JPS6059306B2 - Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method - Google Patents

Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method

Info

Publication number
JPS6059306B2
JPS6059306B2 JP52106193A JP10619377A JPS6059306B2 JP S6059306 B2 JPS6059306 B2 JP S6059306B2 JP 52106193 A JP52106193 A JP 52106193A JP 10619377 A JP10619377 A JP 10619377A JP S6059306 B2 JPS6059306 B2 JP S6059306B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
solid separator
ion
crystalline solid
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52106193A
Other languages
Japanese (ja)
Other versions
JPS5439384A (en
Inventor
信二 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP52106193A priority Critical patent/JPS6059306B2/en
Publication of JPS5439384A publication Critical patent/JPS5439384A/en
Priority to US06/131,721 priority patent/US4279974A/en
Publication of JPS6059306B2 publication Critical patent/JPS6059306B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明はイオン電導性結晶質焼結体によつて作られた固
体セパレータに関し、更に詳しくは最も一般的にはβ−
A1。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solid separators made from ionically conductive crystalline sintered bodies, and more particularly to solid separators made from ionically conductive crystalline sintered bodies, most commonly β-
A1.

O。によつて作られる単位重量当りの蓄電容量の大きい
ナトリウム−硫黄蓄電池、塩素及び水酸化ナトリウムを
製造するための塩化ナトリウム溶融塩電解装置の陰極槽
と陽極槽との間の隔膜に用いる陽イオン電導性結晶質固
体セパレータや安定化ジルコニア等による酸素イオン電
導性結晶質固体セパレータに関するものである。近年内
燃機関により走行する自動車の排気ガスが人体に有害な
COやHCのガスを放出することから、これら内燃機関
を用いない電気自動車が注目されているが、電気自動車
は従来の鉛を主体とする蓄電池を用いた場合、単位置当
りの蓄電量が小さく走行距離が短い問題があつた。これ
を補うためナトリウムー硫黄蓄電池が開発されているが
、これに用いるβ−アルミナよりなる管状の固体セパレ
ータは脆弱で、これが実用化の障害になつていた。この
ため軽量で表面積が大きく、尚且つ強度の大きい相反す
る要求特性を同時に満たす固体セパレータが要望されて
いた。これらの用途に固体セパレータとして用いるβ−
Al2OJは薄肉の有底筒体または板状体を多数並列し
て使用することにより能率よく反応を起こさせるが、こ
の筒体または板状体は電気抵抗を少なくするためには薄
肉とすることと筒体又は板状体の数を増すことが必要で
あつた。然し薄肉にして筒体または板状体の数を増すこ
とにより電気抵抗を小さくし表面積を大きくするには限
界があつた。即ち、これらの用途に用いるβ−AI2O
3はグリーン成形体の時は勿論焼結体においても脆弱で
、これで有底筒体または板状体を製作する際、薄肉とす
ることは成形乾燥、焼成、輸送および組立ての各段階で
の歩留り.を低下し、これの破損を防ぐためには取扱い
にも極端に注意しなければならない不利益があつた。又
一方水素と酸素を反応させて電力を得る燃料電池がエネ
ルギーを節約する発電装置として大規模に開発されつつ
あるが、これに用いる安定化ジ!ルコニアを主体とする
固体セパレータは表面積を大きくするために薄肉の筒体
または板状体を用いるが、これらはナトリウムー硫黄蓄
電池と同様に電気抵抗を小さくするために薄肉で広面積
とすることが重要である。併しこのような形状は必然的
・に強度を小さくし、取扱いや保守に大きな障害となつ
ていた。本発明はこれを改善するためになされたもので
上記イオン電導性結晶質焼結体を多数の通路よりなる一
体構造、別名ハニカム構造体に成形することにより肉厚
を薄くしたにも拘らす筒体よりも丈夫で然も薄板で多数
に分割された容器または通路をもち、生産が容易で取扱
いの簡単なイオン電導性結晶質固体セパレータを提供す
るものである。
