JPS606040B2 - integrated circuit - Google Patents

integrated circuit

Info

Publication number
JPS606040B2
JPS606040B2 JP54071409A JP7140979A JPS606040B2 JP S606040 B2 JPS606040 B2 JP S606040B2 JP 54071409 A JP54071409 A JP 54071409A JP 7140979 A JP7140979 A JP 7140979A JP S606040 B2 JPS606040 B2 JP S606040B2
Authority
JP
Japan
Prior art keywords
current
write
circuit
voltage
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54071409A
Other languages
Japanese (ja)
Other versions
JPS55163689A (en
Inventor
善信 夏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP54071409A priority Critical patent/JPS606040B2/en
Priority to US06/157,736 priority patent/US4347586A/en
Publication of JPS55163689A publication Critical patent/JPS55163689A/en
Publication of JPS606040B2 publication Critical patent/JPS606040B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory

Landscapes

  • Read Only Memory (AREA)

Description

【発明の詳細な説明】 本発明は集積回路に係り、特に書込可能な謙出専用集積
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to integrated circuits, and more particularly to writable, read-only integrated circuits.

各種のプログラマブル記憶素子は今日まで種々のものが
開発されてきたがその中でもトランジスタをベース、ェ
ミッタ間接合の暁付(短絡)の有無により記憶素子とし
て使う所諸接合破壊型P−ROMはニクロム等のヒュー
ズを要せず通常のバィポーラプロセスを適用出釆る点で
注目されている。
Various types of programmable memory elements have been developed to date, and among them, P-ROMs with transistor-based junction breakdown types, which use transistors as memory elements depending on the presence or absence of short circuits in the emitter junction, include Nichrome, etc. It is attracting attention because it can be produced using a normal bipolar process without requiring a fuse.

特にベース開放のトランジスタを記憶素子として用いる
方式はベース、コレクタ接合がそのまま記憶素子マトリ
クスアレイを構成した場合のデカツプル用ダイオードと
して使用する事が出来、且つコレクタは行方向に共通に
出来る為桁方向には絶縁を要しないので広く実用されて
いる。本発明は電流を流して書込む記憶素子について一
般的に適用出来るものであるが特に接合破壊型記憶素子
の様な大電流書込を要するものについて特に有効である
ので本発明の実施例を接合破壊素子との組合せでもつて
説明する事にする。接合破壊型の記憶素子を使ったもの
としては、プログラマブルROM及びプログラマフルロ
ジックアレィPLA等の市場に一般的に出ているものに
みられる様に書込電流は通常20仇hAとかなりの大電
流である。
In particular, in the method of using open-base transistors as storage elements, the base and collector junctions can be used as decoupled diodes when configuring a memory element matrix array as they are, and since the collectors can be shared in the row direction, is widely used as it does not require insulation. Although the present invention is generally applicable to memory elements that write by flowing current, it is particularly effective for memory elements that require large current writes, such as junction breakdown type memory elements. I will also explain the combination with a destructive element. For devices using junction breakdown type memory elements, the write current is usually quite large, 20 hA, as seen in programmable ROMs and programmable logic arrays PLA that are commonly available on the market. It is an electric current.

これは通常の集積回路で扱う蟹流としては、はなはだ大
きなものであり、その為にこの様な大電流制御を可能と
するには書込電流路に低ィンピ−ダンス及び高耐圧素子
が要求されるので周辺回路の素子全般が大きくなり、従
ってべレットの小型化及び読出動作時の伝播遅延時間の
短縮化にとって大きな障害となっている。
This is a very large amount of current that can be handled by a normal integrated circuit, and therefore, to enable such large current control, a low impedance and high withstand voltage element is required in the write current path. This increases the overall size of peripheral circuit elements, which is a major obstacle to miniaturizing the pellet and shortening the propagation delay time during read operations.

この問題に対する一方策としては、記憶素子を縮少する
事により、低ェネルギで書込める素子を開発して小電流
、低電圧書込を可能にし、その結果として周辺回路の素
子縮小化を計る方法が有る。
One way to deal with this problem is to develop an element that can write with low energy by reducing the size of the memory element, making it possible to write with small current and low voltage, and as a result, reduce the size of the peripheral circuit elements. There is.

