JPS606008A - Power production engine - Google Patents

Power production engine

Info

Publication number
JPS606008A
JPS606008A JP11271183A JP11271183A JPS606008A JP S606008 A JPS606008 A JP S606008A JP 11271183 A JP11271183 A JP 11271183A JP 11271183 A JP11271183 A JP 11271183A JP S606008 A JPS606008 A JP S606008A
Authority
JP
Japan
Prior art keywords
heat source
load
temperature
auxiliary heat
source temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11271183A
Other languages
Japanese (ja)
Inventor
Masahiko Fujita
雅彦 藤田
Masaharu Ishii
石井 雅治
Seigo Miyamoto
宮本 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11271183A priority Critical patent/JPS606008A/en
Publication of JPS606008A publication Critical patent/JPS606008A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable power producing operation suitable to the load, by connecting a load detector and a heat source detector to an auxiliary heat source then operating the auxiliary heat source in accordance to the detected load and heat source temperature and controlling the cycle circulation. CONSTITUTION:When requiring an auxiliary heat source operation, an auxiliary heat source 9 is operated upon droppage of heat source temperature to bring it same with the target level thus to maintain the heat source temperature and perform circulation control. If the available maximum output at current operating point (B) is lower than the load (E), the auxiliary heat source 9 is operated to rise the heat source temperature such that the available maximum output will match with the load (E). Then the heat source temperature is brought same with the target level to maintain the heat source temperature and to set to the circulation control or the level indicating the available maximum output. Same control is performed when the load increases during operation of the auxiliary heat source. Consequently, operation suitable for the load can be performed for both variation of the heat source and the load.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は動力発生機関、特に太陽熱、廃熱などの代替エ
ネルギから動力を回収するのに好適な動力発生機関に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a power generating engine, and particularly to a power generating engine suitable for recovering power from alternative energy such as solar heat or waste heat.

〔発明の背景〕[Background of the invention]

従来のこの種動力発生機関は、膨張機、凝縮器。 Conventional power generating engines of this type include an expander and a condenser.