O. A sodium-sulfur storage battery with a large storage capacity per unit weight produced by a cation conductor used in the diaphragm between the cathode cell and the anode cell of a sodium chloride molten salt electrolyzer for producing chlorine and sodium hydroxide. The present invention relates to an oxygen ion conductive crystalline solid separator made of a conductive crystalline solid separator, a stabilized zirconia, or the like. In recent years, electric vehicles that do not use internal combustion engines have been attracting attention because the exhaust gas of vehicles running on internal combustion engines releases CO and HC gases that are harmful to the human body. When using a storage battery, there was a problem that the amount of electricity stored per single position was small and the travel distance was short. To compensate for this, sodium-sulfur storage batteries have been developed, but the tubular solid separators made of β-alumina used in these batteries are fragile, which has been an obstacle to their practical application. For this reason, there has been a demand for a solid separator that is lightweight, has a large surface area, and is strong, satisfying the contradictory requirements at the same time. β- used as a solid separator in these applications
Al2OJ can efficiently react by using a large number of thin-walled bottomed cylinders or plate-like bodies in parallel, but these cylinders or plate-like bodies should be thin in order to reduce electrical resistance. It was necessary to increase the number of cylinders or plates. However, there was a limit to the ability to reduce the electrical resistance and increase the surface area by making the wall thinner and increasing the number of cylinders or plates. That is, β-AI2O used for these applications
3 is fragile not only when it is a green molded body but also when it is a sintered body, and when producing a bottomed cylindrical body or a plate-shaped body, it is important to make the wall thinner at each stage of molding drying, firing, transportation, and assembly. Yield. This had the disadvantage of requiring extreme care in handling to prevent damage. On the other hand, fuel cells that generate electricity by reacting hydrogen and oxygen are being developed on a large scale as energy-saving power generation devices, but the stabilizing diode used for this is being developed on a large scale. Solid separators mainly made of luconia use thin-walled cylinders or plates to increase the surface area, but it is important that these be thin-walled and wide-area in order to reduce electrical resistance, similar to sodium-sulfur storage batteries. It is. However, such a shape inevitably reduces the strength and poses a major obstacle in handling and maintenance. The present invention has been made to improve this problem, and the ion conductive crystalline sintered body is formed into an integral structure consisting of a large number of passages, also known as a honeycomb structure, thereby reducing the wall thickness of the cylinder. To provide an ion-conductive crystalline solid separator that is stronger than a body, has a container or passage divided into a large number of thin plates, and is easy to produce and handle.

