JPH0219897B2 - - Google Patents

Info

Publication number
JPH0219897B2
JPH0219897B2 JP54138215A JP13821579A JPH0219897B2 JP H0219897 B2 JPH0219897 B2 JP H0219897B2 JP 54138215 A JP54138215 A JP 54138215A JP 13821579 A JP13821579 A JP 13821579A JP H0219897 B2 JPH0219897 B2 JP H0219897B2
Authority
JP
Japan
Prior art keywords
light
excitation
measured
spectrometer
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54138215A
Other languages
Japanese (ja)
Other versions
JPS5661633A (en
Inventor
Taro Nogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13821579A priority Critical patent/JPS5661633A/en
Publication of JPS5661633A publication Critical patent/JPS5661633A/en
Publication of JPH0219897B2 publication Critical patent/JPH0219897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は電気泳動法やクロマトグラフイーによ
つて展開させた試料成分を単色光の励起光で励起
光で励起させたときに発生するけい光、りん光を
測定して分析する展開成分の二次光測定用光度計
に関するものである。
[Detailed Description of the Invention] The present invention measures fluorescence and phosphorescence generated when sample components developed by electrophoresis or chromatography are excited with monochromatic excitation light. This invention relates to a photometer for measuring secondary light of developed components for analysis.

第1図は従来の二次光測定用光度計の斜視図で
ある。この場合の試料は試験管9に収容した円筒
状の透明なゲル内に試料成分を電気泳動法によつ
て円盤状に展開させたもので、一般にこのゲル状
の被測定体をデイスクゲルと呼んでいる。キセノ
ランプ等の高輝度の連続波長光を発生する光源1
の光は、一般に用いられる形式の励起側分光器2
の入射スリツト3から分光器内に入る。この入射
光は図示を省略している凹面鏡で反射し収斂光束
となつて平面回析格子13に入射し出射スリツト
4を含む水平方向にスペクトルを生ずる。したが
つて、平面回析格子13を格子刻線方向の軸を中
心して回転させると、出射スリツト4からは任意
の波長の単色光を出射させることができる。
FIG. 1 is a perspective view of a conventional photometer for measuring secondary light. The sample in this case is a cylindrical transparent gel housed in a test tube 9, in which sample components are developed into a disk shape by electrophoresis, and this gel-like object to be measured is generally called a disk gel. I'm here. Light source 1 that generates high-intensity continuous wavelength light such as a xeno lamp
The light is transmitted through a commonly used excitation side spectrometer 2.
The light enters the spectrometer through the entrance slit 3. This incident light is reflected by a concave mirror (not shown), becomes a convergent light beam, enters the plane diffraction grating 13, and generates a spectrum in the horizontal direction including the output slit 4. Therefore, by rotating the plane diffraction grating 13 about the axis in the direction of the grating lines, monochromatic light of any wavelength can be emitted from the output slit 4.

励起側分光器2の入射スリツト3および出射ス
リツト4は図に示すように縦長となつているの
で、出射スリツト4の出射光束は縦長の矩形状の
断面となつている。しかるに試験管9内のデイス
クゲルに展開させた試料成分は円盤状となつて上
下に積層した状態で分布している。したがつて、
縦長の出射光束をスリツト板11に開口した横長
の矩形孔で絞り、試料成分に平行な光束としてデ
イスクゲルを照射させなければならない。この際
に利用される光量は出射スリツト4を出射した光
量の一部分であり大部分の光は遮断される。
Since the entrance slit 3 and the exit slit 4 of the excitation side spectrometer 2 are vertically long as shown in the figure, the output light beam from the exit slit 4 has a vertically long rectangular cross section. However, the sample components developed on the disc gel in the test tube 9 are distributed in a disc-shaped manner in which they are stacked vertically. Therefore,
The vertically elongated emitted light beam must be condensed by a horizontally long rectangular hole opened in the slit plate 11, and the disk gel must be irradiated with the light beam parallel to the sample components. The amount of light used at this time is a portion of the amount of light emitted from the output slit 4, and most of the light is blocked.

