is detected by the pressure detection point 16, and the discharge amount of the compressor can be adjusted by the pressure controller 14 so as to keep this pressure constant, as shown in Fig. 4. This is the same as the conventional example.

この様なHe液化φ冷凍装置において極低温環境部10
の熱負荷が変動すると、前述の如く装置本体2における
冷却効率に過不足が生じ、極低温環境部lOにおける冷
却能が低下したり或は同郡10が過冷却状態になって経
済的損失を招くことがある。そこで本発明では、図示す
る如く極低温環境部10に液位計17を付設して液位指
示調節器18に接続し、極低温環境部10内の熱負荷変
動に伴って生じる液位の変動を直ちに検出する。
In such a He liquefaction φ freezing device, the cryogenic environment section 10
When the heat load of I may invite you. Therefore, in the present invention, as shown in the figure, a liquid level gauge 17 is attached to the cryogenic environment section 10 and connected to a liquid level indicating regulator 18, and fluctuations in the liquid level that occur due to heat load fluctuations in the cryogenic environment section 10 are provided. Detect immediately.

そしてこの部分で液位の変動に見合った戻りガスG2及
び15点におけるガスの熱量変動を推定し、それに応じ
た膨張機7bの処理量(吐出ガス量)を算出してその信
号を演算器19へ送り、該演算器19から膨張機7bへ
処理量増減の指令が出される。
Then, in this part, the return gas G2 commensurate with the liquid level fluctuation and the calorific value fluctuation of the gas at 15 points are estimated, the processing amount (discharged gas amount) of the expander 7b is calculated accordingly, and the signal is sent to the calculator 19. The processing unit 19 issues a command to increase or decrease the processing amount to the expander 7b.

本発明では、上記の様な■液位検出による熱負荷変動の
推定、及び■液位変動に応じた膨張機7b処理屋の増減
算出及び指令、が適正に行なわれる限り、上記の構成だ
けで装置本体2内の温度制御は適正に行なわれるが、本
例では膨張機7b処理量のコントロールをより正確に行
なう為下記の補正操作を併用している。即ち極低温環境
部lOからの戻りガスG2と、前記膨張a7bからの吐
出ガスG、の合流点よりも下流側に測温装置15を配設
しておき、この部分でG、とG2の混合ガス温度を測定
する。そして該混合ガス温度を極カ一定に保ち得る様に
、温度制御コントローラ13の部分で膨張機7bの処理
量を算出して演算器19へ送り、演算器19では該温度
制御コントローラ13から送られてくれる算出値と前記
液位制御コントローラ18から送られてくる算出値を比
較演算して、膨張機7bにおける最適の処理量を割出し
て膨張機7bに指示するものである。即ち本発明では、
液位制御コントローラ18及び演算器15で算出・指示
された膨張機7b処理量の制御結果を、測温点15及び
温度制御コントローラ13で確認した後演算器19にフ
ィードバックして制御値を補正する様にしているから制
御精度を著しく高めることができる。しかも膨張機7b
における必要処理量の指示は、極低温環境部10の熱負
荷変動を液位計17及び液位制御コントローラ18で直
接検知した後、演算器19を介して直ちに発せられるの
で、急激な熱負荷変動があった場合でも制御に遅れが出
る様な恐れもなくなる。
In the present invention, as long as the above-mentioned (1) estimation of heat load fluctuation by liquid level detection, and (2) increase/decrease calculation and command of the expander 7b treatment shop according to the liquid level fluctuation are performed properly, the above-mentioned configuration alone is sufficient. Although the temperature inside the apparatus main body 2 is properly controlled, in this example, in order to more accurately control the throughput of the expander 7b, the following correction operation is also used. That is, the temperature measuring device 15 is disposed downstream of the confluence of the return gas G2 from the cryogenic environment section 1O and the discharge gas G from the expansion a7b, and the temperature measurement device 15 is installed downstream of the confluence of the return gas G2 from the cryogenic environment part 1O and the discharge gas G from the expansion a7b, and the temperature measurement device 15 is installed at this point to mix G and G2. Measure gas temperature. Then, in order to keep the mixed gas temperature extremely constant, the temperature control controller 13 calculates the throughput of the expander 7b and sends it to the computing unit 19. The calculation value sent from the liquid level control controller 18 is compared with the calculated value sent from the liquid level control controller 18, and the optimal throughput in the expander 7b is determined and instructed to the expander 7b. That is, in the present invention,
The control result of the expander 7b throughput calculated and instructed by the liquid level controller 18 and the calculator 15 is confirmed by the temperature measurement point 15 and the temperature controller 13, and then fed back to the calculator 19 to correct the control value. By doing so, control accuracy can be significantly improved. Moreover, expander 7b
The instructions for the required processing amount in the cryogenic environment section 10 are immediately issued via the calculator 19 after the heat load fluctuations in the cryogenic environment section 10 are directly detected by the liquid level gauge 17 and the liquid level control controller 18. Even if there is a problem, there is no fear that there will be a delay in control.