液ポンプおよび蒸気発生器を作動的に接続し、かつ前記
膨張機に動力を吸収する負荷を、前記凝縮器に冷却媒体
搬送手段をそれぞれ接続すると共に、前記蒸気発生器に
高温媒体搬送手段を介して補助熱源全接続した構成から
なシ、前記高温媒体温度が設定温度よシ低い場合には、
補助熱源を作動させる方式を採用している。ところが、
従来の動力発生機関では、膨張機に接続する負荷が変動
する場合、この負荷変動に対応する出力の制御を行うこ
とができない欠点があった。
A liquid pump and a steam generator are operatively connected, and a load for absorbing power is connected to the expander, a cooling medium conveying means is connected to the condenser, and a high temperature medium conveying means is connected to the steam generator. If the temperature of the high temperature medium is lower than the set temperature,
The system uses an auxiliary heat source. However,
Conventional power generating engines have the disadvantage that when the load connected to the expander fluctuates, the output cannot be controlled in response to the load fluctuation.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点全解消し、熱源および負荷の両方の変
化に対し、負荷に適合した動力発生運転を行うことが可
能な動力発生機関を提供することを目的とするものであ
る。
An object of the present invention is to eliminate all of the above-mentioned drawbacks and to provide a power generation engine that can perform power generation operation that is suitable for the load, even when both the heat source and the load change.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、膨張機、凝縮器、液
ボンダおよび蒸気発生器を作動的に接続し、かつ前記膨
張機に動力全吸収する負荷を、前記凝縮器に冷却媒体搬
送手段をそれぞれ接続すると共=、前記蒸気発生器に高
温媒体搬送手段を介して補助熱源を接続してなる動力発
生機関において、前記負荷に負荷検知器を接続し、前記
蒸気発生器と高温媒体搬送手段との間に熱源温度検知器
を設けると共に、その両検知器全前記補助熱源に接続し
、前記両検知器により負荷および熱源温度をそれぞれ検
知し、これらの検知値に応じて補助熱源全作動させ、サ
イクル循環量全制御するようにしたものである。
In order to achieve the above object, the present invention operatively connects an expander, a condenser, a liquid bonder, and a steam generator, and provides a load for absorbing all the power to the expander, and a cooling medium conveying means to the condenser. In a power generation engine in which an auxiliary heat source is connected to the steam generator via a high-temperature medium conveying means, a load detector is connected to the load, and the steam generator and the high-temperature medium conveying means are connected to each other. A heat source temperature detector is provided between them, both of the detectors are connected to the auxiliary heat source, the load and the heat source temperature are respectively detected by the two detectors, and all of the auxiliary heat sources are operated according to these detected values, The total cycle circulation amount is controlled.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第11図において、1は膨張機で、この膨張機1には膨
張機1によシ得られる動力を他種の動力に変換する動力
変換手段5およびその動力を吸収する負荷6が連結され
ている。2は膨張機1の吐出側に接続する凝縮器で、こ
の凝縮器2内には冷却媒体搬送手段8に接続する熱交換
管2aが収納されている。3は凝縮器2に接続する液ボ
ンダ、4は液ポンプ3および膨張機1の吸入側に接続す
る蒸気発生器で、この蒸気発生器4内には高温媒体搬送
手段7および高温媒体上加熱する補助熱源9に接続する
熱交換管4aが収納されている。
In FIG. 11, 1 is an expander, and to this expander 1, a power conversion means 5 for converting the power obtained by the expander 1 into another type of power and a load 6 for absorbing the power are connected. There is. Reference numeral 2 denotes a condenser connected to the discharge side of the expander 1, and a heat exchange tube 2a connected to the cooling medium conveying means 8 is housed in the condenser 2. 3 is a liquid bonder connected to the condenser 2; 4 is a steam generator connected to the suction side of the liquid pump 3 and the expander 1; inside the steam generator 4 is a high temperature medium conveying means 7 and a high temperature medium for heating. A heat exchange tube 4a connected to the auxiliary heat source 9 is housed.

10は負荷6に接続する負荷検知器、11は蒸気発生器
4と高温媒体搬送手段7との間に設けられた高温媒体温
度検知器(以下熱源温度検知器と称す)、12は熱源温
度検知器11に接続し、かつある熱源温度に対応する可
能最大出力を演算する演算器、13は液ポンプ30回転
数制御器で、この回転数制御器13は前記負荷検知器1
0、演算器12および補助熱源9に接続する信号発生器
14に連結されている。この信号発生器14r/′i補
助熱源9へ起動および停止の信号全発信する。
10 is a load detector connected to the load 6; 11 is a high temperature medium temperature sensor (hereinafter referred to as a heat source temperature sensor) provided between the steam generator 4 and the high temperature medium conveying means 7; 12 is a heat source temperature sensor 13 is a liquid pump 30 rotation speed controller, which is connected to the load detector 1 and calculates the maximum possible output corresponding to a certain heat source temperature.
0, a signal generator 14 which is connected to a computing unit 12 and an auxiliary heat source 9. This signal generator 14r/'i sends all start and stop signals to the auxiliary heat source 9.

次に上記のような樹成からなる本実施例の特性および動
作フローについて説明する。
Next, the characteristics and operation flow of this embodiment, which is constructed as described above, will be explained.

力(ある熱源温度における可能最大出力)と循環量との
関係は、第2図(aXb)にそれぞれ示すとおυを、曲
線(ハ)(へ)は、熱源温度の低いときの特性をそれぞ
れ示す。第2図より(i)ある循環量においてサイクル
効率と出力が最大となること、(11)熱源温度が高く
なるほど出力を最大とする循環量が太きくなること、0
1Dサイクル効率の大小関係は出力の大小関係と同様で
あることなどがわかる。
The relationship between power (maximum possible output at a certain heat source temperature) and circulation amount is shown in Figure 2 (aXb), and curves (c) and (f) show the characteristics when the heat source temperature is low, respectively. . From Figure 2, (i) the cycle efficiency and output are maximum at a certain circulation amount, (11) the higher the heat source temperature, the thicker the circulation amount that maximizes the output;
It can be seen that the magnitude relationship of 1D cycle efficiency is similar to the magnitude relationship of output.

