JPS59208044A - Corrosion-resistant hafnium alloy - Google Patents

Corrosion-resistant hafnium alloy

Info

Publication number
JPS59208044A
JPS59208044A JP58083611A JP8361183A JPS59208044A JP S59208044 A JPS59208044 A JP S59208044A JP 58083611 A JP58083611 A JP 58083611A JP 8361183 A JP8361183 A JP 8361183A JP S59208044 A JPS59208044 A JP S59208044A
Authority
JP
Japan
Prior art keywords
alloy
corrosion
hafnium
crystal structure
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58083611A
Other languages
Japanese (ja)
Other versions
JPS6239223B2 (en
Inventor
Junko Kawashima
川島 純子
Emiko Higashinakagaha
東中川 恵美子
Yoshinori Kuwae
桑江 良昇
Kanemitsu Sato
佐藤 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58083611A priority Critical patent/JPS59208044A/en
Publication of JPS59208044A publication Critical patent/JPS59208044A/en
Publication of JPS6239223B2 publication Critical patent/JPS6239223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To provide excellent nodular corrosion resistance and to prevent hydrogen embrittleness by incorporating a specific ratio of Nb and Zr into Hf and precipitating a martensite crystal in the alloy texture. CONSTITUTION:At least one kind of 0.01-14.8wt% Nb and >=0.01wt% Zr are incorporated into Hf and the total amt. of these added alloy elements is made <=40wt%. The Hf alloy is quickly cooled from the beta region or alpha+beta region to precipitate the martensite crystal structure in the alloy structure. After the precipitation of the martensite crystal structure, the alloy is annealed at about 800 deg.C and is quench hardened, by which strain is relieved therefrom. The alloy having excellent strength and a remarkable effect as a control rod for a nuclear reactor is thus obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子炉の制御棒など耐食性を要求される材料
として用いられる耐食ハフニウム基合金にNUするもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention applies NU to a corrosion-resistant hafnium-based alloy used as a material that requires corrosion resistance, such as control rods for nuclear reactors.

〔シ、5’;’J」の技術的背景とその問題点〕ハフニ
ウムは熱中性子吸収断面積は必ずしも大きくはないが、
共鳴エネルギー領域に多数のピークを有し、このため原
子炉の制御棒としてイY効な核的性質を有していると共
に、仕れた加工イー1ミと高温高圧水蒸気中でも良好な
耐食性を有するものである。さらに近年、軽水炉の発迷
どともに、ジルコニウム生産の副産物としてのハフニウ
ムの生産量も増加しているなどの理由から、ハフニウム
を原子炉の制御棒として利用することがン主目されてき
た。
[Technical background of 5';'J' and its problems] Hafnium does not necessarily have a large thermal neutron absorption cross section, but
It has many peaks in the resonance energy region, and therefore has nuclear properties that make it useful as a control rod for nuclear reactors, and it also has good corrosion resistance even in difficult processing and high-temperature, high-pressure steam. It is something. Furthermore, in recent years, the use of hafnium as control rods for nuclear reactors has become a focus for reasons such as the failure of light water reactors and the increasing production of hafnium as a by-product of zirconium production.

しかしながらハフニウムは、長時間原子炉内に装荷して
制御棒として使用すると、その使用末期において、いわ
ゆるノジュラーコロージョンと呼ばれる腐食反応による
白色腐食生成物が、その表面に斑点状に生成してくるこ
とがちる。
However, if hafnium is loaded in a nuclear reactor and used as a control rod for a long period of time, at the end of its use, white corrosion products due to a corrosion reaction called so-called nodular corrosion will form on its surface in spots. Chiru.

これは・・フニウムが高温水と反応し、生成された水素
が基材と表面の酸化膜との間に蓄積して腐食生成物を形
成するものである。この高量生成物は、経時的に表面に
集積し、遂には表面から剥離すると、制御棒の強度低下
を招く虞れがある。
This is because...funium reacts with high-temperature water, and the generated hydrogen accumulates between the base material and the oxide film on the surface, forming corrosion products. This large amount of product accumulates on the surface over time, and if it eventually peels off from the surface, there is a risk that the strength of the control rod will be reduced.

まだ生成された水素が金属内部に侵入すると、ハフニウ
ムの水素化物が形成され、これが表面と垂直方向に形成
されると、連続した水素化物によるいわゆる水素Ir1
s性の問題が起ると考えられる。
When the still-formed hydrogen penetrates into the interior of the metal, a hafnium hydride is formed, which, when formed perpendicular to the surface, forms the so-called hydrogen Ir1 due to successive hydrides.
It is thought that a problem of s-ness will occur.

