JPS6059983B2 - Heat treatment method for zirconium alloy - Google Patents

Heat treatment method for zirconium alloy

Info

Publication number
JPS6059983B2
JPS6059983B2 JP3714081A JP3714081A JPS6059983B2 JP S6059983 B2 JPS6059983 B2 JP S6059983B2 JP 3714081 A JP3714081 A JP 3714081A JP 3714081 A JP3714081 A JP 3714081A JP S6059983 B2 JPS6059983 B2 JP S6059983B2
Authority
JP
Japan
Prior art keywords
zirconium alloy
heat treatment
phase
alloy
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3714081A
Other languages
Japanese (ja)
Other versions
JPS57152455A (en
Inventor
正寿 稲垣
和弥 高橋
龍太郎 神保
武 鈴村
勝利 新保
荘蔵 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3714081A priority Critical patent/JPS6059983B2/en
Publication of JPS57152455A publication Critical patent/JPS57152455A/en
Publication of JPS6059983B2 publication Critical patent/JPS6059983B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は、新規なジルコニウム合金の熱処理法に係り
、特に沸騰水型原子炉のジルコニウム合金からなる燃料
被覆管、チャンネルボックスの熱処 理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for heat treatment of zirconium alloys, and particularly to a method for heat treatment of fuel cladding tubes and channel boxes made of zirconium alloys for boiling water nuclear reactors.

ジルコニウム合金は、優れた耐食性と小さい中性子吸
収断面積とを有しているため原子炉プラント炉内構造物
である燃料棒被覆管や燃料集合体チャンネルボックスに
使用されている。前記用途に使用されるジルコニウム合
金は、ジルカロイー2(ジルコニウムにSn:約1.5
(1〜2)%、Cr:約0.1(0.05〜0.2)%
、Fe:約0.1(0.05〜0.2)%、Ni:約0
.05((0.01〜0.2)%を添加したもの)及び
ジルカロイー4(ジ、ルコニウムにSn:約1.5(1
〜2)%、Fe:約0.2(0.1〜0.3)%、Cr
:約0.1(0.05〜0.2)%を添加したもの)の
2種類である。 しかし、耐食性(耐酸化性)の優れた
ジルコニーウム合金においても、炉内で長時間にわたり
、高温高圧の水あるいは水蒸気にさらされると酸化が進
行し、厚膜化した酸化被膜のために熱伝達係数が低下し
たり局所的過熱を生じるため、時には原子炉の運転に支
障をきたす場合がある。
Zirconium alloys have excellent corrosion resistance and a small neutron absorption cross section, so they are used for fuel rod cladding tubes and fuel assembly channel boxes, which are internal structures of nuclear reactor plants. The zirconium alloy used for the above purpose is Zircaloy 2 (Sn: about 1.5 in zirconium).
(1-2)%, Cr: about 0.1 (0.05-0.2)%
, Fe: about 0.1 (0.05-0.2)%, Ni: about 0
.. 05 ((0.01-0.2)% added) and Zircaloy 4 (Sn: about 1.5 (1
~2)%, Fe: about 0.2 (0.1-0.3)%, Cr
: about 0.1 (0.05 to 0.2)%). However, even with zirconium alloys that have excellent corrosion resistance (oxidation resistance), oxidation progresses when exposed to high-temperature, high-pressure water or steam in a furnace for a long time, and the heat transfer coefficient increases due to the thick oxide film. In some cases, nuclear reactor operation may be disrupted due to a drop in nuclear power and localized overheating.

従来、前記酸化の進行を抑制する熱処理として、β相が
生成する温度以上にジルコニウム合金部材を高周波加熱
後急冷する(以後βクエンチと記す)方法が知られてい
る。前述のジルコニウム合金は830℃未満ではα相単
相であり、β相が生成する温度として、α+β相が生成
する温度領域が830〜980Cであり、980℃より
高い温度でβ相単相が形成される。しかし、βクエンチ
時の冷却速度が急速すぎると、ジルコニウム合金部材が
変形する。かかる変形を防止するために、比較的遅い(
20〜200℃/s)冷却条件でβクエンチが行なわれ
ている。このような比較的遅い速度でβクエンチしたジ
ルカロイー4材からなるチャンネルボックスについて表
面のSn,Cr,Feの濃度分布をX線マイクロアナラ
イザにより測定した結果、第1図に示すように、結晶粒
界に比較的粗大な金属間化合物が析出し、その粒界近傍
におけるSn濃度の低下が生じていた。
Conventionally, as a heat treatment for suppressing the progress of oxidation, a method is known in which a zirconium alloy member is radio-frequency heated to a temperature higher than that at which a β phase is generated and then rapidly cooled (hereinafter referred to as β quench). The above-mentioned zirconium alloy has a single α phase at temperatures below 830°C, and the temperature range at which the β phase forms is 830 to 980°C, where the α+β phase forms, and a single β phase forms at temperatures higher than 980°C. be done. However, if the cooling rate during β-quenching is too rapid, the zirconium alloy member will deform. To prevent such deformation, a relatively slow (
β quenching is performed under cooling conditions (20 to 200° C./s). As a result of measuring the concentration distribution of Sn, Cr, and Fe on the surface of a channel box made of Zircaloy 4 material β-quenched at a relatively slow rate using an X-ray microanalyzer, we found that the grain boundaries Relatively coarse intermetallic compounds were precipitated, and the Sn concentration near the grain boundaries was reduced.