しかしこの様にして製造した記憶素子は確かに書込電流
を小さく出釆るが、逆に20倣込程度の大きな電流を流
した場合には、マトリクスアレイを構成した時にデカッ
ブル用として残るべきコレクタ、ベース間のPN接合が
劣化もしくは破壊されて書込不能に至る恐れがある。
However, although the memory element manufactured in this way does produce a small write current, on the other hand, when a large current of about 20 mm is passed through the memory element, the collector that should remain for decoupling when a matrix array is configured. , the PN junction between the bases may deteriorate or be destroyed, resulting in writing failure.

又、記憶素子及び周辺回路の縮小によって一般的には誓
込竃流路のインピーダンスが増加する為に、書込回路の
素子に過分な大電圧が加わり素子破壊さえも起こりうる
Furthermore, since the impedance of the storage channel generally increases as the storage element and peripheral circuits are reduced, an excessively large voltage may be applied to the elements of the write circuit, potentially causing element destruction.

従ってこの様な小電流で書込可能な記憶素子を安定に書
込む方法としてはPROMチップ外から書込器の調節に
より最適の電流を流し込み、最適の電圧クランプをかけ
てやれば問題ない事であるが、一方書込器とPROMと
の関連性を考えれば、PROMのプロセス変更の度に書
込器の書込電流及びクランプ電圧仕様を変更していたの
では、これまでの書込器間の互換性が全く矢なわれてし
まう事になる。本発明の目的は、従来からの書込仕様を
変更せずに、書込電流の小さな記憶素子に最適な電流を
供給してやり安定に書込める書込回路を有する集積回路
を提供する事にある。
Therefore, the only way to stably write to a memory element that can be written to with such a small current is to adjust the writing device from outside the PROM chip to inject the optimal current and apply the optimal voltage clamp. On the other hand, considering the relationship between the programmer and PROM, it seems that the writing current and clamp voltage specifications of the programmer were changed every time the PROM process was changed. compatibility would be completely disrupted. An object of the present invention is to provide an integrated circuit having a write circuit that can supply an optimum current to a memory element with a small write current and perform stable writing without changing the conventional write specifications.

本発明の他の目的は、素子に必要な最少書込電流及び最
少クランプ電圧以上の任意の書込電流及び任意クランプ
電圧を有する書込器を使って、、何らの変更をせず書込
が可能なチップを提供する事にある。
Another object of the present invention is to write without any modification using a writer having an arbitrary write current and an arbitrary clamp voltage that are greater than or equal to the minimum write current and minimum clamp voltage required for the device. Our goal is to provide the best chips possible.

上記目的を達成する為に、本発明は従来の書込仕様によ
り大電流が書込器によりPROMチップに供給された時
、チップ内部の書込電流路に電流制限回路を設け、選択
された記憶素子には所望の電流だけ流れる様に設計し、
余分な電流は、更にチップ内に設けた定電圧クランプ回
路にバイパスさせる事によって、チップには過大な電圧
がかからない様にして記憶素子を最適な電流で安定に書
込出釆る様にしたことを特徴とする。
In order to achieve the above object, the present invention provides a current limiting circuit in the write current path inside the chip when a large current is supplied to the PROM chip by the writer according to the conventional write specification, and the selected memory is Designed so that only the desired current flows through the element,
The excess current is further bypassed by a constant voltage clamp circuit installed inside the chip, so that excessive voltage is not applied to the chip and the memory element can be stably written to and output with the optimum current. It is characterized by