しかも、(=’・il r=’:Q L 7’こ113
食生成′1勿も中性子吸収能力をイfするため、もしこ
れが冷却水中に浮遊すると中性子を吸収するだめ、炉金
体の自力の低1′:を招くと共に、制置しにくくなるこ
とも手心される。
Moreover, (='・il r=':Q L 7'ko113
Eclipse formation'1 Of course, it will reduce the neutron absorption capacity, so if it floats in the cooling water, it will not be able to absorb neutrons, leading to a decrease in the reactor metal's own strength and making it difficult to control. be done.

〔ジ白jJ]の目的〕[Purpose of Jihaku jJ]

本尤明は、かかる従来の同;遠点に錯・シーなされブξ
もので、1:lljツノ−シーコロ−ジョン性に伝れて
いると共に、水素脆化を防+LL、Lかも強度に16れ
た1[iijづ赴)・コニウム基合金を提係するもので
、しる1゜ し元明の・)既2で] 本光明者ら(フレ・コニウム基合金のjjjU食原因お
よびそのメカニズムを研死した結果、)hコニウムの1
1b食(・よ、ぞのほとんとかα相(h −c−p ’
/’で生成していることが確i3され′k。このα相の
生成を址けるだめ、b−c−cの結晶(湾造をとる高温
のβ領域から急冷してα相を形成すると、得られたα相
は上記のα相とは結晶組織の異なるマルテンサイト構造
が形成される。この結晶胆をkが優れた而」ノジュラー
コローノヨン1↑と1iiij水素脆化特性を有するこ
とを見い出し、本発明はこの知見に基づいてなされたも
のである。
The present theory is based on such a conventional method;
It is made of a conium-based alloy that has 1:llj horn sea corrosion resistance and has 16% strength against hydrogen embrittlement. [Shiru 1゜ and Motomei's) already 2] The present Komyo et al.
1b eclipse (・yo, zonomoto or α phase (h -c-p'
It is confirmed that i3 is generated with /'. In order to stop the formation of this α phase, the α phase is formed by rapid cooling from the high temperature β region with a b-c-c crystal (curved shape). A martensitic structure with different martensitic structures is formed.It was discovered that this crystal structure has excellent hydrogen embrittlement properties with nodular coronoyons 1↑ and 1iiij, and the present invention was made based on this knowledge. be.

即ち本発明はハフニウム基に、ニオブ0.01〜14.
8係(以下チは重量係を示す)、ジルコニウム0.01
%以上の少なくとも1aを含有し、且つこれら合金添加
元素の総量が40チ以下である合金但ソ゛沁中に、マル
テンザイト結晶組織を有することを特徴とするものであ
る。
That is, in the present invention, 0.01 to 14.0% of niobium is added to the hafnium group.
Coordination 8 (hereinafter CH indicates weight proportion), zirconium 0.01
% or more of 1a, and the total amount of these alloying addition elements is 40% or less, and is characterized by having a martenzite crystal structure in the solute.

以下本児明を詳細に説明すると、まず合金添加元素のう
ちニオブはハフニウムに固溶してβ相およσαα+β相
安定化させて、マルテンザイト結晶組織の表出を促進す
る作用をなすものである。またその添加量を上記範囲に
限定したi理由は0.01%未満で(はβ相およびα+
β相の安定化効果が少なく、また1 4.、8 %を越
えて添加するとニオブが固溶しきれずに、二相状態とな
ってし捷い、機械的強度や耐食性が低下するJ′λれが
あろ/ζめ0.01〜14.8裂の範囲に規定し/C・
・ またノルコニウムはニオブと同局−にハフニウムにIM
I i’i’; L、、てβ21」およびα+β相を安
定化させ、マルテンヅイト紹織の表出を促6色する作用
をなすものである。篭/こその添加量を」二記のjii
ij囲に限定した理由はOO1係以下であるとβ相およ
びα+β相の安定化効果が少ない。またジルコニウムは
ハフニウムと共に■’ −A 、lAに1釈して、全率
固溶するため特にその上限は設けてい段い。
Explaining Akira Honji in detail below, first of all, among the alloying elements, niobium is a solid solution in hafnium, stabilizes the β phase and σαα+β phase, and has the effect of promoting the expression of martenzite crystal structure. be. The reason why the amount added was limited to the above range was less than 0.01% (β phase and α+
The stabilizing effect of the β phase is small, and 14. If more than 8% of niobium is added, niobium cannot be completely dissolved and becomes a two-phase state, resulting in a decrease in mechanical strength and corrosion resistance. Specified within the range of cracks/C.
・Also, norconium is in the same position as niobium, and IM is in hafnium.
It has the function of stabilizing the "I i'i'; ``The amount of addition of kagome/koso''
The reason why it is limited to the range of ij is that if the coefficient OO is below 1, the stabilizing effect of the β phase and α+β phase will be small. Further, since zirconium and hafnium are dissolved in solid solution at a total rate of 2'-A and 1A, there is no particular upper limit for zirconium.