本実施例では、上記特性に基づき第3図に示す動作フロ
ーにしたがって負荷変動に対応する出力制御ヲ行う。ま
ず補助熱源9の非作動時の場合について説明するに、負
荷検知器10によシ負荷検知20を行うと共に、熱源温
度検知器11によシ熱源温度検知21を行い、この熱(
原温度検知21は演算器12に入力されて可能最大出力
演算22が行われる。この可能最大出力演算22の可能
最大出力と負荷検知2oの負荷の両者は、回転数制御器
13に入力されて比較23が行われ、その可Iiヒ最大
出力が負荷より太きく、補助熱源作動24を必要としな
い運転点A(第4図)の場合には、回転数制御器13に
より循環量制御31を行って出力全負荷に適合させる。
In this embodiment, output control corresponding to load fluctuations is performed based on the above characteristics and according to the operation flow shown in FIG. 3. First, to explain the case when the auxiliary heat source 9 is not operating, the load detector 10 detects the load 20, the heat source temperature detector 11 detects the heat source temperature 21, and the heat (
The raw temperature detection 21 is input to the computing unit 12, and a maximum possible output calculation 22 is performed. Both the maximum possible output of the maximum possible output calculation 22 and the load of the load detection 2o are input to the rotation speed controller 13 and a comparison 23 is performed. In the case of the operating point A (FIG. 4) where 24 is not required, the circulation amount control 31 is performed by the rotation speed controller 13 to match the output full load.

一方、補助熱源作動24(f−必要とする場合、熱源温
度低下25のときには、補助熱源9を作動して熱源温度
を目標温度と同等26にし、熱源温度維持27をはかつ
て循環量制御31を行う。
On the other hand, when the auxiliary heat source operation 24 (f-) is required, the auxiliary heat source 9 is activated to make the heat source temperature equal to the target temperature 26, and the heat source temperature maintenance 27 is controlled by the circulation rate control 31. conduct.

上記と逆に第5図に示すように現在の運転点(熱源温度
)Bにおける可能最大出力が負荷Eより小さい場合には
、補助熱源9を作動させて可能最大出力が負荷Eに一致
する熱源温度(目標温度)まで高温媒体を加熱して熱源
温度上昇28をはかる。ついで熱源温度を前記目標温度
と同等29となし、熱源温度維持30をはかつて循環量
制御31、すなわち可能最大出力を示す値に設定する。
Contrary to the above, if the maximum possible output at the current operating point (heat source temperature) B is smaller than the load E, as shown in FIG. The heat source temperature is increased 28 by heating the high temperature medium to the temperature (target temperature). Next, the heat source temperature is set equal to the target temperature 29, and the heat source temperature maintenance 30 is set to a value indicating the circulation amount control 31, that is, the maximum possible output.

なお熱源温度の上昇中において、循環量を上昇させなが
らある熱源温度に合わせて増加してもよい。
Note that while the heat source temperature is rising, the circulation amount may be increased in accordance with a certain heat source temperature.

また補助熱源の作動時に、負荷が上昇するときでも同様
の制御を行う。
Furthermore, when the auxiliary heat source is activated, similar control is performed even when the load increases.