ここで本発明のハニカム型固体セパレータが薄肉でも丈
夫である理由は相互に連結した一体構造であるため、互
に補強しあうためで、その厚さを極薄肉としても充分の
強度をもつ。またその製造にlは1体型ハニカム構造で
あるため数百本の管を一度に押出成形てき、1体として
製造し組立てることができる。また各管を1ないし2個
おきに陰極槽および陽極槽とすることにより数百本の筒
体または数拾枚の薄板に匹敵する効率を示す固体セパー
レータが一度に製作できる。詳細は以下に記載する実施
例によソー層明瞭に理解される。
Here, the reason why the honeycomb type solid separator of the present invention is strong even though it is thin is because it is an integral structure that is interconnected and reinforces each other, so it has sufficient strength even if it is extremely thin. In addition, since it has a one-piece honeycomb structure, several hundred tubes can be extruded at once and manufactured and assembled as one unit. Furthermore, by using every other tube as a cathode cell and an anode cell, a solid separator can be produced at once with an efficiency comparable to hundreds of cylinders or several dozen thin plates. Details of the saw layer will be clearly understood from the examples described below.

実施例1 平均粒径1μm(最大粒径3μm)の微細なα−アルミ
ナ粉末99w′t%に平均粒径1μm(7)MgO粉末
を1wt%加えてトロンメルで混合した粉末10呼量部
に有機バインダーとして非水溶剤触水硬化型ポリウレタ
ン樹脂5踵量部を加えて混練した坏土を原料として常法
によりハニカム構造体を成形した。
Example 1 To 99 w't% of fine α-alumina powder with an average particle size of 1 μm (maximum particle size of 3 μm), 1 wt% of MgO powder (7) with an average particle size of 1 μm was added and mixed in a trommel. A honeycomb structure was formed by a conventional method using a clay prepared by adding 5 parts of a non-aqueous solvent hydrocurable polyurethane resin as a binder and kneading it as a raw material.

このハニカムは適当な可撓性をもつているが変形せず取
扱い容易てある。これを乾燥して硬化したあと50′C
/時間の速度て還元性雰囲気中で800′Cまで昇温し
有機物を除去した後、次第に酸化性雰囲気に変え900
℃に5時間焼成して残留カーボンを酸化し素焼体を得た
。これを60メッシュの篩を通した″−Al2O3粗粒
にNa2cO3、5Wt%を加えた混合粉末の内部に埋
め込み、またハニカムの各この管中にも前記β−Al2
O3とNa2cO,の混合粉末を詰め、マグネシアのさ
やの中で100℃/時間の速度で昇温し1500℃にお
いて1.時間保持したのち500℃/時間の速度て冷却
しβ一Al2O3よりなるハニカム構造体を得た。その
斜視図を第1図に示す。1はハニカム構造体、2は隔壁
(ウェブ)、3は管を示しその寸法は隔壁の厚さ0.4
m、各管の断面は内ノリ9.6rfgIiの正方形で、
外形は端面1辺約100wrItの正方形、長さ15『
の4角柱である。
This honeycomb has appropriate flexibility, but does not deform and is easy to handle. After drying and curing this, 50'C
After heating to 800'C in a reducing atmosphere to remove organic matter at a rate of 900'C/hour, the temperature was gradually changed to an oxidizing atmosphere and heated to 900'C.
C. for 5 hours to oxidize residual carbon and obtain an unglazed body. This was embedded inside a mixed powder of "-Al2O3 coarse particles passed through a 60 mesh sieve and 5 wt% of Na2cO3 added, and also in each tube of the honeycomb.
Filled with mixed powder of O3 and Na2cO, the temperature was raised at a rate of 100°C/hour in a magnesia pod, and the temperature was raised to 1500°C for 1. After holding for a period of time, the mixture was cooled at a rate of 500° C./hour to obtain a honeycomb structure made of β-Al2O3. A perspective view thereof is shown in FIG. 1 is a honeycomb structure, 2 is a partition wall (web), and 3 is a tube, the dimensions of which are the thickness of the partition wall: 0.4
m, the cross section of each tube is a square with an inner diameter of 9.6rfgIi,
The external shape is a square with an end face of approximately 100 wrIt, and a length of 15".
It is a four-sided prism.

