JPS6239223B2 - - Google Patents

Info

Publication number
JPS6239223B2
JPS6239223B2 JP58083611A JP8361183A JPS6239223B2 JP S6239223 B2 JPS6239223 B2 JP S6239223B2 JP 58083611 A JP58083611 A JP 58083611A JP 8361183 A JP8361183 A JP 8361183A JP S6239223 B2 JPS6239223 B2 JP S6239223B2
Authority
JP
Japan
Prior art keywords
hafnium
corrosion
alloy
crystal structure
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58083611A
Other languages
Japanese (ja)
Other versions
JPS59208044A (en
Inventor
Junko Kawashima
Emiko Higashinakagaha
Yoshinori Kuwae
Kanemitsu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58083611A priority Critical patent/JPS59208044A/en
Publication of JPS59208044A publication Critical patent/JPS59208044A/en
Publication of JPS6239223B2 publication Critical patent/JPS6239223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子炉の制御棒など耐食性を要求さ
れる材料として用いられる耐食ハフニウム基合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a corrosion-resistant hafnium-based alloy used as a material that requires corrosion resistance, such as control rods for nuclear reactors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ハフニウムは熱中性子吸収断面積は必ずしも大
きくはないが、共鳴エネルギー領域に多数のピー
クを有し、このため原子炉の制御棒として有効な
核的性質を有していると共に、優れた加工性と高
温高圧水蒸気中でも良好な耐食性を有するもので
ある。さらに近年、軽水炉の発達とともに、ジル
コニウム生産の副産物としてのハフニウムの生産
量も増加しているなどの理由から、ハフニウムを
原子炉の制御棒として利用することが注目されて
きた。
Although hafnium does not necessarily have a large thermal neutron absorption cross section, it has many peaks in the resonance energy region, and therefore has nuclear properties that are effective as control rods for nuclear reactors, as well as excellent workability. It has good corrosion resistance even in high temperature and high pressure steam. Furthermore, in recent years, with the development of light water reactors, the production of hafnium as a byproduct of zirconium production has also increased, and the use of hafnium as control rods for nuclear reactors has attracted attention.

しかしながらハフニウムは、長時間原子炉内に
装荷して制御棒として使用すると、その使用末期
において、いわゆるノジユラーコロージヨンと呼
ばれる腐食反応による白色腐食生成物が、その表
面に斑点状に生成してくることがある。
However, if hafnium is loaded in a nuclear reactor and used as a control rod for a long period of time, at the end of its use, white corrosion products due to a corrosion reaction called nodular corrosion will form on its surface in spots. Sometimes.

これはハフニウムが高温水と反応し、生成され
た水素が基材と表面の酸化膜との間に蓄積して腐
食生成物を形成するものである。この腐食生成物
は、経時的に表面に集積し、遂には表面から剥離
すると、制御棒の強度低下を招く虞れがある。
This is because hafnium reacts with high-temperature water, and the generated hydrogen accumulates between the base material and the oxide film on the surface, forming corrosion products. This corrosion product accumulates on the surface over time, and if it eventually peels off from the surface, there is a risk that the strength of the control rod will decrease.

また生成された水素が金属内部に侵入すると、
ハフニウムの水素化物が形成され、これが表面と
垂直方向に形成されると、連続した水素化物によ
るいわゆる水素脆性の問題が起ると考えられる。
Also, when the generated hydrogen penetrates inside the metal,
If hafnium hydrides are formed in a direction perpendicular to the surface, it is thought that a problem of so-called hydrogen embrittlement due to continuous hydrides will occur.

しかも、剥離した腐食生成物も中性子吸収能力
を有するため、もしこれが冷却水中に浮遊すると
中性子を吸収するため、炉全体の出力の低下を招
くと共に、制御しにくくなることも予想される。
Moreover, since the separated corrosion products also have the ability to absorb neutrons, if they float in the cooling water, they will absorb neutrons, leading to a decrease in the output of the entire reactor and making it difficult to control.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来の問題点に鑑みなされた
もので、耐ノジユラーコロージヨン性に優れてい
ると共に、水素脆化を防止し、しかも強度に優れ
た耐食ハフニウム基合金を提供するものである。
The present invention was made in view of these conventional problems, and provides a corrosion-resistant hafnium-based alloy that has excellent nodular corrosion resistance, prevents hydrogen embrittlement, and has excellent strength. .