以下本発明の実施例を図面を参照して詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は接合破壊型セルアレィを使用したプログラマプ
ルRONの周知の例である。n行xm行のセルアレィに
各々行選択回路と列選択回路を付けた簡単な回路例であ
り、本図を参照して書込動作を説明する。今、行選択回
路2により行線X,と列選択回路10により列線Y,が
選ばれているとすると、これら両緑間に配置しているセ
ルQ,.が選択状態となり、書込端子1から書込電流を
供給すると、その全部が列選択回路−Y,一Q,.−×
,一行選択回路2を順に通って流れ込みセルQ,.のェ
ミッタ、ベース接合が焼き付けられて、第2図aに示す
状態から第2図bの書込まれた状態に変わり、ベース、
コレクタ接合だけが残りセルアレイのデカップル用ダイ
オードとして使われる。ここでセルアレイQ,.〜Qn
mに低ェネルギで書込める記憶素子を適用し、書込器の
仕様に従って書込器のクランプ電圧2柵、書込電流20
仇 mAの大電流を供V給した場合、上記書込動作と同
様に書込まれるが、この様な低ェネルギで書込可能な様
に作られた記憶素子にとっては過分な電流であり、従っ
て前述の如くベース、コレクタ接合に劣化が生じたり、
あるいは書込インピーダンスの増加によってチップに過
大な電圧がかかるという様な弊害が生じてくる。以下図
面を参照して本発明の実施例を説明する。
FIG. 1 is a well-known example of a programmable RON using a junction-destructive cell array. This is a simple circuit example in which a cell array of n rows by m rows is provided with a row selection circuit and a column selection circuit, respectively, and a write operation will be explained with reference to this figure. Now, suppose that the row line X is selected by the row selection circuit 2 and the column line Y is selected by the column selection circuit 10, then the cells Q, . is in a selected state and a write current is supplied from write terminal 1, all of them are applied to column selection circuits -Y, -Q, . −×
, one row selection circuit 2 in order, and the inflow cells Q, . The emitter and base junctions of are baked and changed from the state shown in FIG. 2a to the written state of FIG. 2b, and the base,
Only the collector junction remains and is used as a decoupling diode for the cell array. Here, cell array Q, . ~Qn
A memory element that can be written with low energy is applied to m, and the clamp voltage of the writer is 2 levels and the write current is 20 degrees according to the specifications of the writer.
When a large current of mA is supplied to V, data is written in the same way as the write operation described above, but this is an excessive current for a memory element that is made to be writable with such low energy. As mentioned above, deterioration occurs in the base and collector junctions,
Alternatively, an increase in write impedance may cause problems such as excessive voltage being applied to the chip. Embodiments of the present invention will be described below with reference to the drawings.

第3図は第1図の従釆回路の行選択回路2にフィードバ
ック用トランジスタQgと書込電流値検出用抵抗Rgに
より構成される電流制限回路を内蔵させ、且つ書込端子
子1に定電圧クランプ回路3を接続したものである。
In FIG. 3, a current limiting circuit composed of a feedback transistor Qg and a write current value detection resistor Rg is built into the row selection circuit 2 of the slave circuit in FIG. A clamp circuit 3 is connected thereto.

今、前述書込動作の要領で書込素子1から書込器の仕様
に従って書込電流を供給すると、これが行選択回路10
中の唯一の○Nしているゲートから検出用抵抗Rgを通
して接地へ流れ込む際、Rgによる電位上昇分がフィー
ドバック用トランジスタのしきし、値に達するとQgが
活性状態になり、ONしているゲートをオフさせようと
するかが働き、それによってゲートに流れている電流を
減少させる方向に働くが、Rgに流れる電流が減少しよ
うとするので、Qgがカットオフする方向に力が働く。
このようにフィードバックループが構成される事により
、ゲートに流れ込む電流は一定値に落ちつき、これ以上
は吸収出来なくなる。
Now, when a write current is supplied from the write element 1 according to the specifications of the writer in the same way as in the write operation described above, this will cause the row selection circuit 10 to
When flowing from the only ○N gate in the gate to the ground through the detection resistor Rg, when the potential increase due to Rg reaches the threshold value of the feedback transistor, Qg becomes active and the ON gate The current flowing through the gate acts to reduce the current flowing through the gate, but since the current flowing through Rg tends to decrease, a force acts in the direction where Qg is cut off.
By configuring the feedback loop in this way, the current flowing into the gate settles to a constant value, and no more can be absorbed.