熱源温度全維持するだめに、補助熱源9を作動させてい
る状態で負荷が低下するときには、第6図に示すように
現在の運転点C(可能最大出力)が負荷Fに一致する温
度(目標温度)に、熱源温度が低下するまで補助熱源9
を停止し、ついで前記目標温度に熱源温度全維持し、循
環量を可能最大出力を示す値に設定する。補助熱源を停
止しても熱源温度が目標温度1で低下しないときには、
第4図に示す循環量制御を行う。なお熱源温度低下中に
おいて、負荷に合せてサイクル循環量を設定し、ついで
低下しつつある熱源温度に合せてサイクル循環量を増加
してもよい。
In order to maintain the full heat source temperature, if the load decreases while the auxiliary heat source 9 is operating, the current operating point C (maximum possible output) will change to the temperature (target temperature), the auxiliary heat source 9 until the heat source temperature decreases.
Then, the heat source temperature is maintained at the target temperature and the circulation amount is set to a value indicating the maximum possible output. If the heat source temperature does not decrease to the target temperature 1 even if the auxiliary heat source is stopped,
The circulation amount control shown in FIG. 4 is performed. Note that while the heat source temperature is decreasing, the cycle circulation amount may be set in accordance with the load, and then the cycle circulation amount may be increased in accordance with the decreasing heat source temperature.

補助熱源を作動させて熱源温度を維持する際、その補助
熱源の作動時におけるハンチング全防止するために、前
記熱源温度が目標とする熱源温度よりΔTC低いときに
は、補助熱源全起動する。
When operating the auxiliary heat source to maintain the heat source temperature, in order to completely prevent hunting when the auxiliary heat source is activated, when the heat source temperature is ΔTC lower than the target heat source temperature, the auxiliary heat source is fully activated.

逆に前記熱源温度が目標熱源温度よりΔTtZ’高いと
きKは、補助熱源を停止する方式を採用すればよい。
Conversely, when the heat source temperature is higher than the target heat source temperature by ΔTtZ', K may adopt a method of stopping the auxiliary heat source.

また循環量を制御するためには、第7図に示す量 ように7fflポンプ3のバイパス路に循環制御弁15
−へ を設け、この制御弁15の開度を信号発生器16により
電気的に制御する方式を採用してもよい。
In addition, in order to control the circulation amount, a circulation control valve 15 is installed in the bypass path of the 7ffl pump 3 as shown in FIG.
- may be provided and the opening degree of the control valve 15 may be electrically controlled by the signal generator 16.

前記信号発生器16は負圧検知器10、ある熱源温度に
対応する可能最大出力演算器12および補助熱源に接続
する信号発生器14に接続されている。
The signal generator 16 is connected to a negative pressure detector 10, a maximum possible output calculator 12 corresponding to a certain heat source temperature, and a signal generator 14 connected to an auxiliary heat source.

第8図は本発明の第2実施例の要部系統を示すもので、
凝縮器2と冷却媒体搬送手段8との間に冷却媒体の温度
検知器17を設けた点が第1実施例(第1図)と異なり
、その他の構成は同一であるから図面および説明を省略
した。なお図中に示す符号で第1図の符号と同一のもの
は同一部分を示すものとする。この第2実施例でに、サ
イクル循環量は凝縮器2へ供給される高温媒体の温度お
よび負荷値により決定される。
FIG. 8 shows the main system of the second embodiment of the present invention.
This embodiment differs from the first embodiment (Fig. 1) in that a cooling medium temperature sensor 17 is provided between the condenser 2 and the cooling medium conveying means 8, and the other configurations are the same, so drawings and explanations are omitted. did. Note that the same reference numerals in the figures as those in FIG. 1 indicate the same parts. In this second embodiment, the cycle circulation amount is determined by the temperature of the hot medium supplied to the condenser 2 and the load value.

第9図は上記のような構成からなる第2実施例において
、他の運転条件を一定としたときの冷却媒体温度と出力
との関係を示したもので、冷却媒体温度が低下するほど
凝縮圧力は低下し、サイクルの低圧側圧力と高圧側圧力
との差圧が増大するから出力も増大する。したがって冷
却媒体温度をパラメータとして、出力と循環量との関係
を示すと第10図のとおシである。すなわち曲線(A。
Figure 9 shows the relationship between the coolant temperature and the output when other operating conditions are held constant in the second embodiment with the above configuration.As the coolant temperature decreases, the condensing pressure increases. decreases, and the differential pressure between the low pressure side and high pressure side of the cycle increases, so the output also increases. Therefore, the relationship between the output and the circulation amount using the coolant temperature as a parameter is shown in FIG. 10. That is, the curve (A.