〔発明の概要〕[Summary of the invention]

本発明者らはハフニウム基合金の腐食原因およ
びそのメカニズムを研究した結果、ハフニウムの
腐食は、そのほとんどがα相(h・c・p)で生
成していることが確認された。このα相の生成を
避けるため、b・c・cの結晶構造をとる高温の
β領域から急冷してα相を形成すると、得られた
α相は上記のα相とは結晶組織の異なるマルテン
サイト構造が形成される。この結晶組織が優れた
耐ノジユラーコロージヨン性と耐水素脆化特性を
有することを見い出し、本発明はこの知見に基づ
いてなされたものである。
As a result of research into the cause and mechanism of corrosion of hafnium-based alloys, the present inventors confirmed that most of the corrosion of hafnium occurs in the alpha phase (h.c.p). In order to avoid the formation of this α phase, the α phase is formed by rapid cooling from the high-temperature β region that has a b, c, c crystal structure. A site structure is formed. It has been discovered that this crystal structure has excellent nodular corrosion resistance and hydrogen embrittlement resistance, and the present invention has been made based on this knowledge.

即ち、本願第1の発明はハフニウム基に、ニオ
ブ0.01〜14.8重量%を含有し、かつ合金組織中に
マルテンサイト結晶組織を有することを特徴とす
る耐食ハフニウム基合金である。
That is, the first invention of the present application is a corrosion-resistant hafnium-based alloy containing 0.01 to 14.8% by weight of niobium in a hafnium group and having a martensitic crystal structure in the alloy structure.

本願第2の発明は、ハフニウム基に、ニオブ
0.01〜14.8重量%及びジルコニウム0.01重量%以
上を含有し、かつこれら合金添加元素の総量が40
重量%以下である合金組織中にマルテンサイト結
晶組織を有することを特徴とする耐食ハフニウム
基合金である。
The second invention of the present application is based on a hafnium group.
Contains 0.01 to 14.8% by weight and 0.01% or more of zirconium, and the total amount of these alloying elements is 40% by weight.
This is a corrosion-resistant hafnium-based alloy characterized by having a martensitic crystal structure in the alloy structure of less than % by weight.

以下本発明を詳細に説明すると、まず合金添加
元素のうちニオブはハフニウムに固溶してβ相お
よびα+β相を安定化させて、マルテンサイト結
晶組織の表出を促進する作用をなすものである。
またその添加量を上記範囲に限定した理由は0.01
%未満ではβ相およびα+β相の安定化効果が少
なく、また14.8%を越えて添加するとニオブが固
溶しきれずに、二相状態となつてしまい、機械的
強度や耐食性が低下する虞れがあるため0.01〜
14.8%の範囲に規定した。
To explain the present invention in detail below, among the alloying elements, niobium dissolves in solid solution in hafnium, stabilizes the β phase and α+β phase, and has the effect of promoting the expression of martensitic crystal structure. .
The reason for limiting the amount added to the above range is 0.01
If it is less than 14.8%, the stabilizing effect of the β phase and α+β phase will be small, and if it is added in excess of 14.8%, the niobium will not be completely dissolved, resulting in a two-phase state, which may reduce mechanical strength and corrosion resistance. 0.01~
The range was set at 14.8%.

またジルコニウムはニオブと同様にハフニウム
に固溶してβ相およびα+β相を安定化させ、マ
ルテンサイト組織の表出を促進する作用をなすも
のである。またその添加量を上記の範囲に限定し
た理由は0.01%以下であるとβ相およびα+β相
の安定化効果が少ない。またジルコニウムはハフ
ニウムと共に―A属に属して、全率固溶するた
め特にその上限は設けていない。しかしながら原
子炉材料として用いる場合には、特に中性子吸収
能力の大きいことが必要であるので、ニオブ、ジ
ルコニウムはどのように組合せ、または少なくと
も一方を単独で添加しても良いが、合金添加元素
の総量が40%を越えないことが必要である。
Also, like niobium, zirconium is dissolved in hafnium to stabilize the β phase and α+β phase, and has the effect of promoting the expression of the martensitic structure. The reason why the amount added is limited to the above range is that if it is 0.01% or less, the effect of stabilizing the β phase and α+β phase will be small. Furthermore, zirconium belongs to the -A group together with hafnium and is completely dissolved in solid solution, so there is no particular upper limit. However, when used as a nuclear reactor material, it is necessary to have a particularly high neutron absorption capacity, so niobium and zirconium may be added in any combination, or at least one of them may be added alone, but the total amount of alloying elements must not exceed 40%.

