JPS605897B2 - spectrofluorometer - Google Patents

spectrofluorometer

Info

Publication number
JPS605897B2
JPS605897B2 JP51033666A JP3366676A JPS605897B2 JP S605897 B2 JPS605897 B2 JP S605897B2 JP 51033666 A JP51033666 A JP 51033666A JP 3366676 A JP3366676 A JP 3366676A JP S605897 B2 JPS605897 B2 JP S605897B2
Authority
JP
Japan
Prior art keywords
light
wavelength
spectrometer
spectrum
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51033666A
Other languages
Japanese (ja)
Other versions
JPS52117689A (en
Inventor
正行 仙石
護郎 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51033666A priority Critical patent/JPS605897B2/en
Publication of JPS52117689A publication Critical patent/JPS52117689A/en
Publication of JPS605897B2 publication Critical patent/JPS605897B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 本発明は光源の光を励起分光器で選択し、その光を試料
に照射したときに発する蜜光を蟹光分光器で分光側光す
る分光鞍光光度計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectrophotometer in which light from a light source is selected by an excitation spectrometer, and when a sample is irradiated with the light, the light emitted is spectrally separated by a crab light spectrometer.

従釆の分光蟹光光度計を第1図に示す。光源1はXeラ
ンプのように広波長範囲に連続した波長光を発するもの
で、その光は励起分光器2で分光選択される。励起分光
器2で選択された短波長の光を試料8に照射すると試料
はその成分特有の蟹光を発する。その蜜光は蟹光分光器
9に入り分光され検知器10で頚』光される。検知器よ
りの電気信号は第1図では省略してあるが電気系によっ
て処理されて指示計11に分光姿光量として表示される
。上記指示計とともに記録計が用いられることもある。
上記分光蟹光分光光度計によって未知試料の分析を行な
うときは、まづ、蟹光分光器9の波長を試料の蜜光が表
われると予測される波長に固定し、励起分光器2の短波
長側を走査していわゆる励起スペクトル曲線を記録させ
る。
The secondary spectrophotometer is shown in Figure 1. A light source 1 emits continuous wavelength light over a wide wavelength range, such as a Xe lamp, and the light is spectrally selected by an excitation spectrometer 2. When the sample 8 is irradiated with light of a short wavelength selected by the excitation spectrometer 2, the sample emits light unique to its components. The honey light enters the crab light spectrometer 9 and is split into spectra, and then detected by the detector 10. Although the electrical signal from the detector is omitted in FIG. 1, it is processed by the electrical system and displayed on the indicator 11 as a spectral light amount. A recorder may also be used in conjunction with the above-mentioned indicator.
When analyzing an unknown sample using the spectrophotometer described above, first fix the wavelength of the spectrometer 9 to the wavelength at which the honeydew of the sample is expected to appear, and then set the wavelength of the excitation spectrometer 2 The wavelength side is scanned to record a so-called excitation spectrum curve.

これによって蛍光を励起し易い励起光の波長が知れる。
次に励起分光器2の波長を蜜光を強く発生させる波長に
固定し、蟹光分光器9の波長を走査して鞍光スペクトル
曲線を記録させる。上記スペクトル曲線から試料中の蟹
光を発する成分物質が判明し、その含有量の概略が知れ
る。第2図は上記励起スペクトル曲線と蟹光スペクトル
曲線を示す綾図であり、縦軸は蟹光の強さを1で示し、
機軸は波長を入で表わしている。
This allows the wavelength of excitation light that easily excites fluorescence to be known.
Next, the wavelength of the excitation spectrometer 2 is fixed to a wavelength that strongly generates honey light, and the wavelength of the crab light spectrometer 9 is scanned to record a saddle light spectrum curve. From the above spectral curve, the constituent substances in the sample that emit crab light can be determined, and the approximate content thereof can be known. FIG. 2 is a diagram showing the above-mentioned excitation spectrum curve and crab light spectrum curve, where the vertical axis indicates the intensity of crab light with 1;
The axis represents the wavelength in increments.