試験管9は試験管ガイド10に案内され試験管
移動機構12によつて上下に移動し、励起側分光
器2で選択した波長の単色光で走査される。この
とき異なる物質である複数の展開成分は種々の波
長のけい光とりん光を発生し、励起光側分光器2
とは同一面上で90度異なる方向に設置された発光
側分光器5の入射スリツト6より分光器内に導入
される。一般に物質が発するけい光は励起光の波
長とは異つた物質特有の波長光となつているの
で、平面回析格子14を回転させたときは、2次
光の波長分布が検知器8によつて検出され表示又
は記録される。なお、励起側分光器2と発光側分
光器5とは上記の如く同形の分光器を90度異る方
向に設置して励起光の影響を防ぎ、図には示され
ていないが、出射スリツト4の像をスリツト板1
1上に作るレンズと、試料成分層の像を入射スリ
ツト6上に作るレンズをその間に設置して有効に
集光するようにしている。
The test tube 9 is guided by a test tube guide 10, moved up and down by a test tube moving mechanism 12, and scanned with monochromatic light of a wavelength selected by the excitation side spectrometer 2. At this time, a plurality of expanded components made of different substances generate fluorescence and phosphorescence of various wavelengths, and the excitation light side spectrometer 2
The light is introduced into the spectrometer through the entrance slit 6 of the light-emitting spectrometer 5, which is installed on the same plane in a direction 90 degrees different from that of the light source. In general, fluorescence emitted by a substance has a wavelength unique to the substance that is different from the wavelength of the excitation light, so when the plane diffraction grating 14 is rotated, the wavelength distribution of the secondary light is determined by the detector 8. detected and displayed or recorded. The excitation-side spectrometer 2 and the emission-side spectrometer 5 are the same spectrometers as described above, but are installed in 90-degree different directions to prevent the influence of excitation light. Slit the image of 4 on plate 1
A lens formed on the sample component layer 1 and a lens formed on the entrance slit 6 are installed between them to effectively condense light.

このように構成された二次光測定用の光度計
は、試験管9を上下移動させると共に展開した試
料成分が発生するけい光、りん光量、即ち、試料
成分濃度が測定される。特に、二次光を発生する
試料成分は他の吸光度測定法よりも高感度であ
り、微量分析も可能となる。また、二次光の波長
分布を測定して試料成分物質を同定することも可
能となる等の利点をもつている。
The thus configured photometer for measuring secondary light moves the test tube 9 up and down and measures the amount of fluorescence and phosphorescence generated by the developed sample component, that is, the concentration of the sample component. In particular, sample components that generate secondary light have higher sensitivity than other absorbance measurement methods, and trace analysis is also possible. Further, it has the advantage that it becomes possible to identify the sample component substances by measuring the wavelength distribution of the secondary light.

しかるに上記のごとく励起側分光器2より得た
励起光スリツト板11で遮断されその一部だけし
か利用されていない。スリツト板11の横長孔の
上下方向を拡大させると利用する光量は増すが、
試料成分の展開層を幅広の光束が走査するので成
分の分解能が低下し幅広いピークを記録されるこ
とになり好ましくない。また、生体試料のように
微量の場合は展開成分も微量となるので、強い励
起光を照射する必要があるので被測定体を幅の狭
い強力な励起光で照射することが要望されてい
た。
However, as mentioned above, the excitation light obtained from the excitation side spectrometer 2 is blocked by the slit plate 11, and only a portion of it is utilized. If the horizontally elongated hole of the slit plate 11 is enlarged in the vertical direction, the amount of light used will increase;
Since a wide beam of light scans the spread layer of sample components, the resolution of the components decreases and broad peaks are recorded, which is undesirable. In addition, in the case of a small amount such as a biological sample, the amount of developed components is also small, so it is necessary to irradiate the object with strong excitation light, so it has been desired to irradiate the object to be measured with a narrow and powerful excitation light.

また、発光側分光器5においても上記と同様な
改善が要望されている。即ち、試験管9内のけい
光を発生する成分層は水平方向となつており、図
に示されていないレンズによつて集光された二次
光像は入射スリツト6とは直角な水平方向に生じ
ている。したがつて、ここにおいても発光側分光
器5内に導入され利用される二次光量は極めて小
量となつており、微量の二次光を測定することが
できないという欠点をもつている。
Furthermore, improvements similar to those described above are desired in the light-emitting side spectrometer 5 as well. That is, the component layer that generates fluorescence in the test tube 9 is oriented horizontally, and the secondary light image focused by a lens (not shown) is oriented horizontally at right angles to the entrance slit 6. It is occurring in Therefore, the amount of secondary light introduced into the light-emitting spectrometer 5 and utilized here is extremely small, and there is a drawback that it is impossible to measure a small amount of secondary light.