このハニカム構造体は中空部を除いたウェブ部分の比重
が3.20ですべて完全なβ−Al2O3磁器であるこ
とがX線回折によつて確認され、またNa+イオンの電
導性を測定したところ、300℃に於いて従来と同程度
の20mh0/C7lの導伝率を示した。これは各隔壁
(ウェブとも云う)をセパレータとして使用した場合、
各管が相互に連結し補強しあうハニカム構造をもつため
従来の有底筒体または板状体を多数用いる場合に比べて
小型堅牢で実用価値の高いものである。なおβ″−Al
2O3とβ−Al2O3の混合物からなるハニカム構造
体を製造する時は本出願人の出願に係る特願昭51−5
7598号(特公昭57−59227号)に述べたよう
に重量比てAl2O387〜95%にNa塩をNa2O
に換算して5〜13%の割合になるように混合し醸化性
雰囲気中1500℃以下にて熱処理し粉末X線回折パタ
ーンでβ−Al2O3とβ″−Al2O3の割合がα=
269A0(017)面のβ−Al2O3のピーク強度
Iβα=260へ0 (01,11)面のβ2−AI2
O3のピーク強度1β″で表される強度値の比1β:I
f3″=1.0〜0.25の範囲内にあるよう合成、こ
の合成粉末10鍾量部に1価及び/又は2価の金属イオ
ンを酸化物に換算して全量中3重量部以下の割合で混合
し、これを原料粉末として周知の方法でハニカム構造体
を成形、焼成すればよい。
It was confirmed by X-ray diffraction that this honeycomb structure had a specific gravity of the web part excluding the hollow part of 3.20 and was completely made of β-Al2O3 porcelain, and when the conductivity of Na+ ions was measured, At 300°C, it exhibited a conductivity of 20mh0/C7l, which is comparable to the conventional one. This means that when each partition wall (also called a web) is used as a separator,
Since it has a honeycomb structure in which the tubes interconnect and reinforce each other, it is smaller, more robust, and of higher practical value than the conventional case where a large number of bottomed cylinders or plate-shaped bodies are used. Note that β″-Al
When manufacturing a honeycomb structure made of a mixture of 2O3 and β-Al2O3, Japanese Patent Application No. 51-5 filed by the present applicant
As stated in No. 7598 (Special Publication No. 57-59227), Na salt is added to 87 to 95% of Al2O3 by weight.
The ratio of β-Al2O3 and β″-Al2O3 is 5% to 13% in terms of the amount of β-Al2O3 and β″-Al2O3.
269A0 (017) plane β-Al2O3 peak intensity Iβα = 260 to 0 (01,11) plane β2-AI2
The ratio of intensity values 1β:I expressed by the peak intensity 1β'' of O3
Synthesized so that f3'' is within the range of 1.0 to 0.25, and 10 parts by weight of this synthetic powder contains 3 parts by weight or less of monovalent and/or divalent metal ions in terms of oxides based on the total amount. A honeycomb structure may be formed and fired using a well-known method by mixing the powders in different proportions and using this as a raw material powder.

従来法によれば多数の管を製作し組立てる方法を採用し
ていたが工程多く製造コストも大きかつたのに対し、本
発明の方法によれば一度に一体型として製造するための
製造費が著しく低下する。実施例2 実施例1と同様グリーンのハニカム構造体を成形後、同
じ坏土を用い厚さ1wnの薄板を押出し成形し、図示し
ないが前記押出し坏土にジメチルフォルムアミドと加え
て粘度を下げた接着剤にて前記薄板をグリーンのハニカ
ムの一端に隙間なく密着し、乾燥し、以後実施例1と同
様の方法てβーアルミーナよりなる一端が開放し一端が
閉鎖されたハニカム構造体を得た。
According to the conventional method, a method of manufacturing and assembling a large number of tubes was adopted, but the manufacturing cost was high due to the large number of steps, whereas the method of the present invention reduces the manufacturing cost of manufacturing the pipes all at once. Significantly decreased. Example 2 After molding a green honeycomb structure in the same manner as in Example 1, a thin plate with a thickness of 1wn was extruded using the same clay. Although not shown, dimethylformamide was added to the extruded clay to lower the viscosity. The thin plate was adhered tightly to one end of the green honeycomb using an adhesive, dried, and then carried out in the same manner as in Example 1 to obtain a honeycomb structure made of β-alumina with one end open and one end closed.