aは励起スペクトル曲線であり、bは蟹光スペクトル曲
線である。両曲線が接近する波長^sは物質によって定
まる波長で、曲線a,bは入sを境にして鏡像の関係(
ミラーシンメトリー)にある。上記の鏡像の関係はすべ
ての蟹光物質に明確に存在する訳ではないが、例えばベ
ンゼン等は第2図に類似した線図を画きその入sは約2
7仇mである。一般の鞍光物質は曲線aの長波長側と曲
線bの短波長側が重なったりまたは全然分離て画かれる
ので、この場合には曲aの長波長端と曲線bの短波長端
を2つの特定波長入s,,^s2と想定しても良い。上
記のごとくして試料中の蟹光物質が判明した後、あるい
は既知の蟹光物質を定量する場合には、なるべく多くの
励起スペクトル光で試料を励起し蟹光スペクトル曲線b
の範囲の全蛍光量を測定すれば高感度に蟹光成分を定量
することができる。
a is the excitation spectrum curve and b is the crab light spectrum curve. The wavelength at which both curves approach ^s is determined by the substance, and curves a and b have a mirror image relationship (
mirror symmetry). Although the mirror image relationship described above does not clearly exist in all crab-light substances, for example, benzene etc. draw a diagram similar to that shown in Figure 2, and its input s is approximately 2.
It is 7m. In general, the long-wavelength side of curve a and the short-wavelength side of curve b overlap or are completely separated from each other in general saddle-light materials, so in this case, the long wavelength end of curve a and the short wavelength end of curve b can be identified as It may be assumed that the wavelength input is s,,^s2. After identifying the crab-light substance in the sample as described above, or when quantifying a known crab-light substance, excite the sample with as much excitation spectrum light as possible to obtain the crab light spectrum b.
By measuring the total amount of fluorescence in the range of , it is possible to quantify the crab light component with high sensitivity.

本発明はこのようにして測定できる分光蟹光光度計に関
するものである。従釆の例としてはXeランプのような
紫外〜可視波長城に強力な光を発する光源の光を直接試
料に照射する場合がある。このときは試料の姿光と共に
照射光の散乱光(広波長範囲光)も一緒に迷光となって
検知器に入ってくるので測定精度は低い。また、水銀ラ
ンプの光をフィルターを通して不必要な波長光をカット
しこの光で試料を照射する場合もある。このときは励起
光が線スペクトルであるため蟹光分光器内の迷光は少な
いという利点はあるが、励起光量が少ないので励起され
る蜜光量が小さいという欠点がある。第1図の従釆の分
光蟹光光度計は分光された短波長光で試料を励起し、そ
の試料が発生する蟹光を分光側光しているので検知器に
達する光量は僅少となるのは当然で低感度でありSノN
比が低かった。本発明の目的は上記従来の欠点を除き、
検知される光量が多く高精度で測定可能な分光蟹光光度
計を提供するにある。
The present invention relates to a spectrophotometer that can perform measurements in this manner. An example of a secondary method is when the sample is directly irradiated with light from a light source such as a Xe lamp that emits strong light in the ultraviolet to visible wavelength range. At this time, the measurement accuracy is low because the scattered light (wide wavelength range light) of the irradiation light enters the detector as stray light together with the sample image light. In some cases, the light from a mercury lamp is passed through a filter to cut out unnecessary wavelength light, and the sample is irradiated with this light. In this case, since the excitation light has a line spectrum, there is an advantage that there is less stray light in the crab light spectrometer, but there is a disadvantage that the amount of excited light is small because the amount of excitation light is small. The secondary spectrophotometer shown in Figure 1 excites the sample with short-wavelength light that is spectrally separated, and the light generated by the sample is emitted into the spectrometer, so the amount of light that reaches the detector is small. Naturally, the sensitivity is low and the S/N
The ratio was low. The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks,
To provide a spectrophotometer that can detect a large amount of light and measure with high precision.

本発明の要点は、第2図に示したごと〈励起スペクトル
曲線と蟹光スペクトル曲線が特定波長入sを境にして鏡
像関係にあることに立脚して、特定波長入sよりも短か
し、波長の励起スペクトル光を広波長範囲に選択できる
励起分光器を使用することである。
The main point of the present invention is as shown in Fig. 2. , using an excitation spectrometer that can select wavelengths of excitation spectrum light over a wide wavelength range.