ジルコニウム合金に含まれる窒素ガスは耐食性の悪影響
を及ぼすが、Snの添加によつて腐食が抑制される。従
つて、上述のように結晶粒界近傍のSn濃度の低下は、
耐食性を低める結果となることが分つた。また、βクエ
ンチ後α領域で単に加熱処理しただけでは十分な耐食性
が得られないことが分つた。
Nitrogen gas contained in zirconium alloys has an adverse effect on corrosion resistance, but corrosion is suppressed by the addition of Sn. Therefore, as mentioned above, the decrease in Sn concentration near the grain boundaries is
It was found that this resulted in a decrease in corrosion resistance. Furthermore, it was found that sufficient corrosion resistance could not be obtained by simply performing heat treatment in the α region after β quenching.

本発明の目的は、耐食性の高いジルコニウム合金部材の
熱処理方法を提供することにある。
An object of the present invention is to provide a method for heat treating a zirconium alloy member with high corrosion resistance.

本発明は、錫、クロム及び鉄を含有するジルコニウム合
金をβ相を生成する温度領域より急冷した後(βクエン
チ)、りl張応力をかけながらα相領域て加熱処理し、
析出物を形成することを特徴とするジルコニウム合金め
熱処理法にある。ジルカロイ合金のβ相が生成する温度
は830′C以上であり、前述の温度に示すように83
0℃以上でのα+β相又は98(代)より高い温度での
β相単相からの急冷するβクエンチしたジルコニウム合
金部材をα相温度領域に再加熱し、Zrマトリックス中
に過飽和に固溶したFe,Crを金属間化合物とそして
結晶粒内及び粒界に微細に析出させると共に、Snの濃
度分布をより均一にさせて延性を回復させ、かつ耐食性
を向上させる点にある。β相領域からの冷却速度は20
0〜1000℃/秒が好ましい。実施例第2図aはジル
カロイー4からなる原子炉用燃料集合体チャンネルボッ
クスを最高加熱温度としてα+β相が生成する領域であ
る960℃(保持時間:1分3(8、960′C〜70
0′C間の平均冷却速度:700℃/秒の条件でβクエ
ンチした後、チャンネルボックス内にそれより熱膨脹係
数の大きい部材を嵌め合わせて、その熱膨脹によつて応
力がかかるようにして、600℃の温度で所定時間再加
熱し熱処理を施した試料A表面におけるSn,Cr,F
eの濃度分布を示す。
In the present invention, a zirconium alloy containing tin, chromium, and iron is rapidly cooled from a temperature range that produces a β phase (β quench), and then heat treated in an α phase region while applying tensile stress.
A heat treatment method for zirconium alloys characterized by the formation of precipitates. The temperature at which the β phase of Zircaloy alloy is formed is 830'C or higher, and as shown in the above temperature, 83
A quenched β-quenched zirconium alloy member from a single phase of α + β phase at temperatures above 0°C or β phase at temperatures higher than 98 (s) is reheated to the α-phase temperature region, and supersaturated solid solution is formed in the Zr matrix. The purpose of this method is to finely precipitate Fe and Cr in intermetallic compounds and within crystal grains and grain boundaries, and to make the Sn concentration distribution more uniform, thereby restoring ductility and improving corrosion resistance. The cooling rate from the β phase region is 20
0 to 1000°C/sec is preferred. Example Fig. 2a shows the maximum heating temperature of the reactor fuel assembly channel box made of Zircaloy 4 at 960°C (holding time: 1 minute 3 (8,960'C~70
Average cooling rate between 0'C: After β-quenching under the conditions of 700°C/sec, a member with a larger coefficient of thermal expansion is fitted into the channel box, and stress is applied by the thermal expansion. Sn, Cr, and F on the surface of sample A that was reheated and heat-treated at a temperature of ℃ for a predetermined time.
The concentration distribution of e is shown.