また本発明合金を製造する方法について説明す
ると、上記組成のハフニウム合金をβ相領域また
はα+β相領域から急冷することにより、合金組
織中にマルテンサイト結晶組織を表出させること
ができる。この場合、急冷方法としては水冷、油
冷、強制空冷等の手段を用いる。またマルテンサ
イト結晶組織を表出後、800℃前後の温度で焼鈍
して、急冷焼入れによる歪を除去すると良い。
Further, to explain the method for manufacturing the alloy of the present invention, by rapidly cooling a hafnium alloy having the above composition from the β phase region or the α+β phase region, a martensitic crystal structure can be exposed in the alloy structure. In this case, water cooling, oil cooling, forced air cooling, etc. are used as the rapid cooling method. Furthermore, after exposing the martensitic crystal structure, it is preferable to anneal at a temperature of around 800°C to remove distortion caused by rapid quenching.

このように本発明合金は高温のβ相領域では、
b・c・cの結晶構造をとるが、これを急冷する
ことによりマルテンサイト結晶組織が表出し、こ
れが粒界あるいは亜粒界に網目状に分布した合金
組織が得られる。即ちβ領域から急冷すると、本
発明合金の結晶方位の関係は (110)b・c・c・(0001)h・c・p・ 〔111〕b・c・c・〔1120〕h・c・
p・ となる。
In this way, in the high temperature β phase region of the alloy of the present invention,
It has a b-c-c crystal structure, but by rapidly cooling it, a martensite crystal structure is exposed, and an alloy structure in which this is distributed in a network at grain boundaries or sub-grain boundaries is obtained. That is, when rapidly cooled from the β region, the crystal orientation relationships of the present alloy are (110)b・c・c・(0001)h・c・p・[111]b・c・c・[1120]h・c・
It becomes p.

このようにして得られた本発明の耐食ハフニウ
ム基合金は、マルテンサイト結晶組織を持つてい
るため耐ノジユラーコロージヨン性に優れている
と共に、ノジユラーコロージヨンがほとんど起ら
ないため、これに伴なつて水素の発生も非常に少
なく抑えられ、水素化物による水素脆性の発生も
防止することができる。またニオブを含むもの
は、合金全体に固溶させることにより更に耐食性
に優れている。
The corrosion-resistant hafnium-based alloy of the present invention obtained in this manner has a martensitic crystal structure and has excellent nodular corrosion resistance. At the same time, the generation of hydrogen is also suppressed to a very low level, and the occurrence of hydrogen embrittlement due to hydrides can also be prevented. Furthermore, those containing niobium have even better corrosion resistance by dissolving them throughout the alloy.

またハフニウムはその融点が〜2200℃、変態温
度が〜1740℃と高温であるが、ニオブ、ジルコニ
ウムを添加することにより融点と変態温度が低下
する。特に変態温度の低下が著しく、このため低
温でβ相およびα+β相が安定に存在し、急冷に
よる焼入性が向上し、極めて容易にマルテンサイ
ト結晶組織を得ることができる。
Furthermore, hafnium has a high melting point of ~2200°C and a transformation temperature of ~1740°C, but the addition of niobium and zirconium lowers the melting point and transformation temperature. In particular, the transformation temperature is significantly lowered, so that the β phase and α+β phase stably exist at low temperatures, the hardenability by rapid cooling is improved, and a martensitic crystal structure can be obtained extremely easily.