従ってこのゲ−トの吸収能力が、たとえば5仇hAにな
る様にRgを設計し書込器から20仇hAを流したとす
れば、ゲート5倣いしか吸収してくれないからゲートの
出力電圧は急激に上昇を始め、それに追随して書込素子
1の電位は書込器で設定してあるクランプ電圧(たとえ
ば2欧)まで上昇しようとする。たゞし、このままクラ
ンプ電圧まで達するという事は、チップ内の素子が高耐
圧を要する事になるから書込電流を減らしかつ素子電圧
を減らして素子の縦少化を計るという目的が達成出釆な
くなる。この為に第4図の具体例に表わされる様な定電
圧クランプ回路3を追加する。本回路3は書込器によっ
て設定されたクランプ電圧、例えば2秤に対し、書込端
子1をこれ以下の電圧例えば2仇にクランプする役目を
する。本回路は書込端子1が任意の電圧VCに達した時
にQ,,Q2がONする様に適当にR,,R2の比を選
んでやれば急激にインピーダンスが下がり、定電圧Vc
にクランブする目的を果し、チップにかかる電圧をVc
以下に緩和する事が出来る。尚本回路図中ッェナーダイ
オードDEは書込端子1が謙出動作時の出力端子を兼用
する場合のデカッブル用としての役目を持っている。
Therefore, if Rg is designed so that the absorption capacity of this gate is, for example, 5 hA, and 20 hA is applied from the writer, the output voltage of the gate will be reduced because it will absorb only the amount of gate 5. begins to rise rapidly, and following this, the potential of the write element 1 attempts to rise to a clamp voltage (for example, 2Ω) set by the writer. However, if the clamp voltage is reached as it is, the elements within the chip will need a high withstand voltage, so the objective of reducing the write current and element voltage to reduce the element height cannot be achieved. It disappears. For this purpose, a constant voltage clamp circuit 3 as shown in the specific example of FIG. 4 is added. This circuit 3 serves to clamp the write terminal 1 to a voltage lower than the clamp voltage set by the writer, for example 2 levels. In this circuit, if the ratio of R, , R2 is appropriately selected so that Q, , Q2 are turned on when the write terminal 1 reaches an arbitrary voltage VC, the impedance will drop rapidly and the constant voltage Vc
It serves the purpose of clamping the voltage applied to the chip to Vc
The following can be alleviated. In this circuit diagram, the energizing diode DE has the role of decoupling when the write terminal 1 also serves as an output terminal during the decoupling operation.

第5図および第6図により本発明の第2の実施例を説明
する。
A second embodiment of the present invention will be explained with reference to FIGS. 5 and 6.

本実施例の場合は、書込端子1と列選択回路10の間に
電流制限回路4を設けたものであり、定電圧クランプ回
路3は前記第1の実施例と同様に書込端子1に接続して
ある。
In this embodiment, a current limiting circuit 4 is provided between the write terminal 1 and the column selection circuit 10, and a constant voltage clamp circuit 3 is connected to the write terminal 1 as in the first embodiment. It's connected.

この電流制限回路4の動作を図を参照して説明する。書
込端子1から書込電流を供給すると電流はトランジスタ
Qのコレクタ、ェミッタ間をメインルートとして、抵抗
R4を通して列選択回路、選択された記憶素子Q,.行
選択へと流れ込むが、書込電流検出用抵抗R4の電位降
下がフィードバック用トランジスタQのしきし、値に達
するとQ4が活性状態となり、Qをカットオフさせよう
とする力が働き、、それによってQ3に流れている電流
を減少させる方向に働くが、そうすると検出用抵抗R4
に流れる電流が減少しようとするのでQ4が再びカット
オフ方向に力に働く。この様なフィードバックループに
よりQ3を流れる電流はほぼ一定値に落ち着き、この一
定値以上流そうとすると、抵抗R3によって書込端子1
の電圧は書込器によって設定されたクランプ電圧まで上
昇しようとするが、第1の実施例で説明したと同様の動
作で書込端子1の電圧は定電圧クランプ回路によってV
cにクランプされる。
The operation of this current limiting circuit 4 will be explained with reference to the drawings. When a write current is supplied from write terminal 1, the current flows between the collector and emitter of transistor Q as the main route, and passes through resistor R4 to the column selection circuit and to the selected memory element Q, . However, when the potential drop of the write current detection resistor R4 reaches the threshold value of the feedback transistor Q, Q4 becomes active, and a force that tries to cut off Q acts. This works to reduce the current flowing through Q3, but in this case, the detection resistor R4
Since the current flowing in the current is about to decrease, Q4 again acts as a force in the cutoff direction. Due to such a feedback loop, the current flowing through Q3 settles to an approximately constant value, and when an attempt is made to flow more than this constant value, the resistor R3 causes the current to flow through the write terminal 1.
The voltage at the write terminal 1 attempts to rise to the clamp voltage set by the writer, but in the same manner as explained in the first embodiment, the voltage at the write terminal 1 is reduced to V by the constant voltage clamp circuit.
It is clamped at c.