第2図bは上述のβクエンチしたままのチャンネルボッ
クスから切り出した試料Bの表面におけるSn,Cr,
Feの濃度分布を示す。第2図bよりβクエンチのまま
の状態では、Sn,Cr,Feの濃度はほぼ均=であり
、Zrマトリックス中にこれらの元素が過飽和に固溶し
ているものに対し、β久エンチ後、応力をかけながら6
00℃に再加熱することにより、Snの濃度分布は均一
であり、Fe及びCrの濃度は、高いピーク値を示しピ
ーク位置は粒内及び粒界に微細に分布していることがわ
かる。このことからSn濃度が均一になるように十分に
急速に冷却するβクエンチ後、応力をかけながらα相温
度領域で再加熱することは、Cr,FeとZrとの金属
間化合物を微細に析出させると共に、Snの濃度分布を
均一化させる効果を有するとがわかる。また、このもの
の延性は、βクエンチを施さない素材ジルカロイー4圧
延材とほぼ同程度であつた。
Figure 2b shows Sn, Cr, and
The concentration distribution of Fe is shown. Figure 2b shows that in the state of β-quenching, the concentrations of Sn, Cr, and Fe are almost uniform, and in contrast to the Zr matrix in which these elements are supersaturated as solid solutions, after β-quenching. , while applying stress 6
It can be seen that by reheating to 00° C., the Sn concentration distribution is uniform, and the Fe and Cr concentrations exhibit high peak values, and the peak positions are finely distributed within the grains and at the grain boundaries. From this, it can be seen that after β-quenching, which involves cooling sufficiently rapidly to make the Sn concentration uniform, reheating in the α-phase temperature region while applying stress will cause fine precipitation of intermetallic compounds of Cr, Fe, and Zr. It can be seen that it has the effect of making the Sn concentration distribution uniform. Further, the ductility of this material was approximately the same as that of Zircaloy 4 rolled material which was not subjected to β-quenching.

このように、原子炉用燃料被覆管又はチャンネルボック
スのような長尺管の熱処理では管がくらむ方向に応力を
かける方が最も好ましい。
In this way, when heat treating long tubes such as fuel cladding tubes for nuclear reactors or channel boxes, it is most preferable to apply stress in the direction in which the tubes are blinded.

第3図は、前記試料A及び、第1図に示したSn,Cr
,Feの濃度分布を有する従来の熱処理により得られた
チャンネルボックスより切り出した試験片とを、温度4
75℃、圧力ニ105k9f/Cllの水蒸気中に20
時間、5m間及び10叫間保持後の酸化による重量増加
(腐食増量)を示す。
FIG. 3 shows the sample A and the Sn, Cr shown in FIG.
, a test piece cut out from a channel box obtained by conventional heat treatment having a concentration distribution of Fe.
20°C in water vapor at 75°C and pressure 105k9f/Cl.
It shows the weight increase due to oxidation (corrosion weight increase) after holding for 5 m and 10 m.

第3図より、従来の熱処理方法により得られた試験片に
比し、本発明による熱処理を施した試験片の方が明らか
に少ない腐食増量(高い耐食性)を示すことがわかる。
From FIG. 3, it can be seen that the test piece subjected to the heat treatment according to the present invention exhibits clearly less corrosion weight gain (higher corrosion resistance) than the test piece obtained by the conventional heat treatment method.

前述はα+β相領域の例を示したものであるが、β相単
相領域から同様に冷却した場合も同様の結果が得られる
ことが実験より明らかであつた。本発明によれば、高い
耐食性を有するジルコニウム合金部材を得ることができ
、の部材を用いた原子炉用燃料被覆管又は原子炉用燃料
集合体チャンネルボックスは耐食性が高く、長寿命が得
られる。
Although the above example shows an example of the α+β phase region, it is clear from experiments that similar results can be obtained when cooling is similarly performed from the β phase single phase region. According to the present invention, a zirconium alloy member having high corrosion resistance can be obtained, and a fuel cladding tube for a nuclear reactor or a fuel assembly channel box for a nuclear reactor using the member has high corrosion resistance and a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の方法によりβクエンチされたチャンネ
ルボックス表面のSn,Cr,Feの濃度分布を示す線
図、第2図aは、本発明による熱処理方法により得られ
たチャンネルボックス表面のSn,Cr,Feの濃度分
布を示す線図、第2図bは、βクエンチしたままの状態
におけるSn,Cr,Feの濃度分布を示す線図、第3
図は、従来法及び本発明によ熱処理方法により得られた
チャンネルボックスの耐食試験結果を示す線図である。
FIG. 1 is a diagram showing the concentration distribution of Sn, Cr, and Fe on the surface of a channel box β-quenched by the conventional method, and FIG. , Cr, and Fe. FIG. 2b is a diagram showing the concentration distribution of Sn, Cr, and Fe in the β-quenched state.
The figure is a diagram showing the corrosion resistance test results of channel boxes obtained by the conventional method and the heat treatment method of the present invention.