ところで装置本体2におけるJTTe3開度を固定して
おいた場合は、極低温環境部10の熱負荷変動でHe液
位が変動してもそれを調整する機能は発揮されず、He
液位が低下して寒冷能が不足気味になったり、或は液化
・冷凍装#!12側が過剰運転状態となってHe液位が
過度に上昇してくる。そこで本発明では、この様なHe
液位の変動を極力少なくして寒冷能を一定に維持するた
め。
By the way, if the opening degree of the JTTe3 in the device main body 2 is fixed, even if the He liquid level fluctuates due to heat load fluctuations in the cryogenic environment section 10, the function to adjust it will not be activated, and the He
The liquid level may drop and the cooling capacity may be insufficient, or the liquefaction/refrigeration system #! The No. 12 side is in an over-operating state and the He liquid level rises excessively. Therefore, in the present invention, such He
To maintain constant cooling capacity by minimizing fluctuations in liquid level.

液位計17で検出される液位変動値を基にして、極低温
環境部10に補給すべき液体He量を算出し、液位制御
コントローラ18からJTTe3開度を制御する信号を
伝送する。これによって極低温環境部10にはHe液位
の変動に応じた量の液体Heが補給されることになり、
該極低温環境部10の寒冷能を可及的一定に保つことが
できる。
Based on the liquid level fluctuation value detected by the liquid level gauge 17, the amount of liquid He to be replenished into the cryogenic environment section 10 is calculated, and a signal for controlling the opening degree of the JTTe3 is transmitted from the liquid level controller 18. As a result, the cryogenic environment section 10 is replenished with liquid He in an amount corresponding to the fluctuation of the He liquid level.
The cooling capacity of the cryogenic environment section 10 can be kept as constant as possible.

第2図は本発明の他の実施例を示すフロー図であり、再
凝縮型He冷凍機への適用例を示している。本例におい
ては、冷媒たるHeは、圧縮機3−熱交換器5a〜5e
−極低温環境部lOにおける再凝縮器20−熱交換器5
a〜5eの間で閉回路を形成し、JTTe3Heを液化
してP)凝縮器20へ送り、この部分でHeの蒸発潜熱
を利用して極低温環境部lOにおける被冷却体の熱負荷
を吸収し、極低温環境部lOを極低温状態に維持する。
FIG. 2 is a flow diagram showing another embodiment of the present invention, and shows an example of application to a recondensing He refrigerator. In this example, the refrigerant He is compressor 3 - heat exchangers 5a to 5e
- recondenser 20 in cryogenic environment lO - heat exchanger 5
A closed circuit is formed between a to 5e, and JTTe3He is liquefied and sent to the condenser 20 (P), where the latent heat of vaporization of He is used to absorb the heat load of the object to be cooled in the cryogenic environment lO. The cryogenic environment section IO is maintained at a cryogenic temperature.