B)、(E、F)、(C,D)はそれぞれ冷却媒体温度
が低いとき、高いとき、中間のときに、熱源温度を変え
た場合の特性を示す。この図より明らかなように、冷却
媒体温度が低下すると、上方へ移動する、すなわち出力
が上昇し、冷却媒体温度が上昇すると、下方へ移動する
、すなわち出力が低下する。。
B), (E, F), and (C, D) show the characteristics when the heat source temperature is changed when the cooling medium temperature is low, high, and intermediate, respectively. As is clear from this figure, when the coolant temperature decreases, the coolant moves upward, that is, the output increases, and when the coolant temperature rises, the coolant moves downward, that is, the output decreases. .

上述した第2実施例では、高温媒体温度および冷却媒体
温度を検知して可能最大出力の演算を行い、以降は第1
実施例と同様の動作、すなわち第3図に示す動作フロー
における可能最大出力演算22以下の各動作を順次に行
う。このような第2実施例は、使用期間中に冷却媒体温
度が大きく変動する場合に有効である。
In the second embodiment described above, the maximum possible output is calculated by detecting the high temperature medium temperature and the cooling medium temperature, and from then on, the first embodiment
The same operation as in the embodiment, that is, each operation of the maximum possible output calculation 22 and below in the operation flow shown in FIG. 3 is performed sequentially. Such a second embodiment is effective when the coolant temperature fluctuates greatly during the period of use.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、熱源および負荷の
両方の変動に対して、負荷に適合した運転全行うことが
可能である。
As explained above, according to the present invention, it is possible to perform all operations in accordance with the load, even when both the heat source and the load change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の動力発生機関の第1実施例を示す系統
図、第2図および第3図は同実施例の特性図および動作
フローを示す図、第4図〜第6図は同実施例における負
荷変動に対する運転点の変化方向を示す図、第7図は液
ポンプにバイパス弁を用いるときの系統図、第8図は本
発明に係わる動力発生1表門の第2実施例の要部系統図
、第9図および第10図は第2実施例における冷却媒体
温度と出力との関係を示す図および冷却媒体温度をパラ
メータとする動力発生機関の特性図である。 2・・・凝縮器、3・・・液ポンプ、4・・・蒸気発生
器、6・・・負荷、7・・・高温媒体搬送手段、8・・
・冷却媒体搬送手段、9・・補助熱源、lo・・・負荷
検知器、11・・・熱源温度検知器、12・・・演算器
、13・・・回転数制御器、17・・・冷却媒体温度検
知器。 第 3 図 1 図 第7 目 n9 図 ン12゛2之11虫()(、イ本ン1;−−皮第8 図 万10 図 忰畷i
Fig. 1 is a system diagram showing a first embodiment of the power generating engine of the present invention, Figs. 2 and 3 are diagrams showing the characteristic diagram and operation flow of the same embodiment, and Figs. 4 to 6 are the same diagrams. A diagram showing the direction of change of the operating point with respect to load fluctuation in the embodiment, FIG. 7 is a system diagram when a bypass valve is used in the liquid pump, and FIG. 8 is a summary of the second embodiment of the power generation 1 front gate according to the present invention. The partial system diagram, FIGS. 9 and 10 are diagrams showing the relationship between the coolant temperature and the output in the second embodiment, and are characteristic diagrams of the power generating engine using the coolant temperature as a parameter. 2... Condenser, 3... Liquid pump, 4... Steam generator, 6... Load, 7... High temperature medium conveying means, 8...
- Cooling medium conveyance means, 9... Auxiliary heat source, lo... Load detector, 11... Heat source temperature detector, 12... Arithmetic unit, 13... Rotation speed controller, 17... Cooling Media temperature sensor. 3rd figure 1 figure 7th item n9 figure 12゛2-11 insect ()

Claims (1)