この材質的特性は実施例1のハニカム構造体と同じであ
り、各管は相互に連結し補強しあうハニカム構造をもつ
ため、強度大て又従来法の多数の管を製作し組立る方法
に比し製造も容易で小型堅牢で極めて実用価値の高い陽
イオン電導性結晶固体セパレータとなる。実施例3実施
例1と同様の押出し坏土を調整し、その一部で実施例1
と同様な成形方法て第2図の如き一方向に隔壁2″によ
つて多数の管3″を設けたハニカム状の単層Aと前記坏
土の他の一部で第3図に示す如き断面正弦曲線からなる
多数の屈曲部分4をもつた波板Bを同様方眸て押出成形
する。
This material property is the same as the honeycomb structure of Example 1, and since each tube has a honeycomb structure that interconnects and reinforces each other, it has high strength and is compatible with the conventional method of manufacturing and assembling a large number of tubes. In contrast, it is a cation-conducting crystalline solid separator that is easy to manufacture, compact and robust, and has extremely high practical value. Example 3 The same extruded clay as in Example 1 was prepared, and a part of it was used in Example 1.
A similar molding method is used to form a honeycomb-shaped single layer A in which a large number of tubes 3'' are provided in one direction by partition walls 2'' as shown in Fig. 2, and another part of the clay as shown in Fig. 3. A corrugated plate B having a large number of bent portions 4 having a sinusoidal cross section is extruded in the same manner.

これを交互にその管と屈曲部分の軸線が互いに直角にな
る如く積重ね、その接触部分はジメチルフォルムアミド
で坏土の粘性を低く調製したスラリーを接着剤として塗
布し、別に製作した厚さ1.5順の板を最終の波板Bの
底面に接着し乾燥後実施例1と同様の方法にて焼成しβ
−Al2O3からなるハニカム構造体1″を得た。この
ハニカム構造体は上から1段目、3段目、5段目等の奇
数段目と2段目、4段目、6段目等の偶数段目の各管の
軸線が互に直角方向である。これの斜視図を第4図に示
す。
These are stacked alternately so that the axes of the tube and the bent part are perpendicular to each other, and the contact area is coated with a slurry prepared with dimethyl formamide to reduce the viscosity of the clay, and a thickness of 1. The plates in the order of 5 were glued to the bottom of the final corrugated plate B, dried, and fired in the same manner as in Example 1.
- A honeycomb structure 1'' made of Al2O3 was obtained. The axes of the tubes in even-numbered stages are perpendicular to each other.A perspective view of this is shown in FIG.

この第4図に示すハニカム構造体は一方の口を電解液の
供給孔他方を同じ電解液の排出孔として連続的に電解を
行い得る。そしてこのハニカム構造体は各管が互いに直
角方向となつているため、各側面よソー括して陰極液ま
たは陽極液を供給しても互に混合することなく容易に連
続的に電解を行うことができ、また電極の取付けその他
の種々の面て装置が作り易い。
The honeycomb structure shown in FIG. 4 can perform electrolysis continuously by using one opening as an electrolyte supply hole and the other as an electrolyte discharge hole. Since the tubes of this honeycomb structure are perpendicular to each other, even if the catholyte or anolyte is supplied from each side, it is easy to perform continuous electrolysis without mixing with each other. It is also easy to make devices for attaching electrodes and other aspects.

実施例4ジルコニア微粉末91m01%とイツトリア微
粉末9rr101%をトロンメルンにて微粉砕混合し、
これを実施例1と同様の方法で押出し成形し、初め還元
性雰囲気で800℃迄100℃/時間の割合て昇温aし
、次に徐々に酸化雰囲気として100℃/時間の速度で
1600℃まで昇温し2時間保持した後100℃/時間
の速さて温度を下げ焼成を完了した。
Example 4 91m01% of zirconia fine powder and 9rr101% of ittria fine powder were pulverized and mixed in a trommel,
This was extruded in the same manner as in Example 1, first heated to 800°C in a reducing atmosphere at a rate of 100°C/hour, and then gradually heated to 1600°C at a rate of 100°C/hour in an oxidizing atmosphere. After raising the temperature to 100° C. and holding it for 2 hours, the temperature was lowered at a rate of 100° C./hour to complete firing.