第2図は従来の二次光測定用光度計の他の例を
示す斜視図で、この場合はクロマトプレート18
上に展開させた試料成分量を測定する装置であ
る。第1図と同じ部分には同一符号を付してある
が、第1図と異るところは、励起側分光器2より
出射する励起光の方向と平行な方向に移動させる
板状クロマトプレート18に複雑な反射光学系を
用いて出射スリツト4の像を横長に結像させた点
である。このようにすれば、横長の励起光束が展
開試料成分の長さ方向に一致して走査することに
なるので、励起効果は向上する。また、発光側分
光器5の入射スリツト上には展開試料成分像が一
致するように生じているので、試料成分の発する
二次光を効率良く発光側分光器5に導入すること
ができる。
FIG. 2 is a perspective view showing another example of a conventional photometer for measuring secondary light; in this case, the chromato plate 18
This is a device that measures the amount of sample components spread on the top. The same parts as in FIG. 1 are given the same reference numerals, but the difference from FIG. The point is that the image of the exit slit 4 is formed into a horizontally elongated image using a complicated reflection optical system. In this way, the horizontally elongated excitation light beam scans in alignment with the length direction of the developed sample component, so that the excitation effect is improved. Further, since the developed sample component images are formed so as to coincide with each other on the incident slit of the light-emitting side spectrometer 5, the secondary light emitted by the sample components can be efficiently introduced into the light-emitting side spectrometer 5.

上記反射光学系は平面ミラー15、トロイドミ
ラー16,17より構成されている。このトロイ
ドミラー16は出射スリツト4の像をマイクロプ
レート18の裏面に破線で示すように結像し、ト
ロイドミラー17はクロマトプレート18の破線
と合致する展開成分り発生する二次光を集光して
入射スリツト6上に結像させている。なお、励起
側分光器2の出射スリツト4を発光側分光器5の
入射スリツト6と対向するように設置したとき
は、平面ミラー15を省略することができる。
The reflective optical system is composed of a plane mirror 15 and toroid mirrors 16 and 17. This toroid mirror 16 forms an image of the output slit 4 on the back surface of the microplate 18 as shown by the broken line, and the toroid mirror 17 focuses the secondary light generated by the developed component that matches the broken line of the chromato plate 18. An image is formed on the entrance slit 6. Note that when the exit slit 4 of the excitation side spectrometer 2 is installed so as to face the entrance slit 6 of the emission side spectrometer 5, the plane mirror 15 can be omitted.

このように構成した反射光学系を用いた二次光
測定用光度計は板状の被測定体18の展開試料成
分を合理的に励起光で照射すると共に、効率良く
二次光を測定検知できるが、複数個の反射ミラー
を設置しなければならないので構成が複雑とな
り、特に、トロイドミラーを2枚用いているので
高価となつている。また、複数枚の表面反射鏡を
用いているのでクロマトプレート18の交換時に
落下する塵埃やクロマトプレート18より発生す
る蒸気等によつて反射率が低下し易い。この場合
は3枚の反射ミラーを用いているので、反射率の
3乗値となつてその影響が現われるという欠点を
もつていた。
The photometer for secondary light measurement using the reflective optical system configured in this way can rationally irradiate the developed sample components of the plate-shaped object 18 with excitation light and efficiently measure and detect the secondary light. However, since a plurality of reflecting mirrors must be installed, the configuration is complicated, and in particular, it is expensive because two toroid mirrors are used. Furthermore, since a plurality of surface reflecting mirrors are used, the reflectance is likely to decrease due to dust that falls when the chromato plate 18 is replaced, steam generated from the chromato plate 18, and the like. In this case, since three reflecting mirrors are used, there is a drawback that the effect appears as the cube of the reflectance.

即ち、従来の二次光測定用光度計は二次光の発
生効率および検出効率が低いし、この欠点を避け
るようにしたときは複雑な反射光学系を用いて高
価となり、かつ、反射率が変化し易い等の欠点を
もつている。なお、りん光測定専用とするには二
次光用光学系の励起光を断続させ、励起光を遮断
している間にりん光を測定するようにしているの
で、上記けい光測定用光度計の欠点はりん光測定
の場合にも共通する。
That is, conventional photometers for measuring secondary light have low secondary light generation efficiency and detection efficiency, and attempts to avoid this drawback would require a complicated reflective optical system, which would be expensive and result in low reflectance. It has disadvantages such as being easy to change. In addition, in order to use it exclusively for phosphorescence measurement, the excitation light of the secondary light optical system is intermittent, and the phosphorescence is measured while the excitation light is blocked. The drawbacks are also common to phosphorescence measurements.