しかしながら原子炉材′)f::とじて用いる場合には
、l()、に中+S+−子吸収能力の大きいことが必決
であるので、ニオブ、ツルコニウムはどのように組合ぜ
、寸フ(、は少なくとも一方を単独で添加しても良いが
、合金添加元素の総量が40φを緬えないことが必及で
ある。
However, when used as a nuclear reactor material f::, it is essential that l() has a large absorption capacity for medium+S+- molecules, so how should niobium and turconium be combined? , at least one of them may be added alone, but it is necessary that the total amount of alloying addition elements does not exceed 40φ.

’i7ζ本し■22a金塗製造する方法について説明す
ると、上1把組成の)・コニウム合金をβ相領域または
α+β相領域から急、冷することによ)、合金1i11
1x’;C中にマルテンザイト結晶+m織を表出させる
ことかできる。この場合、急冷方法としては水冷、油冷
9強制空冷等の手段を用いる。寸だマルテンサイト結晶
組織を辰出後、800℃前後の温度で焼鈍して、急冷焼
入れによる歪を除去すると良い。
To explain the method for manufacturing 'i7ζhonshi■22a gold coating, the method for producing gold coating is as follows: By rapidly cooling a conium alloy of the above composition from the β phase region or α+β phase region), alloy 1i11
1x'; Martenzite crystal + m weave can be exposed in C. In this case, water cooling, oil cooling, forced air cooling, or the like is used as the rapid cooling method. After the martensitic crystal structure is completely developed, it is preferable to anneal the material at a temperature of around 800° C. to remove distortion caused by rapid quenching.

このように本発明合金は品温のβ相領域では、b−c−
cの結晶溝造をとるが、これを急冷することによシマル
チンサイト結晶糸l織が表出し、これが粒界あるいは亜
粒界に網目状に分布しブζ合金;且織が得られる。即ち
β領域から急冷すると、本兄明合金の結晶方位のしU係
は (110)b、c、c、/(0001)h、c、p。
In this way, the alloy of the present invention has b-c-
The crystal groove structure shown in c is obtained, but when this is rapidly cooled, symmartinsite crystal threads are exposed, and these are distributed in a network shape at grain boundaries or sub-grain boundaries, resulting in a ζ alloy; That is, when rapidly cooled from the β region, the crystal orientation U ratio of the present invention alloy is (110) b, c, c, / (0001) h, c, p.

[111)b、c、c、/C1120]h、c、p。[111) b, c, c, /C1120] h, c, p.

となる。becomes.

このようにして得られた本発明の耐食ハフニウム基合金
は、マルテンザイト結晶組織を持っているため面]ノジ
ュラーコロージョン性に優れていると共に、ツノニラ−
コロ−ジョンがほとんど起らないだめ、これに伴なって
水素の発生も非常に少なく抑えられ、水素化物による水
累+、:g性の発生も防止することができる。壕だニオ
ブを含むものは、合金全体に固溶さぜることによシ更に
訂j食性に・)?れている。
The corrosion-resistant hafnium-based alloy of the present invention obtained in this way has a martenzite crystal structure, so it has excellent nodular corrosion properties and
Since almost no corrosion occurs, the generation of hydrogen can also be suppressed to a very low level, and the generation of water accumulation due to hydrides can also be prevented. Is it possible to make niobium-containing materials even more erodible by incorporating them into the entire alloy as a solid solution? It is.

1だハフニウムはその融点が〜2200℃、変態湿度が
〜1740℃と高温であるが、ニオブ、ジルコニウムを
添加することによI> 融点と菱態1晶反が低下する。
Hafnium has a high melting point of ~2,200°C and a transformation humidity of ~1,740°C, but by adding niobium and zirconium, the melting point and rhombic crystalline ratio are lowered.

特に亥剋;温度の低下が著しく、このため低温でβ相お
よびα+β相が安定に存在し、≦〕、冷による6も人件
が向上し、俣めて容易にマルテンザイト結晶組織をイ4
7−ることかできる。
In particular, the temperature drop is remarkable, so the β phase and α+β phase stably exist at low temperatures.
7- I can do something.