これは中空部を除いたウェブの焼結密度5.50g/C
Tlてあり、体積固有電気抵抗は350′Cに於いて4
0K・Ωα以下であり、各ウェブに端面を除いて白金ペ
ーストを塗布し焼付けて多孔質白金電極を形成し。この
ハニカム構造型酸素イオン電導性結晶質固体セパレータ
を使用すれば従来の平板またはバイブの集合体に比しそ
の隔壁の厚さが薄いことフと、管の数が大きく取れるこ
とにより容易に大きな電圧または電流が得られ、しかも
各管は相互に連結、補強しあうハニカム構造をもつため
強度高く従来の多数の管を製作し組立てる方法に比し、
製造も容易て電池ふしては効率よく実用性が高く、酸素
濃度計としては感度良好な素子を提供するものである。
This is the sintered density of the web excluding the hollow part: 5.50g/C
Tl, and the volume specific electrical resistance is 4 at 350'C.
0K・Ωα or less, and a porous platinum electrode is formed by applying platinum paste to each web except for the end face and baking it. By using this honeycomb structured oxygen ion conductive crystalline solid separator, the thickness of the partition wall is thinner than that of a conventional flat plate or vibrator assembly, and the number of tubes can be increased, making it easy to handle large voltages. In addition, each tube has a honeycomb structure that connects and reinforces each other, making it stronger compared to the conventional method of manufacturing and assembling multiple tubes.
It provides an element that is easy to manufacture, efficient and highly practical as a battery, and has good sensitivity as an oxygen concentration meter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明のイオン電導性結晶質固体セパレータ
の一実施例を示す斜視図、第2図、第3図は本発明を構
成する、単層及び波板の斜視図、第4図は第2図、第3
図の単層及び波板を用いた他の実施例を示すセパレータ
の斜視図である。 1,1″・・・・・・イオン電導性結晶質固体セパレー
タ、2,2″・・・・・・隔壁、3,3″・・・・・・
管、4・・・・・・波板の屈曲部、5・・・・・・底板
FIG. 1 is a perspective view showing one embodiment of the ion-conductive crystalline solid separator of the present invention, FIGS. 2 and 3 are perspective views of a single layer and a corrugated plate constituting the present invention, and FIG. Figures 2 and 3
FIG. 7 is a perspective view of a separator showing another embodiment using the single layer and corrugated sheet shown in the figure. 1,1''...Ion-conducting crystalline solid separator, 2,2''...Partition wall, 3,3''...
Pipe, 4... Bent part of corrugated plate, 5... Bottom plate.

Claims (1)