本発明は簡単な構成で長期間高感度に測定で
き、かつりん光測定に簡便に使用可能な展開成分
の二次光側定用光度計を提供することを目的と
し、その特徴とするところは、試料成分を展開し
て得られたクロマトグラムよりなる被測定体に励
起側分光器からの励起光を照射すると共に上記被
測定体を上記試料成分の展開方向に移動させ、上
記試料成分が発生する二次光を発光側分光器で分
光検知する展開成分の二次光測定用光度計におい
て、上記励起側分光器および上記発光側分光器は
そのスペクト分散方向が上記被測定体の移動方向
と平行になつており、励起側光軸および励起光束
断面の長手方向軸と、二次光側光軸および二次光
光束断面の長手方向軸と、上記試料成分の層とが
同一平面内に存在し、上記スペクトル分散方向に
対して垂直な方向に長い入射スリツトおよび出射
スリツトを有し、かつ上記励起側分光器の上記出
射スリツトと上記被測定体の間および上記発光側
分光器の入射スリツトと上記被測定体の間に設置
されている集光部材と、上記被測定体の上記試料
成分の各層を上記平面と垂直方向に連続的に移動
させる手段と、上記励起側分光器の上記出射スリ
ツトと上記被測定体との間に、上記励起光を断続
させ、該励起光遮断時に上記試料成分が発するり
ん光のみを測定可能にする回転体よりなるチヨツ
パーとを有していることにある。
The purpose of the present invention is to provide a secondary light side photometer for developing components that can be easily used for measuring phosphorescence and that can be used to measure phosphorescence with high sensitivity over a long period of time with a simple configuration. , the object to be measured consisting of the chromatogram obtained by developing the sample components is irradiated with excitation light from the excitation side spectrometer, and the object to be measured is moved in the direction in which the sample components are developed, so that the sample components are generated. In a photometer for measuring secondary light of an expanded component, in which secondary light is spectrally detected by an emission side spectrometer, the spectral dispersion direction of the excitation side spectrometer and the emission side spectrometer is the same as the moving direction of the object to be measured. The excitation side optical axis and the longitudinal axis of the excitation beam cross section, the secondary light side optical axis and the secondary beam cross section, and the layer of the sample component exist in the same plane. and having a long entrance slit and an exit slit in a direction perpendicular to the spectral dispersion direction, and between the exit slit of the excitation side spectrometer and the object to be measured and between the entrance slit of the emission side spectrometer. a light condensing member installed between the object to be measured, a means for continuously moving each layer of the sample component of the object to be measured in a direction perpendicular to the plane, and the exit slit of the excitation side spectrometer. and a stopper made of a rotating body, which intermittents the excitation light and makes it possible to measure only the phosphorescence emitted by the sample component when the excitation light is interrupted.

第3図は本発明の一実施例の斜視説明図で、被
測定試料としてクロマトプレートに展開されたも
のが示してある。この図において第1図及び第2
図と同一部分には同一符号が付してあり、19は
クロマトプレート18を四隅で係止する板状のホ
ルダ、20は一部に切欠き部を設けて励起光軸と
平行な回転軸に取り付けて回転させ、切欠き部で
励起光を通過させその他の部分では励起光が遮断
れるようになつているチヨツパー、21aおよび
21bはそれぞれスリツト板11と励起側分光器
2および発光側分光器5との間に設けられている
レンズ、22はホルダ19が取り付けられ、プー
リー23,24に巻回したエンドレスの糸25に
よつて2本のガイド26aおよび26bに案内さ
れて上下に移動するスライダ、27はクロマトプ
レート18上の試料成分を示している。また、2
8および29はそれぞれ励起側分光器2の入射ス
リツトおよび出射スリツトで、30および31は
それぞれ発光側分光器5の入射スリツトおよび出
射スリツトで横長となつており、32および33
はそれぞれ励起側分光器2および発光側分光器の
平面回折格子で第1図のものを90度回転させて横
形にしたもので、刻線方向およびその回転軸が横
方向になつている。
FIG. 3 is a perspective explanatory view of one embodiment of the present invention, showing a sample developed on a chromato plate as a sample to be measured. In this figure, Figures 1 and 2
The same parts as in the figure are given the same reference numerals, and 19 is a plate-shaped holder that locks the chromato plate 18 at the four corners, and 20 is a plate-shaped holder that has a notch in a part and is attached to a rotation axis parallel to the excitation optical axis. Choppers 21a and 21b, which are attached and rotated so that excitation light passes through a notch and are blocked at other parts, are a slit plate 11, an excitation side spectrometer 2, and an emission side spectrometer 5, respectively. 22 is a slider to which a holder 19 is attached and which is guided by two guides 26a and 26b by an endless thread 25 wound around pulleys 23 and 24 and moves up and down; 27 indicates sample components on the chromato plate 18. Also, 2
8 and 29 are the entrance slit and exit slit of the excitation side spectrometer 2, respectively, 30 and 31 are the entrance slit and the exit slit of the emission side spectrometer 5, respectively, which are horizontally long;
These are the planar diffraction gratings of the excitation side spectrometer 2 and the emission side spectrometer, respectively, which have been rotated 90 degrees from those shown in FIG.