この場合、冷凍室を構成する極低温環境部10は密閉構
造となっており、該極低温環境部lO内で熱負荷の変動
があるとそれは直ちに開部lO内の圧力変動となって現
われてくる。そこで本発明では該極低温環境部lOに圧
力検知器、21を付設しておき、この圧力変動を常時検
知してコンピュータ22に入力する様に構成している。
In this case, the cryogenic environment section 10 constituting the freezing room has a sealed structure, and if there is a change in heat load within the cryogenic environment section 10, it will immediately appear as a pressure fluctuation inside the opening section 10. come. Therefore, in the present invention, a pressure detector 21 is attached to the cryogenic environment section 10, and the pressure fluctuation is constantly detected and inputted to the computer 22.

そして該コンピュータ22で、極低温環境部10のガス
圧(熱負荷)変動に見合った戻りガスG2及び15点に
おけるガスの熱量変動を推定し、それに応じた膨張機7
bの処理量(吐出ガス縫)を算出してその信号を演算器
19へ送り、該演算器19から膨張機7bへ処理量増減
の指令が出される。
Then, the computer 22 estimates the return gas G2 commensurate with the gas pressure (thermal load) fluctuation in the cryogenic environment section 10 and the calorific value fluctuation of the gas at 15 points, and the expander 7
The processing amount of b (discharged gas sewing) is calculated and the signal thereof is sent to the computing unit 19, and the computing unit 19 issues a command to increase or decrease the processing amount to the expander 7b.

この指令は、極低温環境部10の熱負荷変動によって生
ずる圧力変動をインプットデータとして直ちに演算・伝
送が行なわれるので、前記第1図の例と同様膨張機7b
の処理量制御に時間的な遅れが生ずる様な恐れはない、
但し本例においても上記熱負荷変動の推定及び膨張機7
b必要処理量の算出及び制御をより精度良く行なう為に
、第1図の例と同様15点における実測ガス温度を基に
した補正が行なわれる。
This command is immediately calculated and transmitted using the pressure fluctuations caused by the heat load fluctuations in the cryogenic environment section 10 as input data, so as in the example of FIG.
There is no fear that there will be a time delay in controlling the throughput of
However, in this example as well, the estimation of the heat load fluctuation and the expansion machine 7
b In order to more accurately calculate and control the required processing amount, correction is performed based on the actually measured gas temperatures at 15 points, as in the example of FIG.

即ち再凝縮器20からの戻りガスG2と、膨張機7bか
らの吐出ガスG里の合流点よりも下流側に測温装置15
を配設しておき、この部分でG。
That is, the temperature measuring device 15 is installed downstream of the confluence of the return gas G2 from the recondenser 20 and the discharge gas G from the expander 7b.
, and in this part G.

とG2の混合ガス温度を測定し、該混合ガス温度を極カ
一定に保ち得る様に、温度制御コントローラ13の部分
で膨張a7bの必要処理量を算出して演算器19へ送る
。演算器19では、該温瓜制御コントローラ13から送
られてくる算出値と前記コンピュータ22から送られて
くる算出値を比較演算して、膨張機7bにおける最適の
吐出ガス量を割り出し膨張機7bに指示するものである
and G2, and the temperature control controller 13 calculates the required throughput of the expansion a7b and sends it to the calculator 19 so that the mixed gas temperature can be kept extremely constant. The calculation unit 19 compares and calculates the calculated value sent from the warm melon control controller 13 and the calculated value sent from the computer 22, determines the optimal discharge gas amount in the expander 7b, and sends the calculated value to the expander 7b. It gives instructions.

即ち本例でも、圧力検知器21からの圧力変動を基にコ
ンピュータ22で算出された膨張機7b処理績の制御結
果を、測温点15及び温度制御コントローラで確認した
後演算器19にフィードバックして制御値を補正する様
にしているから、高精度の制御が可能となる。
That is, in this example as well, the control result of the expander 7b processing performance calculated by the computer 22 based on the pressure fluctuation from the pressure detector 21 is fed back to the calculator 19 after being confirmed by the temperature measuring point 15 and the temperature control controller. Since the control value is corrected based on the value, highly accurate control is possible.