またマルテンサイト結晶組織を有することから
硬さも向上し、更にニオブを含むものは焼入れ処
理、時効硬化させることができ、強度が向上す
る。従つて原子炉の制御棒として用いた場合、急
激な制御棒の挿入に伴う衝撃にも十分に耐える強
度を有すると共に、上述の耐食性を長期間に亘つ
て発揮し、しかも有効な中性子吸収能力を併せて
保持することができるものである。
Furthermore, since it has a martensitic crystal structure, its hardness is improved, and those containing niobium can be quenched and age hardened, resulting in improved strength. Therefore, when used as a control rod in a nuclear reactor, it has sufficient strength to withstand the impact caused by sudden control rod insertion, exhibits the above-mentioned corrosion resistance over a long period of time, and has an effective neutron absorption capacity. It is something that can be held together.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 ニオブ3%、ジルコニウム8%と残部がハフニ
ウムからなるハフニウム基合金を約1750℃に加熱
して、水冷しマルテンサイト結晶組織を有する耐
食ハフニウム基合金を得た。
Example 1 A hafnium-based alloy consisting of 3% niobium, 8% zirconium, and the balance hafnium was heated to about 1750°C and cooled with water to obtain a corrosion-resistant hafnium-based alloy having a martensitic crystal structure.

このようにして得られた本発明合金試料のノジ
ユラーコロージヨン性を調べるため、水蒸気雰囲
気中で加速腐食試験を行つた。なおこの試験条件
は500℃、105Kg/cm2の高温高圧水蒸気で行つた。
In order to examine the nodular corrosion properties of the alloy samples of the present invention thus obtained, an accelerated corrosion test was conducted in a steam atmosphere. The test conditions were 500°C and high-temperature, high-pressure steam at 105 kg/cm 2 .

また本発明合金と比較するためジルコニウム等
の不純物を含み純度が98%の何ら熱処理をしてい
ない原子力用ハフニウムについても、上記実施例
1と同様に水蒸気雰囲気中で加速腐食試験を行つ
た。
In addition, for comparison with the alloy of the present invention, an accelerated corrosion test was conducted in a steam atmosphere in the same manner as in Example 1 on nuclear hafnium, which contained impurities such as zirconium and had a purity of 98% and had not been subjected to any heat treatment.

試験結果は図面に示す通り、本実施例1の合金
は曲線aで示すように腐蝕による重量増加のカー
ブが緩やかで、また試験100日後の表面観察にお
いてもノジユラーコロージヨンの発生は認められ
なかつた。これに対して、マルテンサイト結晶組
織のない原子力用ハフニウムは図面に曲線bで示
すように50日を経過後急激に重量が増加し、腐蝕
の進行が認められ、試験100日後の状態ではノジ
ユラーコロジヨンが表面に多数発生していた。
As shown in the drawings, the test results show that the alloy of Example 1 had a gentle weight increase curve due to corrosion, as shown by curve a, and no nodular corrosion was observed even when the surface was observed 100 days after the test. Ta. On the other hand, hafnium for nuclear power use, which does not have a martensitic crystal structure, rapidly increases in weight after 50 days as shown by curve b in the drawing, and progress of corrosion is observed, and after 100 days of testing, nodular Many colloids were generated on the surface.

実施例 2 ニオブ2%と残部がハフニウムからなる合金を
約1800℃に加熱して水冷しマルテンサイト結晶組
織を有するハフニウム基合金を得た。
Example 2 An alloy consisting of 2% niobium and the balance hafnium was heated to about 1800°C and cooled with water to obtain a hafnium-based alloy having a martensitic crystal structure.

本合金を上記実施例1と同様の条件で加速腐蝕
試験を行なつた。試験結果は図面に示す通り、本
実施例2の合金は曲線cで示すように腐蝕による
重量増加のカーブが緩やかで、また試験100日後
の表面観察においてもノジユラーコロージヨンの
発生は認められなかつた。
This alloy was subjected to an accelerated corrosion test under the same conditions as in Example 1 above. As shown in the drawings, the test results show that the alloy of Example 2 has a gentle weight increase curve due to corrosion, as shown by curve c, and no nodular corrosion was observed even when the surface was observed 100 days after the test. Ta.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかな如く、本発明の係る耐
食ハフニウム基合金によれば、耐ノジユラーコロ
ージヨン性に優れる共に、水素脆化の防止効果が
大きく、しかも強度的に優れ、特に原子炉の制御
棒として顕著な効果を有するものである。
As is clear from the above results, the corrosion-resistant hafnium-based alloy of the present invention has excellent nodular corrosion resistance, a large hydrogen embrittlement prevention effect, and excellent strength, especially for nuclear reactor control. It has a remarkable effect as a stick.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明合金と原子力用ハフニウムとのノ
ジユラーコロージヨン加速試験による腐食の進行
状態を比較したグラフである。
The drawing is a graph comparing the progress of corrosion between the alloy of the present invention and hafnium for nuclear power use in an accelerated nodular corrosion test.