これによって従来よりも強力な励起光が得られるので試
料が発する蜜光量は増加する。しかも、上記励起光りも
長波長の光で試料を照射していないのでその散乱光には
試料の蜜光とダブル長波長光が含まれることはないので
純粋な蟹光測定が可能となるのである。また第2の発明
の要点は、上記励起分光器と組合わせて特定波長入sよ
りも長波長側の広範囲波長光を選択できる蜜光分光器を
使用したことである。この蟹光分光器によって試料が発
生した広範囲波長の全蟹光が検知されるが、この検知光
中には試料より散乱する短波長光(励起光)は含まれる
ことがないのでその測定精度は向上するのである。第3
図は本発明の1実施例である分光蜜光光度計の説明図で
ある。
This allows more powerful excitation light to be obtained than in the past, increasing the amount of light emitted by the sample. Furthermore, since the excitation light mentioned above does not irradiate the sample with long wavelength light, the scattered light does not include honey light and double long wavelength light from the sample, making pure crab light measurement possible. . The main point of the second invention is that, in combination with the excitation spectrometer, a spectroscopic spectrometer is used which can select a wide range of wavelength light on the longer wavelength side than the specific wavelength input s. This crab light spectrometer detects all the crab light with a wide range of wavelengths generated by the sample, but this detection light does not include short wavelength light (excitation light) scattered by the sample, so the measurement accuracy is low. It will improve. Third
The figure is an explanatory diagram of a spectrophotometer that is an embodiment of the present invention.

励起分光器の分散素子として本実施例では凹面回折格子
を使用した例を示しているが、他の分散素子例えば、プ
リズムまたは平面回折格子と凹面鏡を組合せ使用しても
良い。第3図において、広範囲波長光を発する光源1か
ら出た光は励起分光器2の入射スリット3を通過した後
、凹面回折格子4で回折されてローランド円12上にス
ペクトルを生ずる。こおスペクトルの上記特定波長^s
よりも短波長光だけを波長範囲選択ミラー5で選択して
出射スリット6より出射させる。この光を集光ミラー7
で集光し試料8に入射させると試料は蟹光を発する。試
料を照射した光は^sよりも長波長光を含んでいないの
で試料が散乱する光には蟹光と同じ波長範囲の光は含ん
でいない。また試料が散乱する短波長の励起光は試料の
後光と共に蛍光分光器9に入ってくるが、分光されて除
去され長波長の蟹光だけしか出射しない。従って、純粋
な蟹光の分光された光だけが検知器101こ達しその光
量は表示器11に表示されて定量分析される。上記励起
分光器2の出射スリット6上に凹面回折格子4の像を生
じさせているので、出射光量を多くするためにスリット
中は広げてある。
Although this example uses a concave diffraction grating as the dispersion element of the excitation spectrometer, other dispersion elements such as a prism or a plane diffraction grating and a concave mirror may be used in combination. In FIG. 3, light emitted from a light source 1 emitting light with a wide range of wavelengths passes through an entrance slit 3 of an excitation spectrometer 2, and is then diffracted by a concave diffraction grating 4 to produce a spectrum on a Rowland circle 12. The above specific wavelength of the spectrum
A wavelength range selection mirror 5 selects only the light having a wavelength shorter than that of the wavelength range selection mirror 5, and the light is outputted from the output slit 6. This light is collected by the condensing mirror 7
When the light is focused and incident on the sample 8, the sample emits crab light. Since the light that irradiated the sample does not include light with a wavelength longer than ^s, the light scattered by the sample does not include light in the same wavelength range as the crab light. Further, short wavelength excitation light scattered by the sample enters the fluorescence spectrometer 9 together with the afterglow of the sample, but is separated and removed, and only long wavelength light is emitted. Therefore, only the separated light of pure crab light reaches the detector 101, and the amount of light is displayed on the display 11 and quantitatively analyzed. Since the image of the concave diffraction grating 4 is generated on the output slit 6 of the excitation spectrometer 2, the inside of the slit is widened to increase the amount of output light.