この光度計は上下方向分散形の分光器2,5を
用い、出射スリツト29の像をレンズ21aでス
リツト板11の細隙上に作るように集光してい
る。細隙を通つた横長の線状の単色光束はスリツ
ト板11に近接して上下に移動するクロマトプレ
ート18を照射する。クロマトプレート18上に
は試料成分27が上下に展開しているので、クロ
マトプレート18を上下移動させるときは、励起
光が順次試料成分27を走査してはけい光とりん
光を発生させる。試料成分27が発生した二次光
はレンズ21bで集光された発光側分光器5の入
射スリツト30より分光器内に導入されて分光さ
れ、検知器8によつて検知される。
This photometer uses spectroscopes 2 and 5 of vertical dispersion type, and focuses the light so that an image of an output slit 29 is formed on a slit of a slit plate 11 with a lens 21a. The horizontally elongated linear monochromatic light beam passing through the slit illuminates the chromato plate 18 that moves up and down in the vicinity of the slit plate 11. Since the sample components 27 are spread vertically on the chromato plate 18, when the chromato plate 18 is moved up and down, the excitation light sequentially scans the sample components 27 to generate fluorescence and phosphorescence. The secondary light generated by the sample component 27 is focused by the lens 21b, is introduced into the spectrometer through the entrance slit 30 of the light-emitting spectrometer 5, is spectrally separated, and is detected by the detector 8.

なお、この光度計では、入射スリツト28,3
0および出射スリツト29,31はすべて横長と
なつており、また、平面回折格子32,33の刻
線方向およびその回転軸は横方向になつているの
で、両分光器のスペクトル分散方向はそれぞれの
出射スリツト29,31を含む上下方向に分布し
ている。一般に分光器は出射光量を増すためにス
ペクトル分散方向に対して横長の入射スリツトと
出射スリツトを設けるのが合理的で、このように
構成すればクロマトプレート18上に水平に展開
分布している試料成分28層を多量の励起光で励
起すると共に、試料成分28層が発生する二次光
を最も効率良く導入することができる。したがつ
て、試料成分濃度を高感度に検出することができ
微量成分でも検出可能となる。また、両分光器の
入,出射スリツト幅およびスリツト板11の孔の
上下方向を縮少させるときは、励起光および検知
光の波長純度を向上させると共に試料成分層を照
射する光束の上下幅が細くなるので、試料成分の
分解能の高い濃度曲線を記録させることができる
等、測定精度を向上させるに有効である。
Note that in this photometer, the entrance slits 28, 3
0 and the exit slits 29, 31 are all horizontally long, and the ruled lines of the plane diffraction gratings 32, 33 and their rotation axes are horizontal, so the spectral dispersion directions of both spectrometers are the same as each other. They are distributed in the vertical direction including the emission slits 29 and 31. Generally, it is reasonable to provide a spectrometer with an entrance slit and an exit slit that are horizontally elongated in the spectral dispersion direction in order to increase the amount of output light. The component 28 layer can be excited with a large amount of excitation light, and the secondary light generated by the sample component 28 layer can be introduced most efficiently. Therefore, the concentration of sample components can be detected with high sensitivity, and even trace components can be detected. In addition, when reducing the input and output slit widths of both spectrometers and the vertical direction of the hole in the slit plate 11, the wavelength purity of the excitation light and detection light is improved, and the vertical width of the light beam irradiating the sample component layer is reduced. Since it is thin, it is effective for improving measurement accuracy, such as being able to record a concentration curve with high resolution of sample components.