また」―記の構成だけでは、極低温環境部10に急激な
熱負荷変動が起こった場合に回部10内を安定した寒冷
状態に保つことができず、寒冷不足や寒冷過剰の状態が
生じ得る。そこで本例でも、圧力検知器21で検知され
る圧力変動を基にして再凝縮器20への液体Heの送給
量を自動的に調整し、それによって極低温環境部lOの
寒冷能を熱負荷変動前の状態に直ちに復帰させる様にし
ている。即ち再凝縮′Jh20に供給される冷媒の流量
は、流量測定点24で計測され、それが所定量となる様
に流量制御コントローラ23からJTjf6に伝送され
ているが1本発明ではこの流量測定値をコンピュータ2
2に入力しておき、極低温環境部lOで熱負荷変動があ
ったときは、その変動に見合った量の冷媒が再凝縮器2
0へ送り込まれる様、コンピュータ22から流量制御コ
ントローラ23を経てJT弁6に開度調整の信号が送ら
れる。その結果、極低温環境部lO内における寒冷状態
は直ちに熱負荷変動前の状態に復帰し、安定した極低温
状態が維持されることになる。
Furthermore, with only the configuration described in "-", it is not possible to maintain the inside of the circulation section 10 in a stable cold state when a sudden change in heat load occurs in the cryogenic environment section 10, resulting in insufficient cooling or excessive cooling. obtain. Therefore, in this example as well, the amount of liquid He fed to the recondenser 20 is automatically adjusted based on the pressure fluctuation detected by the pressure detector 21, thereby increasing the cooling capacity of the cryogenic environment section IO. The system is designed to immediately return to the state before the load change. That is, the flow rate of the refrigerant supplied to the recondenser 'Jh20 is measured at the flow rate measurement point 24, and is transmitted from the flow rate controller 23 to the JTjf6 so that it becomes a predetermined amount; however, in the present invention, this flow rate measurement value is computer 2
2, and when there is a change in heat load in the cryogenic environment section 1O, an amount of refrigerant commensurate with the change is transferred to the recondenser 2.
An opening adjustment signal is sent from the computer 22 to the JT valve 6 via the flow control controller 23 so that the flow rate reaches zero. As a result, the cold state in the cryogenic environment IO immediately returns to the state before the heat load change, and a stable cryogenic state is maintained.

尚本発明においても、圧縮機3の吐出量が一定である場
合は膨張@7bの処理量を熱負荷に応じて変化させても
He液化番冷凍装置の所要動力は変わらず、特に熱負荷
が減少した場合には寒冷過剰となってエネルギー原単位
が低下する。従ってこの様な無駄を回避する為には、第
1図にも示している様に圧縮機3の吐出圧力を圧力検出
点16で検出し、この圧力を一定に保つ様に圧力制御コ
ントローラ14で圧縮!&3の吐出量を調整できる構成
としておくのがよい、こうしておけば熱負荷が減少した
場合でも装置本体が過剰運転状態となる様な恐れがなく
なり、省エネルギー運転が可能となる。
In the present invention, when the discharge amount of the compressor 3 is constant, even if the processing amount of expansion@7b is changed according to the heat load, the required power of the He liquefaction refrigeration system does not change. If it decreases, there will be excessive cooling and the energy consumption rate will decrease. Therefore, in order to avoid such waste, as shown in Fig. 1, the discharge pressure of the compressor 3 is detected at the pressure detection point 16, and the pressure control controller 14 is used to keep this pressure constant. compression! It is preferable to have a configuration in which the discharge amount of &3 can be adjusted. By doing so, even if the heat load decreases, there is no fear that the main body of the device will be in an over-operating state, and energy-saving operation becomes possible.