【特許請求の範囲】 1、膨張機、凝縮器、液ボンダおよび蒸気発生器を作動
的に接続し、かつ前記膨張機に動力を吸収する負荷を、
前記凝縮器に冷却媒体搬送手段をそれぞれ接続すると共
に、前記蒸気発生器に高m媒体搬送手段を介して補助熱
源を接続してなる動力発生機関において、前記負荷に負
荷#¥i器を接続し、前記蒸気発生器と高温媒体搬送手
段との間に熱源温度検知器を設けると共に、その両検知
器を前記補助熱源Vこ接続し、前記両検知器により負荷
および熱源温度全それぞれ検知し、これらの検却値に応
じて補助熱源全作動させ、サイクル循環量全制御するよ
うにしたことを特徴とする動力発生機関。 2、凝縮器と冷却媒体搬送手段との間に冷却媒体温度検
知器を設けると共に、この温度検知器を補助熱源に接続
し、その温度検知器により検知した冷却媒体温度によシ
補助熱源を作動させるようにしたことを特徴とする特許
請求の範囲第1項記載の動力発生機関。
[Claims] 1. An expander, a condenser, a liquid bonder, and a steam generator are operatively connected, and a load for absorbing power to the expander is provided;
In the power generating engine, in which the condenser is connected to a cooling medium conveying means, and the steam generator is connected to an auxiliary heat source via a high m medium conveying means, a load #\i is connected to the load. , a heat source temperature detector is provided between the steam generator and the high-temperature medium conveying means, and both detectors are connected to the auxiliary heat source V, and both the detectors detect the load and heat source temperatures, respectively. A power generating engine characterized in that all auxiliary heat sources are activated in accordance with the detected value of , and the amount of cycle circulation is fully controlled. 2. A cooling medium temperature sensor is provided between the condenser and the cooling medium conveying means, and this temperature sensor is connected to an auxiliary heat source, and the auxiliary heat source is activated according to the cooling medium temperature detected by the temperature sensor. The power generating engine according to claim 1, characterized in that the power generating engine is configured to
JP11271183A 1983-06-24 1983-06-24 Power production engine Pending JPS606008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11271183A JPS606008A (en) 1983-06-24 1983-06-24 Power production engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11271183A JPS606008A (en) 1983-06-24 1983-06-24 Power production engine

Publications (1)

Publication Number Publication Date
JPS606008A true JPS606008A (en) 1985-01-12

Family

ID=14593586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11271183A Pending JPS606008A (en) 1983-06-24 1983-06-24 Power production engine

Country Status (1)

Country Link
JP (1) JPS606008A (en)

Similar Documents

Publication Publication Date Title
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JPS606008A (en) Power production engine
JP2000283527A (en) Cooling water variable flow controller
JPH10266812A (en) Electric power control method of steam supply power generating gas turbine combined plant
JPS5911817B2 (en) Temperature control method for solar heat collector
JP2758245B2 (en) Drain water level control device for feed water heater
JPS6357803B2 (en)
JPH0238161Y2 (en)
JPH0529013A (en) Fuel cell power generation system
JPH06323509A (en) Steam supplying device
JPS58185912A (en) Motive power generator
JPH06323507A (en) Steam supplying device
JPH08135411A (en) Control device of exhaust heat using power plant
JPS606007A (en) Operation of power production engine
JP3165829B2 (en) Steam supply device
JPS59108807A (en) Power generating engine
JPS58128475A (en) Control for rankine engine
JPH0692808B2 (en) Moisture separation reheater controller
JP2645128B2 (en) Coal gasification power plant control unit
JP5890221B2 (en) Coal gasification combined power plant and its operation control method
JP2523153B2 (en) Feed water heater Drain water level control device
CN117311421A (en) Plant-level AGC optimization intelligent control system and method for thermal power plant
JPS5949303A (en) Output control system in thermal engine
JPS61246329A (en) Method for controlling quantity of recovered heat in waste heat recovering installation
JPS59115406A (en) Load controller of composite cycle power generating plant