Claims (1)

【特許請求の範囲】 1 ハフニウム基に、ニオブ0.01〜14.8重量%を
含有し、かつ合金組織中にマルテンサイト結晶組
織を有することを特徴とする耐食ハフニウム基合
金。 2 ハフニウム基に、ニオブ0.01〜14.8重量%及
びジルコニウム0.01重量%以上を含有し、かつこ
れら合金添加元素の総量が40重量%以下である合
金組織中にマルテンサイト結晶組織を有すること
を特徴とする耐食ハフニウム基合金。
[Scope of Claims] 1. A corrosion-resistant hafnium-based alloy containing 0.01 to 14.8% by weight of niobium in a hafnium group, and having a martensitic crystal structure in the alloy structure. 2. It is characterized by having a martensitic crystal structure in an alloy structure containing 0.01 to 14.8% by weight of niobium and 0.01% by weight or more of zirconium in a hafnium group, and the total amount of these alloying elements is 40% by weight or less. Corrosion-resistant hafnium-based alloy.
JP58083611A 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy Granted JPS59208044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083611A JPS59208044A (en) 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083611A JPS59208044A (en) 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy

Publications (2)

Publication Number Publication Date
JPS59208044A JPS59208044A (en) 1984-11-26
JPS6239223B2 true JPS6239223B2 (en) 1987-08-21

Family

ID=13807280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083611A Granted JPS59208044A (en) 1983-05-13 1983-05-13 Corrosion-resistant hafnium alloy

Country Status (1)

Country Link
JP (1) JPS59208044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492849A (en) * 2014-11-29 2015-04-08 西安诺博尔稀贵金属材料有限公司 Preparation method of Hafnium square rod for nuclear reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313624B2 (en) * 1997-08-22 2002-08-12 株式会社日立製作所 Manufacturing method of control rod for boiling water reactor
EP1602745B1 (en) * 2003-03-07 2010-10-27 Nippon Mining & Metals Co., Ltd. Hafnium alloy target and process for producing the same
JP2013054037A (en) * 2012-11-20 2013-03-21 Toshiba Corp Reactor control rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492849A (en) * 2014-11-29 2015-04-08 西安诺博尔稀贵金属材料有限公司 Preparation method of Hafnium square rod for nuclear reactor

Also Published As

Publication number Publication date
JPS59208044A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
JP2914457B2 (en) ZIRLO type material
US7364631B2 (en) Zirconium-based alloy having a high resistance to corrosion and to hydriding by water and steam and process for the thermomechanical transformation of the alloy
US8070892B2 (en) High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
JP5704553B2 (en) Zirconium alloy resistant to shadow corrosion for components in boiling water reactor nuclear fuel assemblies
KR930009987B1 (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
KR100723818B1 (en) Zirconium-based alloy and method for making a component for a nuclear fuel assembly with same
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
US3271205A (en) Zirconium base alloys
KR100960894B1 (en) Zirconium alloys compositions having excellent resistance against hydrogen embrittlement and preparation method thereof
Sabol et al. Effect of dilute alloy additions of molybdenum, niobium, and vanadium on zirconium corrosion
JPS6239223B2 (en)
KR940010230B1 (en) Improvement in structural parts of austenitic nichel-chromium-iron alloy
US4863685A (en) Corrosion resistant zirconium alloys
KR100754477B1 (en) Zr-based Alloys Having Excellent Creep Resistance
US9111650B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a severe reactor operation condition and methods of preparing a zirconium alloy nuclear cladding by using thereof
JP3692006B2 (en) High corrosion resistance zirconium alloy, structural material for reactor core, and method for producing the same
US5122334A (en) Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors
US20060081313A1 (en) Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
US3431104A (en) Zirconium base alloy
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPS6239222B2 (en)
JPS6126738A (en) Zirconium alloy
JPS60135562A (en) Corrosion-resistant hafnium alloy