本発明は概略以上の様に構成されるが、その最大の特徴
は、極低温環境部における熱負荷変動を液位変動や圧力
変動等により直接検出し、その測定値を基にして(a)
He液化Φ冷凍装置本体における膨張機からの必要寒冷
発生量を算出して該膨張機の制御を行なうと他、(b)
該測定値を基に極低温環境部における寒冷の安定化に必
要な冷奴流量を算出してJT弁の開度を調整する様に構
成したところにあり、こうした特徴を享受し得る範囲で
種々の変更を行なうことができる0例えば第1.2図で
は5基の熱交換器を組合せた例を示したが、熱交換器の
数は勿論図示のものに限定されず適宜増減することがで
きる。また図では低温部側膨張機7bの吐出量だけを制
御する例を示したが、高温部側膨張機7aの吐出祉も同
様にして制御することもできる。更に図例は何れも1台
のHe液化・冷凍機に対して1個の極低温環境部を接続
した例を示したが、1台のHe液化φ冷凍機に複数の極
低温環境部を並列的に接続した冷凍システム(マルチユ
ーザーシステム)に適用することも勿論ClTmである
。殊に本発明は熱負荷の急激な変動に対して応答が速く
、しかも急激な熱負荷変動にもかかわらず極低温環境部
を安定した寒冷状態に維持し得るという特長があり、こ
うした特長からすれば、極低温環境部の稼動数変更によ
り熱負荷が急変し易い前記マルチユーザーシステム等に
適用した場合、その特徴を最も有効に発揮し得るものと
言える。
The present invention is roughly configured as described above, but its most important feature is that heat load fluctuations in the cryogenic environment are directly detected by liquid level fluctuations, pressure fluctuations, etc., and based on the measured values, (a)
(b) Calculating the required amount of cold generation from the expander in the He liquefaction Φ refrigeration equipment body and controlling the expander;
Based on the measured value, the flow rate of chilled colander necessary for stabilizing the cold in the cryogenic environment section is calculated and the opening degree of the JT valve is adjusted. For example, FIG. 1.2 shows an example in which five heat exchangers are combined, but the number of heat exchangers is of course not limited to that shown and can be increased or decreased as appropriate. Further, although the figure shows an example in which only the discharge amount of the low-temperature section side expander 7b is controlled, the discharge rate of the high-temperature section side expander 7a can also be controlled in the same manner. Furthermore, although the illustrated examples all show an example in which one cryogenic environment section is connected to one He liquefaction refrigerator, it is also possible to connect multiple cryogenic environment sections in parallel to one He liquefaction φ refrigerator. Of course, ClTm can also be applied to refrigeration systems (multi-user systems) that are connected to other systems. In particular, the present invention has the advantage of being able to respond quickly to sudden changes in heat load, and also maintain a cryogenic environment in a stable cold state despite sudden changes in heat load. For example, it can be said that its features can be most effectively exhibited when applied to the multi-user system, etc., where the heat load is likely to change suddenly due to a change in the operating number of the cryogenic environment section.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects can be summarized as follows.

(1)極低温環境部の熱負荷変動を直接検知して制御す
る方法であるから応答が極めて早く、制御に遅れが生じ
ない。
(1) Since this method directly detects and controls heat load fluctuations in the cryogenic environment, the response is extremely fast and there is no delay in control.

(2)8負荷変動値から算出される値を制御後の実測値
から求められる値で補正しつつフィードバック制御する
方法であるから、誤制御を行なう恐れがなく制御精度も
高い。
(2) Since this method performs feedback control while correcting the value calculated from the 8 load fluctuation values with the value obtained from the actual measured value after control, there is no risk of erroneous control and the control accuracy is high.