またマルテンザイトrn品、i′L1織をイ〕−するこ
とから硬さも向上し、史にニオブを含むものは焼入れ処
用!> IRI’効伺化さぜることかでき、強度が向」
−する。従って原子炉の制御線として用いた場合、急激
な制1i114M6の挿入に伴う郁J撃にも十分に11
える強度を有すると共に、上述の耐食性を長期間に亘っ
て発4:6j L、しかも有効な中性子吸収能力を併せ
て保3寸することができるものである。
In addition, martenzite rn products and i'L1 woven fabrics have improved hardness, and those containing niobium must be quenched! > IRI's effect can be changed and the strength is increased.
- to do. Therefore, when used as a control line for a nuclear reactor, the 11
In addition to having the above-mentioned corrosion resistance for a long period of time, it can also maintain effective neutron absorption capacity.

〔発明の実施例〕[Embodiments of the invention]

ニオブ3%、ジルコニウム8チと残部がハフニウムから
なるハフニウム基合金を約1750’Cに加熱して、水
冷しマルテンザイト結晶組織を有する耐食ハフニウム基
合金を得た。
A hafnium-based alloy consisting of 3% niobium, 8% zirconium, and the balance hafnium was heated to about 1750'C and cooled with water to obtain a corrosion-resistant hafnium-based alloy having a martenzite crystal structure.

このようにして伺られた本発明合金試料のノジュラーコ
ロージョン性を調べるだめ、水蒸気雰囲気中で加速m食
試験を行った。なおこの試:験条件は500℃、105
 kg /備2の高温高圧水ズと気で行った。
In order to investigate the nodular corrosion properties of the alloy samples of the present invention thus obtained, an accelerated m-corrosion test was conducted in a steam atmosphere. This test: The test conditions are 500℃, 105
The test was carried out using high-temperature, high-pressure water and air at a rate of 2 kg/kg.

まだ本発明合金と比較するためジルコニウム等の不純物
を含み純度が98係の何ら熱処理をしていない原子力用
ハフニウムについても、上Ne ”jF:施例と同様に
水蒸気雰囲気中で加速腐食試j倹を行った。
In order to compare with the alloy of the present invention, hafnium for nuclear power use, which contains impurities such as zirconium and has a purity of 98 and has not been subjected to any heat treatment, was also subjected to an accelerated corrosion test in a steam atmosphere in the same manner as in the example. I did it.

試験結果は図面に示す通シ、本発明合金は曲’AI’J
’−aで示すように腐食による重量増加のカーブ緩やか
で、また試験1. O0日後の表面観察においてもノソ
ーラーコローノヨンの発生は認められなかった。これに
対してマルテンサイト結晶胆織のない原子力用ハフニウ
ムは図面に曲縁すで示すように50日を経過後急激に重
量が増加し、斤雪食の虹(行が1忍められ、浸I′、、
IL”ミニ0O日後の状態ではノジュラーコロージョン
がらく而に多訣元生していた。
The test results are shown in the drawings, and the alloy of the present invention is shown in the figure 'AI'J.
As shown in '-a, the curve of weight increase due to corrosion is gentle, and test 1. No solar coronation was observed in the surface observation after 0 days. On the other hand, hafnium for nuclear power use, which does not have martensitic crystal bile, suddenly increases in weight after 50 days, as shown in the drawing with a curved edge. I',...
In the state after 00 days of "IL" mini, nodular corrosion was easily occurring.

〔ンv 1jJJ のづ′力問:b 〕以上のHj:1
’i果からり」らかな如く、水先り」に係る!ffi介
ハ7ニウノ、基合金によれば、耐ノノユ乏−コローノヨ
ン性にf1ミれていると共に水素脆化の防止効果が犬き
り、シかも強度的に1どれ、特にj7,1、子炉の11
,1言;’、il 4:4ぐ−とじて顕著力効ら応I!
:肩するものである。
[Nv 1jJJ Nozu's power question:b]Hj:1
It is related to 'I Kakarari' Rakana Like, Pilot'! According to the base alloy, it has excellent anti-corrosion resistance and is superior to f1 in terms of hydrogen embrittlement prevention. 11
, 1 word; ', il 4:4 It has a remarkable power!
: It is something to be shouldered.

41Σl ifuのIII]単な3、兄1シ」図jii
 k1本兄四合金と原子力用ノ・7ニウムとのツノニラ
−コロージョン加遍試験による11−5食のコil−行
状I、↑、(二を比ii’、& L、)こグラフである
41Σl ifu III
This is a graph of the coil conduction I, ↑, (compared to ii', &L,) of the 11-5 meal obtained by the Tsunonilla corrosion test of the k1 main brother 4 alloy and the nuclear-grade No. 7 nium.