特定波長光^sを異なる波長に変化させる場合には、凹
面回折格子4を回転させれば波長範囲選択ミラー5で反
射されるスペクトル波長範囲が変化するのでその目的を
達することができる。本実施例は特定波長入sよりも長
波長の光を試料に照射しないので、その散乱光が蟹光分
光器に入って蛍光と重なることはないので測定精度を妨
害することはない。
When changing the specific wavelength light ^s to a different wavelength, the purpose can be achieved by rotating the concave diffraction grating 4 because the spectral wavelength range reflected by the wavelength range selection mirror 5 changes. In this embodiment, since the sample is not irradiated with light having a wavelength longer than the specific wavelength input s, the scattered light does not enter the crab light spectrometer and overlap with the fluorescence, so it does not interfere with measurement accuracy.

また、試料を照射する^sよりも短波長光の光量が大き
いので試料の発する姿光量が従来のものに比べて大きく
かつその励起光の波長範囲を選択できるという効果があ
る。第4図は本発明の他の実施例である。第3図と異な
る所は「波長範囲選択ミラー5に相当する凹図鏡13が
大型に作ってあり、その反射面に近くローランド円12
に添って波長範囲選択板14が可動に設置されているこ
と、および凹面回折格子4は回転する必要がないことで
ある。特定波長^sの波長位置を変化するには波長範囲
選択板14を移動させる。本実施例は凹面回折格子を固
定設置し、波長範囲選択板を移動させる機構だけを必要
とする簡単な励起分光器で同一効果が得られる利点があ
る。
In addition, since the amount of light with a shorter wavelength is larger than the amount of light with a shorter wavelength than the beam irradiating the sample, there is an advantage that the amount of light emitted by the sample is larger than that of the conventional method, and the wavelength range of the excitation light can be selected. FIG. 4 shows another embodiment of the invention. The difference from Fig. 3 is that the concave mirror 13 corresponding to the wavelength range selection mirror 5 is made large, and the Roland circle 12 is close to its reflecting surface.
The wavelength range selection plate 14 is movably installed along the wavelength range selection plate 14, and the concave diffraction grating 4 does not need to be rotated. To change the wavelength position of the specific wavelength ^s, the wavelength range selection plate 14 is moved. This embodiment has the advantage that the same effect can be obtained with a simple excitation spectrometer that only requires a fixed concave diffraction grating and a mechanism for moving the wavelength range selection plate.