(3)従来例では熱負荷変動によって生ずる極低温環境
部の寒冷能の変動については厳密に管理されていなかっ
たが、本発明では極低温環境部の寒冷能を同時に熱負荷
変動前の状態に復帰させることができる。従って熱負荷
変動にもかかわらず寒冷能を安定的に維持することが回
走となり、寒冷不足や寒冷過剰といった問題を一切生じ
ない。
(3) In the conventional example, fluctuations in the cooling capacity of the cryogenic environment section caused by heat load fluctuations were not strictly controlled, but in the present invention, the cooling capacity of the cryogenic environment section is simultaneously adjusted to the state before the heat load change. It can be reinstated. Therefore, maintaining the cooling capacity stably despite fluctuations in heat load is the key to circulation, and there are no problems such as insufficient cooling or excessive cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明の実施例を示すフロー図。 第3.4図は公知のHe液化・冷凍装置及びその運転制
御法を説明する為のフロー図である。 2・・・冷凍装置本体   3・・・圧縮機5d〜5e
・・・熱交換器   6・・・JT弁7a・・・高温側
膨張機   7b・・・低温側膨張機IO・・・極低温
環境部(ユーザ) I3・・・温度制御コントローラ 14・・・圧力制御コントローラ 15・・・測温点      1B・・・圧力検出点1
7・・・液位計 18・・・液位制御コントローラ 18・・・演算器      20・・・再凝縮器21
・・・圧力検知器    22・・・コンピュータ23
・・・流量制御コントローラ 出願人   株式会社神戸製鋼所 第1図 L+ 第2図 1゜ 第3図
FIG. 1.2 is a flow diagram illustrating an embodiment of the invention. FIG. 3.4 is a flow diagram for explaining a known He liquefaction/refrigeration system and its operation control method. 2... Refrigeration equipment main body 3... Compressors 5d to 5e
...Heat exchanger 6...JT valve 7a...High temperature side expansion machine 7b...Low temperature side expansion machine IO...Cryogenic environment section (user) I3...Temperature control controller 14... Pressure control controller 15...Temperature measurement point 1B...Pressure detection point 1
7...Liquid level gauge 18...Liquid level control controller 18...Arithmetic unit 20...Recondenser 21
...Pressure detector 22...Computer 23
...Flow control controller Applicant: Kobe Steel, Ltd. Figure 1 L+ Figure 2 1゜Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)ヘリウムガスの等エントロピー膨張によって得ら
れた寒冷を利用する熱交換作用により常温高圧のヘリウ
ムガスを段階的に予冷した後、ジュールトムソン弁に通
すことによって液化させるヘリウム液化・冷凍装置の運
転制御方法において、極低温環境部に熱負荷変動検出器
を設けると共に、ヘリウム液化・冷凍装置における高圧
ヘリウムガス供給回路に設けた膨張機の吐出ガスと極低
温環境部からの戻りガスの合流点よりも下流側に温度測
定器を設け、上記熱負荷変動検出器によって求められる
極低温環境部の熱負荷変動に基づいて前記膨張機からの
必要寒冷発生量を算出して制御すると共に、該制御を上
記温度測定器による測温結果で補正する他、上記熱負荷
変動を基に極低温環境部における寒冷の安定化に必要な
冷媒流量を算出してジュールトムソン弁の開度を調整す
ることを特徴とするヘリウム液化・冷凍装置の運転制御
方法。
(1) Operation of a helium liquefaction/refrigeration system that precools helium gas at room temperature and high pressure in stages by a heat exchange action that utilizes the cold obtained by isentropic expansion of helium gas, and then liquefies it by passing it through a Joule-Thomson valve. In the control method, a heat load fluctuation detector is installed in the cryogenic environment section, and a heat load fluctuation detector is installed in the helium liquefaction/refrigeration equipment at the confluence point of the discharge gas of the expander installed in the high-pressure helium gas supply circuit and the return gas from the cryogenic environment section. A temperature measuring device is provided on the downstream side, and the necessary amount of cold generation from the expander is calculated and controlled based on the heat load fluctuation of the cryogenic environment section determined by the heat load fluctuation detector, and the control is performed. In addition to making corrections based on the temperature measurement results from the temperature measuring device, the opening degree of the Joule-Thomson valve is adjusted by calculating the refrigerant flow rate necessary for stabilizing the cold in the cryogenic environment based on the heat load fluctuations. A method for controlling the operation of helium liquefaction/refrigeration equipment.
(2)常温高圧のヘリウムガスを供給する圧縮機の吐出
側圧力を検知しつつその検出値が一定となる様に圧縮機
の制御を行なう特許請求の範囲第1項に記載の運転制御
方法。
(2) The operation control method according to claim 1, wherein the pressure on the discharge side of the compressor that supplies helium gas at room temperature and high pressure is detected and the compressor is controlled so that the detected value is constant.
JP60109578A 1985-05-21 1985-05-21 Method of controlling operation of helium liquefying and refrigerating device Granted JPS61268972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109578A JPS61268972A (en) 1985-05-21 1985-05-21 Method of controlling operation of helium liquefying and refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109578A JPS61268972A (en) 1985-05-21 1985-05-21 Method of controlling operation of helium liquefying and refrigerating device