【特許請求の範囲】 1 三角形、四角形、六角形、波形その他所望の単位形
状を適当な隣接関係に配列した連続したハニカム構造を
もち、βアルミナ+又はβ−Al_2O_3とβ″−A
l_2O_3の比率が(017)面のβ−Al_2O_
3のピーク強度と(01,11)面のβ″−Al_2O
_3のピーク強度の比において1.0〜0.25である
β−Al_2O_3とβ″−Al_2O_3の配合物又
は安定化ジルコニアを主体とする流体に対し不透過性の
材質よりなるイオン電導性結晶質固体セパレータ。 2 前記ハニカム構造体の管の軸線が実質的に互に平行
である特許請求の範囲第1項記載のイオン電導性結晶質
固体セパレータ。 3 一方向に隔壁を設けたハニカム状の単層とこれの主
表面に形成された上記単層と直角方向の隔壁を設けたハ
ニカム状の単層とからなるブロックを1段または2段以
上の積層体とした特許請求の範囲第1項記載のイオン電
導性結晶質固体セパレータ。 4 前記ハニカム構造体の管が両端に於いて開放され、
流体の入口および出口を形成する特許請求の範囲第1〜
3項の一に記載のイオン電導性結晶質固体セパレータ。 5 前記ハニカム構造体の管が一端に於いて閉鎖され他
の一端に於いて開放された特許請求の範囲第1〜3項の
一に記載のイオン電導性結晶質固体セパレータ。6 ア
ルミナ粉末に5%以下の媒溶剤を加えハニカム構造体に
形成し、酸化性雰囲気で焼成して多孔質な素焼体とし、
これを60メッシュの篩を通したβ−Al_2O_3粗
粒Na_2CO_3、2〜10wt%を加えた混合粉末
の内部に埋め込み、またハニカムの各管中にも前記β−
Al_2O_3とNa_2CO_3の混合粉末を詰め、
耐火物のさやの中で1300℃以上に焼成してβ−Al
_2O_3のハニカム構造体とするイオン電導性結晶質
固体セパレータの製造法。 7 重量比でAl_2O_387〜95%にNa_2O
に換算して5〜13%の割合になるよう混合し、酸化性
雰囲気中1500℃以下にて熱処理し、粉末X線回折パ
ターンでβ−Al_2O_3とβ″−Al_2O_3の
割合がα=269A゜(017)面のβ−Al_2O_
3のピーク強度 I βα=260A゜(01,11)面
のβ″−Al_2O_3のピーク強度 I β″で表され
る強度値の比 I β: I β″=1.0〜0.25の範囲
内にあるよう合成し、この合成粉末100重量部に1価
及び/又は2価の金属イオンを酸化物に換算して全量中
3重量%以下の割合で混合し、有機物の一時的結合剤を
加えハニカム構造体に成形し、焼成するβ−Al_2O
_3とβ″−Al_2O_3よりなるイオン電導性結晶
質固体セパレータの製造法。
[Claims] 1. It has a continuous honeycomb structure in which triangular, square, hexagonal, wavy, or other desired unit shapes are arranged in an appropriate adjoining relationship, and comprises β-alumina+ or β-Al_2O_3 and β″-A.
β-Al_2O_ where the ratio of l_2O_3 is (017) plane
3 peak intensity and β″-Al_2O of (01,11) plane
Ion-conducting crystalline material made of a material impermeable to a fluid mainly composed of a mixture of β-Al_2O_3 and β''-Al_2O_3 or stabilized zirconia with a ratio of peak intensities of _3 of 1.0 to 0.25 A solid separator. 2. The ion-conductive crystalline solid separator according to claim 1, wherein the axes of the tubes of the honeycomb structure are substantially parallel to each other. 3. A honeycomb-shaped unit provided with partition walls in one direction. Claim 1 is a block comprising a layer and a honeycomb-shaped single layer formed on the main surface of the layer and a honeycomb-shaped single layer provided with partition walls in a perpendicular direction to the single layer formed on the main surface of the layer. 4. The tubes of the honeycomb structure are open at both ends,
Claims 1 to 3 form an inlet and an outlet for fluid.
The ion conductive crystalline solid separator according to item 3. 5. The ion conductive crystalline solid separator according to claim 1, wherein the tubes of the honeycomb structure are closed at one end and open at the other end. 6 Add 5% or less of a solvent to alumina powder to form a honeycomb structure, and fire it in an oxidizing atmosphere to make a porous unglazed body,
This was embedded inside a mixed powder to which 2 to 10 wt% of β-Al_2O_3 coarse particles of Na_2CO_3 had been passed through a 60-mesh sieve, and the β-
Packed with mixed powder of Al_2O_3 and Na_2CO_3,
β-Al is fired at over 1300℃ in a refractory sheath.
A method for producing an ion-conductive crystalline solid separator having a honeycomb structure of _2O_3. 7 Al_2O_387-95% by weight ratio and Na_2O
They were mixed to a ratio of 5 to 13% in terms of 017) Surface β-Al_2O_
Peak intensity of 3 I βα = 260A゜ (01,11) plane β″-peak intensity of Al_2O_3 Ratio of intensity values expressed by I β″ I β: I β″ = range of 1.0 to 0.25 100 parts by weight of this synthetic powder is mixed with monovalent and/or divalent metal ions at a ratio of 3% by weight or less of the total amount in terms of oxide, and a temporary binder of organic matter is added. In addition, β-Al_2O is formed into a honeycomb structure and fired.
A method for producing an ion-conductive crystalline solid separator made of _3 and β″-Al_2O_3.
JP52106193A 1977-09-02 1977-09-02 Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method Expired JPS6059306B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52106193A JPS6059306B2 (en) 1977-09-02 1977-09-02 Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method
US06/131,721 US4279974A (en) 1977-09-02 1980-03-19 Solid electrolytic material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52106193A JPS6059306B2 (en) 1977-09-02 1977-09-02 Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5439384A JPS5439384A (en) 1979-03-26
JPS6059306B2 true JPS6059306B2 (en) 1985-12-24