分光鞍光光度計に関する第2の発明は「上記第1の発明
の励起分光器と組合せて上記特定波長よりも長波長の光
だけを出射する蜜光分光器を使用したことである。以下
図によって説明する。第5図は第2の発明の1実施例で
る分光蜜光光度計の説明図である。励起分光器2および
試料8までは第3図の例と同じであるので説明を省略す
る。鞍光分光器9の入射光は回転可能な凹面回折格子4
によって回折したローランド円12上にスペクトルを生
ずる。そのスペクトルの入射スリット側は短波長側で他
端は長波長側である。波長範囲選択ミラー5で反射させ
られる入射スリット側スペクトルの波長を入s2とする
と、この波長は第2図で説明した特定波長である。第2
図は特定波長が励起スペクトル曲線aと蟹光スペクトル
曲線bに対して共通の波長であったが、本実施例はすべ
ての蟹光物質に適用できるように励起分光器2の特定波
長を入s,、蟹光分光器の特定波長を入S2と定めるこ
とができる。このようにすれば励起分光器2によって蜜
光物質を励起するのに必要な入s.より短波長の光だけ
で試料を励起し、姿光分光器9によって蟹光スペクトル
の短波長側端である^s2より長波長の範囲に存在する
全蟹光が検出できるのである。もし試料が交換されて異
なる特定波長を示すときは、その特定波長に合わせて励
起分光器2の凹面回折格子4を回転して入s,の波長を
調節し、蟹光分光器9の凹面回折格子4を回転して入s
2の波長を調節する。本実施例は試料励起光の波長範囲
と蟹光分光器より出射する光の波長範囲を選択すること
ができるので、防筈光を含まない純粋な全餐光だけを高
精度に測定し得るという効果がある。第6図は第2の発
明の他の実施例で、両分光器とも第4図の励起分光器と
同じ型式の分光器を使用している。
The second invention related to the spectrophotometer is the use of a spectrophotometer that emits only light with a longer wavelength than the specific wavelength in combination with the excitation spectrometer of the first invention. Fig. 5 is an explanatory diagram of a spectrophotometer which is an embodiment of the second invention.Excitation spectrometer 2 and sample 8 are the same as in the example shown in Fig. 3, so their explanation is omitted. The incident light of the saddle spectrometer 9 is transmitted through the rotatable concave diffraction grating 4.
A spectrum is generated on the Rowland circle 12 diffracted by . The entrance slit side of the spectrum is the short wavelength side, and the other end is the long wavelength side. Letting s2 be the wavelength of the spectrum on the incident slit side reflected by the wavelength range selection mirror 5, this wavelength is the specific wavelength explained in FIG. 2. Second
In the figure, the specific wavelength is a common wavelength for the excitation spectrum curve a and the crab light spectrum curve b, but in this example, the specific wavelength of the excitation spectrometer 2 is input so that it can be applied to all crab light substances. , , the specific wavelength of the crab light spectrometer can be determined as input S2. In this way, the input s.e. By exciting the sample with only the shorter wavelength light, the full-spectrum spectrometer 9 can detect all the crab light present in the wavelength range longer than ^s2, which is the short wavelength end of the crab light spectrum. If the sample is replaced and shows a different specific wavelength, the concave diffraction grating 4 of the excitation spectrometer 2 is rotated to adjust the wavelength of the input s, according to the specific wavelength, and the concave diffraction grating of the crab spectrometer 9 is adjusted. Rotate grid 4 and enter
Adjust the wavelength of 2. In this example, since the wavelength range of the sample excitation light and the wavelength range of the light emitted from the crab light spectrometer can be selected, it is possible to measure with high precision only the pure total radiation light that does not contain any anti-inhibition light. effective. FIG. 6 shows another embodiment of the second invention, in which both spectrometers use the same type of spectrometer as the excitation spectrometer of FIG.

即ち、波長範囲選択板14の位置がローランド円12に
添って可変であるので選択する波長範囲を伸縮させるこ
とが可能である。そして励起分光器2からは特定波長入
s,より長波長光を出射しないし、蟹光分光器9からは
特定波長^s2よりも短波長の光を出射しないことは上
記第5図の場合と同じである。本実施例の場合には両分
光器の凹面回折格子4は固定設置しておいても良い。本
実施例の効果は上記第5図の実施例と同様に純粋な状態
で試料の全蟹光を高精度で測定できることである。
That is, since the position of the wavelength range selection plate 14 is variable along the Rowland circle 12, it is possible to expand or contract the wavelength range to be selected. The excitation spectrometer 2 does not emit light with a longer wavelength than the specified wavelength s2, and the crab spectrometer 9 does not emit light with a shorter wavelength than the specified wavelength s2, as in the case of Fig. 5 above. It's the same. In the case of this embodiment, the concave diffraction gratings 4 of both spectrometers may be fixedly installed. The effect of this embodiment is that, like the embodiment shown in FIG. 5, the total light of the sample can be measured with high accuracy in a pure state.

以上の各実施例で使用した分光器はすべて凹面回折格子
を用いたものとしたが、他の型式のプリズム分光器や平
面回折格子と凹面鏡を用いた分光器のような分光スペク
トルを生成する分光器には適用できるものである。
The spectrometers used in each of the above examples all used concave diffraction gratings, but other types of prism spectrometers or spectrometers that use a flat diffraction grating and concave mirror can also be used. It can be applied to vessels.