以上の如く、励起側分光器と発光側分光器とを
従来とは90度回転させた構成としてあるので、測
定精度を容易に向上させることができる。
As described above, since the excitation side spectrometer and the emission side spectrometer are configured to be rotated by 90 degrees from the conventional configuration, measurement accuracy can be easily improved.

上記は励起光によつて試料成分が発生する二次
光を同時に測光検知する場合であるが、試料成分
によつてりん光を強く発生するものがあり、りん
光だけを測定した方がその成分の特定に有効な場
合がある。第3図のチヨツパー20はりん光測定
時に用いるものであり、チヨツパー20は円板の
一部に切欠き部を設けて励起光軸と平行な回転軸
に取り付けて回転させる。したがつて、切欠き部
で励起光を通過させその他の部分では励起光が遮
断される。このようにすれば、励起光遮断時にり
ん光だけを測光することが可能となる。即ちチヨ
ツパー20の回転と検知器8の出力信号に対する
ゲーテイングを同期させ、チヨツパー20が励起
光を遮断した時にゲートを開くようにすれば、試
料成分の発するりん光はけい光および散乱光から
分離して測定される。
The above is a case where the excitation light simultaneously photometrically detects the secondary light generated by the sample components, but some sample components generate strong phosphorescence, and it is better to measure only the phosphorescence. may be effective in identifying The chopper 20 shown in FIG. 3 is used for phosphorescence measurement, and the chopper 20 has a notch formed in a part of a disc and is rotated by attaching it to a rotating shaft parallel to the excitation optical axis. Therefore, the excitation light passes through the notch and is blocked at other parts. In this way, it becomes possible to photometer only phosphorescence when excitation light is cut off. That is, by synchronizing the rotation of the chopper 20 with the gating for the output signal of the detector 8, and opening the gate when the chopper 20 blocks the excitation light, the phosphorescence emitted by the sample components can be separated from the fluorescent light and scattered light. It is measured by

このように構成された光度計は、第2図のよう
な複数枚のミラーを使用していないので、反射率
が使用する間に低下し感度低下を来すことがな
い。また、チヨツパー20の設置も比較的容易な
構造となり、りん光測定が容易に可能となる。励
起分光器2の出射スリツト29と発光分光器5の
入射スリツト30の長手方向が、被測定体の展開
成分の長手方向と一致して最も多量の励起光で試
料成分を励起し、その二次光を最も有効な発光分
光器に取り入れることが可能となる。
Since the photometer constructed in this manner does not use a plurality of mirrors as shown in FIG. 2, the reflectance does not decrease during use and the sensitivity does not decrease. Further, the configuration of the chopper 20 is relatively easy to install, and phosphorescence measurement can be easily performed. The longitudinal direction of the exit slit 29 of the excitation spectrometer 2 and the input slit 30 of the emission spectrometer 5 coincide with the longitudinal direction of the expanded component of the object to be measured, so that the sample component is excited with the largest amount of excitation light, and its secondary It becomes possible to introduce light into the most effective emission spectrometer.

本実施例の二次光測定用光度計は、複雑な反射
光学系を用いることなく長期間高感度でけい光と
りん光を区別して測定できるという効果をもつて
いる。
The photometer for measuring secondary light of this embodiment has the effect of being able to distinguish between fluorescence and phosphorescence and measure them with high sensitivity for a long period of time without using a complicated reflective optical system.

本発明の展開成分の二次光測定用光度計は、比
較的簡単な構成で長期間高感度で高精度に試料成
分の濃度を測定でき、かつりん光測定に簡便に使
用可能であるという効果をもつている。
The photometer for secondary light measurement of developed components of the present invention has the advantage of being able to measure the concentration of sample components with high sensitivity and precision over a long period of time with a relatively simple configuration, and being easily usable for phosphorescence measurements. It has