Publications (2)

Publication Number Publication Date
JPS61268972A true JPS61268972A (en) 1986-11-28
JPH0446350B2 JPH0446350B2 (en) 1992-07-29

Family

ID=14513817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109578A Granted JPS61268972A (en) 1985-05-21 1985-05-21 Method of controlling operation of helium liquefying and refrigerating device

Country Status (1)

Country Link
JP (1) JPS61268972A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279977A (en) * 1989-04-18 1990-11-15 Iwatani Internatl Corp Liquified gas volatilizing prevention device in liquefied gas storage tank
JP2016176654A (en) * 2015-03-20 2016-10-06 川崎重工業株式会社 Raw material gas liquefaction device and raw material gas liquefaction amount correction control method
JP2017026216A (en) * 2015-07-22 2017-02-02 大陽日酸株式会社 Circulation type helium recondensation device and circulation type helium recondensation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134479A (en) * 1983-01-20 1984-08-02 株式会社神戸製鋼所 Device for liquefying and refrigerating helium
JPS6060465A (en) * 1983-09-13 1985-04-08 科学技術庁長官官房会計課長 Helium liquefying and refrigerating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134479A (en) * 1983-01-20 1984-08-02 株式会社神戸製鋼所 Device for liquefying and refrigerating helium
JPS6060465A (en) * 1983-09-13 1985-04-08 科学技術庁長官官房会計課長 Helium liquefying and refrigerating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279977A (en) * 1989-04-18 1990-11-15 Iwatani Internatl Corp Liquified gas volatilizing prevention device in liquefied gas storage tank
JP2016176654A (en) * 2015-03-20 2016-10-06 川崎重工業株式会社 Raw material gas liquefaction device and raw material gas liquefaction amount correction control method
JP2017026216A (en) * 2015-07-22 2017-02-02 大陽日酸株式会社 Circulation type helium recondensation device and circulation type helium recondensation method

Also Published As

Publication number Publication date
JPH0446350B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
US6694763B2 (en) Method for operating a transcritical refrigeration system
US11680738B2 (en) CO2 refrigeration system with high pressure valve control based on coefficient of performance
US11662140B2 (en) Raw material gas liquefying device and method of controlling this raw material gas liquefying device
RU2671479C1 (en) Method for adjusting cryogenic cooling apparatus and device therefor
Jensen et al. Optimal operation of a simple LNG process
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
JPS61268972A (en) Method of controlling operation of helium liquefying and refrigerating device
JPH08128745A (en) Supercritical helium cooling system and method for operating the same
KR20130065255A (en) Natural gas liquefaction system
US20230280072A1 (en) Refrigeration system with parallel compressors
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JPH0247674B2 (en) HERIUMUEKIKA * REITOSOCHI
JP2793074B2 (en) Operation control method and apparatus for turbine type expander
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPH0643647Y2 (en) Cryogenic refrigerator
JPH07117307B2 (en) Cryogenic cooling device
JPH0233955B2 (en)
JPS60186664A (en) Method of controlling operation of cryogenic refrigerator
JPH05322344A (en) Method and apparatus for controlling operating state of turbine type expansion machine in freezer device
CN117053374A (en) Air conditioner indoor unit, control method, controller and air conditioning system
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JP2510637B2 (en) Operation control method of cryogenic refrigeration refrigeration system
Jäschke et al. Expansion and examination of the stationary model of an ammonia refrigeration cycle with emphasis on optimal operation/self-optimizing control
JPH03134439A (en) Very low temperature freezer device and operation method thereof