Family

ID=14427339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52106193A Expired JPS6059306B2 (en) 1977-09-02 1977-09-02 Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6059306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110301B2 (en) * 2006-12-19 2012-02-07 General Electric Company Energy storage device and cell configuration therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759747A (en) * 1972-03-22 1973-09-18 Nasa Method of making porous conductive supports for electrodes
JPS5038030A (en) * 1973-08-11 1975-04-09
JPS5048426A (en) * 1973-08-31 1975-04-30
JPS5113814A (en) * 1974-07-24 1976-02-03 Ngk Spark Plug Co Beetaaa aruminajikino hannoshoketsunyoru shoseiho
JPS5219206A (en) * 1975-08-02 1977-02-14 Hitachi Ltd Shading motors
JPS5759227A (en) * 1980-09-27 1982-04-09 Casio Comput Co Ltd Input equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759747A (en) * 1972-03-22 1973-09-18 Nasa Method of making porous conductive supports for electrodes
JPS5038030A (en) * 1973-08-11 1975-04-09
JPS5048426A (en) * 1973-08-31 1975-04-30
JPS5113814A (en) * 1974-07-24 1976-02-03 Ngk Spark Plug Co Beetaaa aruminajikino hannoshoketsunyoru shoseiho
JPS5219206A (en) * 1975-08-02 1977-02-14 Hitachi Ltd Shading motors
JPS5759227A (en) * 1980-09-27 1982-04-09 Casio Comput Co Ltd Input equipment

Also Published As

Publication number Publication date
JPS5439384A (en) 1979-03-26

Similar Documents

Publication Publication Date Title
US4279974A (en) Solid electrolytic material and use thereof
JP3215650B2 (en) Electrochemical cell, method for producing the same, and electrochemical device
CA1231127A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
US20020172871A1 (en) Thin film composite electrolytes, sodium-sulfur cells including same, processes of making same, and vehicles including same
US4413041A (en) Cross-flow monolith reactor
US5554464A (en) Honeycomb battery separator
JPS61171064A (en) Pneumatic electrode material for high temperature electrochemical battery
US5063122A (en) Fuel cell assembly comprising permanently combined fuel cells
JP2000505593A (en) Low cost and stable air electrode for high temperature solid oxide electrolyte electrochemical cells
US20050095483A1 (en) Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of the same
JP4111325B2 (en) Solid oxide fuel cell
JPH11297344A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
US20090011328A1 (en) Porous support for electrochemical reaction cell high-density integration, and electrochemical reaction cell stack and electrochemical reaction system comprising the porous support for electrochemical reaction cell high-density integration
JP4845296B2 (en) Solid oxide fuel cell and fuel cell
JPS6059306B2 (en) Ion-conductive crystalline solid separator with honeycomb structure and its manufacturing method
JPH11297334A (en) Hollow flat substrate, its manufacture and manufacture of solid electrolyte fuel cell
JP3722927B2 (en) Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly
US5738955A (en) Deep-discharge battery separator
JP2841340B2 (en) Solid electrolyte fuel cell
JP3966950B2 (en) Electrochemical cell support, electrochemical cell and production method thereof
JP3342610B2 (en) Solid oxide fuel cell
JP2003086189A (en) Cylindrical, vertically-striped fuel cell
JP2946053B2 (en) Cylindrical solid electrolyte fuel cell and flat solid electrolyte fuel cell
JPH11297342A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JPH01124964A (en) Flat plate type solid electrolyte fuel cell