本発明の第1,第2実施例共に書込端子1からの書込電
流路の直流的なインピーダンスは、仮に所望の足電流値
が5仇公となる様に電流値検出用抵抗欠gを設計すれば
、第7図に示すが如く書込電流路の内部インピーダンス
とRgの和である傾きで立ち上がり5肌Aの点で定電流
特性を示し、更にVcでクランプされる特性を示す。以
上説明したように本発明はPROMチップ内部に定電流
制限回路と定電圧制限回路を設ける事により、チップ外
部から書込電流として高電圧クランプの大電流を供給し
た場合でも上記制限回路でもつて適当に減衰し、低ェネ
ルギで書込可能な記憶素子に対して最適な電流で書込む
事が出来、かつ書込時の電圧を低く抑える事が出来るの
で、劣化、破壊等を起こさずに安定な書込を得る事が出
来る。
In both the first and second embodiments of the present invention, the DC impedance of the write current path from the write terminal 1 is determined by adding a resistor g for detecting the current value so that the desired current value becomes 50%. If designed, as shown in FIG. 7, it will exhibit a constant current characteristic with a slope that is the sum of the internal impedance of the write current path and Rg, and will exhibit a constant current characteristic at a point of 5 degrees A, and will also exhibit a characteristic that is clamped at Vc. As explained above, the present invention provides a constant current limiting circuit and a constant voltage limiting circuit inside the PROM chip, so that even when a large current of a high voltage clamp is supplied as a write current from outside the chip, even the above limiting circuit is suitable. It is possible to write with the optimum current to a memory element that can be written to with low energy, and the voltage at the time of writing can be kept low, so it is stable without causing deterioration or destruction. You can get written information.

この様にプロセス等の改善により記憶素子及び周辺回路
の製造条件に変更があっても、書込仕様の変更ないこそ
の時々に応じた最適電流書込が出来、これによってPR
OMの高性能化を容易に実現出来るので本発明の効果は
甚大である。
In this way, even if there is a change in the manufacturing conditions of the memory element and peripheral circuit due to process improvements, it is possible to write the optimal current according to the situation without changing the write specifications, and this allows PR.
The effects of the present invention are enormous because the high performance of OM can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従釆の集積回路を示す構成図、第2図は記憶素
子を示し、第2図aは書込前の第2図bは書込後の状態
を示す回路図、第3図および第4図は本発明の第一の実
施例を示す構成および回路図、第5図および第6図は本
発明の第2の実施例を示す構成図および回路図、第7図
は書込電流と書込電圧との関係を示す図である。 1・・・・・・書込端子、2・・・・・・行選択回路、
3・・・・・・定電圧クランプ回路、4・・・…電流制
限回路。 第/図第2図 第3図 第4図 弟づ図 舞ら図 第7図
Fig. 1 is a configuration diagram showing a subordinate integrated circuit, Fig. 2 shows a memory element, Fig. 2a is a circuit diagram showing the state before writing, Fig. 2b is a circuit diagram showing the state after writing, Fig. 3 4 is a configuration and a circuit diagram showing a first embodiment of the present invention, FIGS. 5 and 6 are a configuration diagram and a circuit diagram showing a second embodiment of the present invention, and FIG. 7 is a writing FIG. 3 is a diagram showing the relationship between current and write voltage. 1...Write terminal, 2...Row selection circuit,
3... Constant voltage clamp circuit, 4... Current limiting circuit. Figure/Figure 2 Figure 3 Figure 4 Younger brother's dance figure Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 書込電流を流すことによって半永久的に書込可能な
固定記憶素子と、該記憶素子に書込電流を流し込む為の
書込回路とを含む集積回路に於いて、該書込回路に書込
電流制限回路を設けて記憶素子に流し込む電流を一定値
以下に制限するとともに該書込回路に電圧制限回路を設
けることによって電圧を一定値以下にクランプするよう
にしたことを特徴とする集積回路。
1. In an integrated circuit that includes a fixed memory element that can be written semi-permanently by flowing a write current, and a write circuit for flowing the write current into the memory element, What is claimed is: 1. An integrated circuit characterized in that a current limiting circuit is provided to limit the current flowing into a storage element to below a certain value, and a voltage limiting circuit is provided in the write circuit to clamp the voltage to below a certain value.
JP54071409A 1979-06-07 1979-06-07 integrated circuit Expired JPS606040B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54071409A JPS606040B2 (en) 1979-06-07 1979-06-07 integrated circuit
US06/157,736 US4347586A (en) 1979-06-07 1980-06-09 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54071409A JPS606040B2 (en) 1979-06-07 1979-06-07 integrated circuit

Publications (2)

Publication Number Publication Date
JPS55163689A JPS55163689A (en) 1980-12-19
JPS606040B2 true JPS606040B2 (en) 1985-02-15

Family

ID=13459678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54071409A Expired JPS606040B2 (en) 1979-06-07 1979-06-07 integrated circuit

Country Status (2)