上記2つの発明は、蟹光物質の励起スペクトルと蜜光ス
ペクトルの波長位置が異なるという特性を利用して、試
料の後光を能率良く知しS/N比の高い高精度な蟹光測
定を可能にするという顕著な効果を有する。
The above two inventions make use of the characteristic that the excitation spectrum of the crab-light substance and the wavelength position of the honey-light spectrum are different, to efficiently detect the afterglow of the sample and to perform highly accurate crab-light measurement with a high S/N ratio. It has the remarkable effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分光蜜光光度計の説明図、第2図は励起
スペクトルと蟹光スペクトルの関係を示す線図、第3図
は本発明の1実施例である分光蜜光光度計の説明図、第
4図は本発明の他の実施例である分光蟹光光度計の説明
図、第5図は第2の発明の1実施例である分光蟹光光度
計の説明図、第6図は第2の発明の他の実施例である分
光蜜光光度計の説明図である。 符号の説明、1・・・・・・光源、2・・・・・・励起
分光器、3・・・・・・入射スリット、4・・・・・・
凹面回折格子、5・・・・・・波長範囲選択ミラー、6
・…・・出射スリット「 7…・・・集光ミラーし 8
肌…試料「 9・・・・・・蟹光分光器、10……検知
器、11・…・・表示器、12・・…・ローランド円、
13・・・・・・凹面鏡、14・・…・波長範囲選択板
。 髪l図 2図 多ク図 髪4図 多ク図 多5図
Fig. 1 is an explanatory diagram of a conventional spectrophotometer, Fig. 2 is a diagram showing the relationship between the excitation spectrum and the crab light spectrum, and Fig. 3 is a diagram of a spectrophotometer that is an embodiment of the present invention. 4 is an explanatory diagram of a spectroscopic crab photometer which is another embodiment of the present invention. FIG. 5 is an explanatory diagram of a spectroscopic crab photometer which is an embodiment of the second invention. The figure is an explanatory diagram of a spectrophotometer that is another embodiment of the second invention. Explanation of symbols: 1...Light source, 2...Excitation spectrometer, 3...Incidence slit, 4...
Concave diffraction grating, 5...Wavelength range selection mirror, 6
・・・Output slit “ 7 ・・・Collecting mirror 8
Skin...sample "9...crab spectrometer, 10...detector, 11...display device, 12...Roland circle,
13... Concave mirror, 14... Wavelength range selection plate. Hair l figure 2 figure multiple hair figure 4 figure multiple figure 5 figure

Claims (1)