Claims (1)

【特許請求の範囲】 1 錫、クロム及び鉄を含有するジルコニウム合金を、
該合金のβ相が生成する温度領域より急冷した後、前記
合金に引張応力を加えながら前記合金のα相領域で加熱
し、前記合金中に析出物を形成させることを特徴とする
ジルコニウム合金の熱処理法。 2 前記ジルコニウム合金によつて原子炉用燃料被覆管
が構成されている特許請求の範囲第1項のジルコニウム
合金の熱処理法。 3 前記ジルコニウム合金によつて原子炉用燃料集合体
チャンネルボックスが構成されている特許請求の範囲第
1項のジルコニウム合金の熱処理法。
[Claims] 1. A zirconium alloy containing tin, chromium and iron,
The zirconium alloy is rapidly cooled from a temperature range where the β phase of the alloy is formed, and then heated in the α phase region of the alloy while applying tensile stress to form precipitates in the alloy. Heat treatment method. 2. The method of heat treating a zirconium alloy according to claim 1, wherein the zirconium alloy constitutes a fuel cladding tube for a nuclear reactor. 3. The method of heat treating a zirconium alloy according to claim 1, wherein the zirconium alloy constitutes a nuclear reactor fuel assembly channel box.
JP3714081A 1981-03-13 1981-03-13 Heat treatment method for zirconium alloy Expired JPS6059983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3714081A JPS6059983B2 (en) 1981-03-13 1981-03-13 Heat treatment method for zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3714081A JPS6059983B2 (en) 1981-03-13 1981-03-13 Heat treatment method for zirconium alloy

Publications (2)

Publication Number Publication Date
JPS57152455A JPS57152455A (en) 1982-09-20
JPS6059983B2 true JPS6059983B2 (en) 1985-12-27

Family

ID=12489306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3714081A Expired JPS6059983B2 (en) 1981-03-13 1981-03-13 Heat treatment method for zirconium alloy

Country Status (1)

Country Link
JP (1) JPS6059983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835550A (en) * 1997-08-28 1998-11-10 Siemens Power Corporation Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup

Also Published As

Publication number Publication date
JPS57152455A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
JP4022257B2 (en) Tube for nuclear fuel assembly and method for manufacturing the same
JP4018169B2 (en) Method of manufacturing tube for nuclear fuel assembly and tube obtained thereby
JPH0344275B2 (en)
KR930009987B1 (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
RU2239892C2 (en) Method for producing thin components from zirconium base alloy and plates produced by this method
EP0261880B1 (en) Nickel-base alloy heat treatment
US4360389A (en) Zirconium alloy heat treatment process
JPS5827340B2 (en) How do you know what's going on?
RU2126559C1 (en) Zirconium base alloy tube for nuclear reactor fuel assembly
CA1080513A (en) Zirconium alloy heat treatment process and product
JPS6059983B2 (en) Heat treatment method for zirconium alloy
JPH0225515A (en) Treatment for preventing stress corrosion cracking brough about by irradiation with radioactive rays in austenite stainless steel
JP3955097B2 (en) Fuel box and method of manufacturing the fuel box
JPS5822365A (en) Preparation of zirconium base alloy
JPS5822366A (en) Preparation of zirconium base alloy
JPH05240979A (en) Structure material for high burnup fuel assembly and fuel assembly
JPS59208044A (en) Corrosion-resistant hafnium alloy
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
Farkas et al. Development of thorium-uranium-base fuel alloys
JPS5856747B2 (en) Heat treatment method for improving intergranular stress corrosion cracking resistance of gamma prime precipitation-strengthened Ni-based alloy used in hot water
US20060081313A1 (en) Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
RU2172527C2 (en) Nuclear fuel assembly tube and its manufacturing process
JPS5917188B2 (en) Heat treatment method for Ni-based alloy
JPS6318030A (en) Zirconium and zirconium alloy and its production