Country Link
US (1) US4347586A (en)
JP (1) JPS606040B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922295A (en) * 1982-06-30 1984-02-04 Fujitsu Ltd Semiconductor storage device
JPS6070597A (en) * 1983-09-28 1985-04-22 Toshiba Corp Non-volatile semiconductor storage device
US4694429A (en) * 1984-11-29 1987-09-15 Kabushiki Kaisha Toshiba Semiconductor memory device
FR2580444B1 (en) * 1985-04-16 1987-06-05 Radiotechnique Compelec DARLINGTON-TYPE SWITCHING STAGE, PARTICULARLY FOR A MEMORY LINE DECODER
JPS6214396A (en) * 1985-07-12 1987-01-22 Nec Corp Semiconductor memory device
JPH0736279B2 (en) * 1986-01-27 1995-04-19 日本電気株式会社 Bipolar programmable integrated circuit
US5070508A (en) * 1986-05-07 1991-12-03 General Electric Company Semiconductor laser with adjustable light beam
US5367208A (en) * 1986-09-19 1994-11-22 Actel Corporation Reconfigurable programmable interconnect architecture
US4859874A (en) * 1987-09-25 1989-08-22 Fairchild Semiconductor Corp. PLA driver with reconfigurable drive
US5299150A (en) * 1989-01-10 1994-03-29 Actel Corporation Circuit for preventing false programming of anti-fuse elements
JPH03250494A (en) * 1990-02-27 1991-11-08 Ricoh Co Ltd Semiconductor memory device
US5719065A (en) * 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
US5596286A (en) * 1993-11-12 1997-01-21 Texas Instruments Incorporated Current limiting devices to reduce leakage, photo, or stand-by current in an integrated circuit
US5814529A (en) 1995-01-17 1998-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
US5835419A (en) * 1996-03-01 1998-11-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with clamping circuit for preventing malfunction
TW334581B (en) 1996-06-04 1998-06-21 Handotai Energy Kenkyusho Kk Semiconductor integrated circuit and fabrication method thereof
US5909049A (en) * 1997-02-11 1999-06-01 Actel Corporation Antifuse programmed PROM cell
JP3989761B2 (en) 2002-04-09 2007-10-10 株式会社半導体エネルギー研究所 Semiconductor display device
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
JP3989763B2 (en) 2002-04-15 2007-10-10 株式会社半導体エネルギー研究所 Semiconductor display device
US7411215B2 (en) 2002-04-15 2008-08-12 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the same
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device
US6859408B2 (en) * 2002-08-29 2005-02-22 Micron Technology, Inc. Current limiting antifuse programming path
KR100924696B1 (en) * 2007-07-05 2009-11-03 삼성전자주식회사 Method for improving recording density of hard disc drive and controlling device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272834A (en) * 1978-10-06 1981-06-09 Hitachi, Ltd. Data line potential setting circuit and MIS memory circuit using the same

Also Published As

Publication number Publication date
JPS55163689A (en) 1980-12-19
US4347586A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
JPS606040B2 (en) integrated circuit
EP0222472B1 (en) Complementary semiconductor device with a substrate bias voltage generator
JPS62189700A (en) Programmable memory matrix
US6317362B1 (en) Semiconductor memory device
US5966324A (en) Static semiconductor memory device driving bit line potential by bipolar transistor shared by adjacent memory cells
US4901281A (en) Semiconductor memory device having two column transfer gate transistor groups independently provided for a sense amplifier and a programmed circuit
EP0018192B1 (en) Bipolar programmable read only memory device including address circuits
US4599688A (en) Semiconductor memory device having switching circuit for preventing channel leakage in constant current source
US4488261A (en) Field programmable device
KR900003931B1 (en) Programmable semiconductor memory device
JPS582437B2 (en) Three-state output circuit
US5793670A (en) Static semiconductor memory device including a bipolar transistor in a memory cell, semiconductor device including bipolar transistors and method of manufacturing bipolar transistors
EP0185156B1 (en) Random access memory
JPH0529993B2 (en)
US5268864A (en) Programmable memory device having programming current absorbing transistors
US4729116A (en) Bipolar programmable read only memory attaining high speed data read operation
JP3084031B2 (en) Sense amplifier
JPS6231434B2 (en)
EP0136106A2 (en) Static random-access memory device
JPS6025907B2 (en) semiconductor storage device
JPS6079597A (en) Semiconductor memory device
JPH07123219B2 (en) Output buffer circuit
JPH02247899A (en) Semiconductor storage device
JPS6058560B2 (en) read-only memory element
JPH05258588A (en) Control current source circuit