出ノ、I+fI人代程人  弁理士 鈴 江 武 彦腐
食B吾間(El)
Deno, I+fI Jindai Chojin Patent Attorney Suzue Takehiko Koro B Agoma (El)

Claims (1)

【特許請求の範囲】[Claims] ハフニウム基に、ニオブ0.01〜14.8重量係、ジ
ルコニウム0.01重)jE 5’以上の少なくとも1
f、1lIfを含有し、且つこれら合金添加元紫の総針
が40重量係以下である合金組織中にマルテンザイト結
晶組紗を有することをt庁徴とする開会ハフニウム基合
金。
Hafnium group, 0.01 to 14.8 weight of niobium, 0.01 weight of zirconium) jE 5' or more
An opening hafnium-based alloy containing martenzite crystalline gauze in the alloy structure containing F, 1lIf and having a martenzite crystal structure in the alloy structure in which the total number of purple needles added to these alloys is 40% by weight or less.
JP58083611A 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy Granted JPS59208044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083611A JPS59208044A (en) 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083611A JPS59208044A (en) 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy

Publications (2)

Publication Number Publication Date
JPS59208044A true JPS59208044A (en) 1984-11-26
JPS6239223B2 JPS6239223B2 (en) 1987-08-21

Family

ID=13807280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083611A Granted JPS59208044A (en) 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy

Country Status (1)

Country Link
JP (1) JPS59208044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028906A (en) * 1997-08-22 2000-02-22 Hitachi, Ltd. Manufacturing method of control rod for boiling water reactor
US7459036B2 (en) * 2003-03-07 2008-12-02 Nippon Mining & Metals Co., Ltd Hafnium alloy target and process for producing the same
JP2013054037A (en) * 2012-11-20 2013-03-21 Toshiba Corp Reactor control rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492849B (en) * 2014-11-29 2016-03-23 西安诺博尔稀贵金属材料有限公司 A kind of preparation method of used by nuclear reactor hafnium square rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028906A (en) * 1997-08-22 2000-02-22 Hitachi, Ltd. Manufacturing method of control rod for boiling water reactor
US7459036B2 (en) * 2003-03-07 2008-12-02 Nippon Mining & Metals Co., Ltd Hafnium alloy target and process for producing the same
JP2013054037A (en) * 2012-11-20 2013-03-21 Toshiba Corp Reactor control rod

Also Published As

Publication number Publication date
JPS6239223B2 (en) 1987-08-21

Similar Documents

Publication Publication Date Title
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
KR930009987B1 (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
US3271205A (en) Zirconium base alloys
US9202597B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior corrosion resistance by reducing an amount of alloying elements and methods of preparing a zirconium alloy nuclear fuel cladding using thereof
US20100108204A1 (en) Zirconium alloy composition for nuclear fuel cladding tube forming protective oxide film, zirconium alloy nuclear fuel cladding tube manufactured using the composition, and method of manufacturing the zirconium alloy nuclear fuel cladding tube
KR100999387B1 (en) Zirconium alloy compositions having excellent corrosion resistance by the control of various metal-oxide and precipitate and preparation method thereof
Chiswik et al. Advances in the physical metallurgy of uranium and its alloys
KR100960894B1 (en) Zirconium alloys compositions having excellent resistance against hydrogen embrittlement and preparation method thereof
KR101630403B1 (en) Manufacture method of nuclear fuel component made of zirconium applied multi-stage cold rolling
Charquet Improvement of the uniform corrosion resistance of Zircaloy-4 in the absence of irradiation
JP5982474B2 (en) Zirconium-based alloy manufacturing method
JPS59208044A (en) Corrosion-resistant hafnium alloy
US9725791B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
US9111650B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a severe reactor operation condition and methods of preparing a zirconium alloy nuclear cladding by using thereof
US10119181B2 (en) Treatment process for a zirconium alloy, zirconium alloy resulting from this process and parts of nuclear reactors made of this alloy
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JP3692006B2 (en) High corrosion resistance zirconium alloy, structural material for reactor core, and method for producing the same
US3431104A (en) Zirconium base alloy
JPS6067648A (en) Nuclear fuel covering pipe and its preparation
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
Deshmukh et al. Effect of process variables on texture and creep of pressurised heavy water reactor pressure tubes
JPS61174347A (en) Nodular corrosion resisting zirconium-base alloy
JPH0649608A (en) Production of high corrosion resistant zirconium-based alloy material
KR100296952B1 (en) New zirconium alloys for fuel rod cladding and process for manufacturing thereof