【特許請求の範囲】 1 広範囲波長光を発生する光源と、その光源の発する
光を分光して出射光の波長を選択する励起分光器と、そ
の励起分光器の出射光の照射により試料から発生する螢
光を分光して出射光の波長を選択する螢光分光器と、そ
の螢光分光器の出射光を検知する検知器と、その検知器
からの電気的信号を処理し上記試料が発する螢光量を表
示する表示器とを具えた分光螢光光度計において、上記
励起分光器は、その入射スリツトから入射した光を分光
しそのスペクトルを結像させる回転可能に設置された分
散素子と、上記スペクトル結像位置に設置され特定波長
より短波長側のスペクトルのみを集光して出射スリツト
より出射させる集光素子とから構成したことを特徴とす
る分光螢光光度計。 2 広範囲波長光を発生する光源と、その光源の発する
光を分光して出射光の波長を選択する励起分光器と、そ
の励起分光器の出射光の照射により試料から発生する螢
光を分光して出射光の波長を選択する螢光分光器と、そ
の螢光分光器の出射光を検知する検知器と、その検知器
からの電気的信号を処理し上記試料が発する螢光量を表
示する表示器とを具えた分光螢光光度計において、上記
励起分光器は、その入射スリツトから入射した光を分光
しそのスペクトルを結像させる回転可能に設置された分
散素子と、上記スペクトル結像位置に設置され特定波長
より短波長側のスペクトルのみを集光して出射スリツト
より出射させる集光素子とから構成され、上記螢光分光
器は、その入射スリツトから入射した光を分光しそのス
ペクトルを結像させる回転可能に設置された分散素子と
、上記スペクトル結像位置に設置し上記特定波長よりも
長波長例のスペクトルのみを集光してその出射スリツト
より出射させる集光素子とから構成されたことを特徴と
する分光螢光光度計。
[Scope of Claims] 1. A light source that generates light with a wide range of wavelengths, an excitation spectrometer that spectrally spectra the light emitted by the light source and select the wavelength of the emitted light, and a light source that generates light from a sample by irradiation with the emitted light of the excitation spectrometer. A fluorescence spectrometer that separates the fluorescence to select the wavelength of the emitted light, a detector that detects the emitted light of the fluorescence spectrometer, and processes the electrical signals from the detector to be emitted by the sample. In the spectrofluorophotometer, the excitation spectrometer includes a rotatably installed dispersion element that separates the light incident from the entrance slit and forms an image of the spectrum; A spectrofluorophotometer comprising a condensing element installed at the spectral imaging position and condensing only a spectrum on the shorter wavelength side than a specific wavelength and emitting it from an output slit. 2. A light source that generates light with a wide range of wavelengths, an excitation spectrometer that spectrally spectra the light emitted by the light source and select the wavelength of the emitted light, and a spectrometer that spectrally spectra the fluorescent light generated from the sample by irradiation with the emitted light of the excitation spectrometer. a fluorescence spectrometer that selects the wavelength of the emitted light, a detector that detects the emitted light of the fluorescence spectrometer, and a display that processes electrical signals from the detector and displays the amount of fluorescence emitted by the sample. In the spectrofluorophotometer, the excitation spectrometer includes a rotatably installed dispersion element that separates the light incident from the entrance slit and forms an image of the spectrum, and a dispersion element that is rotatably installed at the spectral imaging position. The fluorescence spectrometer consists of a condensing element that is installed to condense only the spectrum on the shorter wavelength side than a specific wavelength and output it from an output slit. It consists of a dispersion element rotatably installed to image the spectrum, and a condensing element installed at the spectrum imaging position to focus only the spectrum with a wavelength longer than the specific wavelength and output it from the output slit. A spectrofluorophotometer characterized by:
JP51033666A 1976-03-29 1976-03-29 spectrofluorometer Expired JPS605897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51033666A JPS605897B2 (en) 1976-03-29 1976-03-29 spectrofluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51033666A JPS605897B2 (en) 1976-03-29 1976-03-29 spectrofluorometer

Publications (2)

Publication Number Publication Date
JPS52117689A JPS52117689A (en) 1977-10-03
JPS605897B2 true JPS605897B2 (en) 1985-02-14

Family

ID=12392771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51033666A Expired JPS605897B2 (en) 1976-03-29 1976-03-29 spectrofluorometer

Country Status (1)

Country Link
JP (1) JPS605897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386232B2 (en) * 2017-12-15 2019-08-20 Horiba Instruments Incorporated Compact spectroscopic optical instrument

Also Published As

Publication number Publication date
JPS52117689A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
US2847899A (en) Method of and apparatus for spectrochemical analysis
Holland et al. A unique computer centered instrument for simultaneous absorbance and fluorescence measurements
US7414717B2 (en) System and method for detection and identification of optical spectra
US7292342B2 (en) Entangled photon fourier transform spectroscopy
JPS6116010B2 (en)
US3598994A (en) Method and apparatus for sensing fluorescent substances
JP2936947B2 (en) Spectrofluorometer
US3936190A (en) Fluorescence spectrophotometer for absorption spectrum analysis
JPH07128144A (en) Spectral measuring apparatus
JPH1151855A (en) Circular dichroic fluorescence excitation spectrum measuring equipment
JPS605897B2 (en) spectrofluorometer
JP4141985B2 (en) Spectrofluorometer and sample cell
JPH04157350A (en) Fluorescent measurement apparatus
JPH0219897B2 (en)
JPS6053834A (en) Laser raman microprobe
JP3126718B2 (en) Multi-channel fluorescence spectrometer
JPS60263838A (en) Photometer
JPS58153129A (en) Spectrophotometer for measuring transmitted spectrum
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPS63308543A (en) Scattered light measuring apparatus
CN217033632U (en) Three-dimensional fluorescence spectrograph
JPH09145619A (en) Method and instrument for spectroscopic measurement of scattered light and so on
JPH0552654A (en) Excitation wave length sweep type raman spectroscope
JP2749387B2 (en) High-sensitivity micro-multi-wavelength spectrometer
JPH0712718A (en) Spectral analysis device