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二次光測定用光度計の斜視図、
第2図は従来の他の二次光測定用光度計の斜視
図、第3図は本発明の一実施例である二次光測定
用光度計の斜視説明図である。 1……光源、2……励起側分光器、5……発光
側分光器、8……検知器、11……スリツト板、
18……クロマトプレート、19……ホルダー、
20……チヨツパー、21……レンズ、22……
スライダー、23,24……プーリー、25……
糸、26……ガイド、27……試料成分、28,
30……入射スリツト、29,31……出射スリ
ツト、32,33……平面回折格子。
Figure 1 is a perspective view of a conventional photometer for measuring secondary light.
FIG. 2 is a perspective view of another conventional photometer for measuring secondary light, and FIG. 3 is an explanatory perspective view of a photometer for measuring secondary light, which is an embodiment of the present invention. 1...Light source, 2...Excitation side spectrometer, 5...Emission side spectrometer, 8...Detector, 11...Slit plate,
18...Chromato plate, 19...Holder,
20...Chopper, 21...Lens, 22...
Slider, 23, 24...Pulley, 25...
Thread, 26...Guide, 27...Sample component, 28,
30...Incidence slit, 29, 31...Output slit, 32, 33...Plane diffraction grating.

Claims (1)

【特許請求の範囲】[Claims] 1 試料成分を展開して得られたクロマトグラム
よりなる被測定体に励起側分光器からの励起光を
照射すると共に上記被測定体を上記試料成分の展
開方向に移動させ、上記試料成分が発生する二次
光を発光側分光器で分光検知する展開成分の二次
光測定用光度計において、上記励起側分光器およ
び上記発光側分光器はそのスペクトル分散方向が
上記被測定体の移動方向と平行になつており、励
起側光軸および励起光束断面の長手方向軸と、二
次光側光軸および二次光光束断面の長手方向軸
と、上記試料成分の層とが同一平面内に存在し、
上記スペクトル分散方向に対して垂直な方向に長
い入射スリツトおよび出射スリツトを有し、か
つ、上記励起側分光器の上記出射スリツトと上記
被測定体の間および上記発光側分光器の入射スリ
ツトと上記被測定体の間に設置されている集光部
材と、上記被測定体の上記試料成分の各層を上記
平面と垂直方向に連続的に移動させる手段と、上
記励起側分光器の上記出射スリツトと上記被測定
体との間に上記励起光を断続させ、該励起光遮断
時に上記試料成分が発するりん光のみを測定可能
にする回転体よりなるチヨツパーとを有している
ことを特徴とする展開成分の二次光測定用光度
計。
1 Irradiate the object to be measured consisting of a chromatogram obtained by developing the sample component with excitation light from the excitation side spectrometer, and move the object to be measured in the direction in which the sample component is developed, so that the sample component is generated. In a photometer for measuring secondary light of an expanded component, in which secondary light is spectrally detected by an emission side spectrometer, the spectral dispersion direction of the excitation side spectrometer and the emission side spectrometer is the same as the moving direction of the object to be measured. The excitation side optical axis and the longitudinal axis of the excitation beam cross section, the secondary light side optical axis and the secondary beam cross section, and the layer of the sample component exist in the same plane. death,
a long entrance slit and an exit slit in a direction perpendicular to the spectral dispersion direction, and between the exit slit of the excitation side spectrometer and the object to be measured, and between the entrance slit of the emission side spectrometer and the a light condensing member installed between the object to be measured, a means for continuously moving each layer of the sample component of the object to be measured in a direction perpendicular to the plane, and the exit slit of the excitation side spectrometer; A development characterized in that a stopper is provided between the object to be measured and a rotating body that intermittents the excitation light and makes it possible to measure only the phosphorescence emitted by the sample component when the excitation light is interrupted. Photometer for secondary light measurement of components.
JP13821579A 1979-10-24 1979-10-24 Densitometer for measuring secondary light of developed constituent Granted JPS5661633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13821579A JPS5661633A (en) 1979-10-24 1979-10-24 Densitometer for measuring secondary light of developed constituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13821579A JPS5661633A (en) 1979-10-24 1979-10-24 Densitometer for measuring secondary light of developed constituent

Publications (2)

Publication Number Publication Date
JPS5661633A JPS5661633A (en) 1981-05-27
JPH0219897B2 true JPH0219897B2 (en) 1990-05-07

Family

ID=15216767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13821579A Granted JPS5661633A (en) 1979-10-24 1979-10-24 Densitometer for measuring secondary light of developed constituent

Country Status (1)

Country Link
JP (1) JPS5661633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8513538D0 (en) * 1985-05-29 1985-07-03 Mackay C D Electrophoresis
JPH0799353B2 (en) * 1987-03-31 1995-10-25 株式会社島津製作所 Nucleotide sequencer
JP5463302B2 (en) * 2011-01-14 2014-04-09 株式会社日立ハイテクノロジーズ Electrophoresis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292583A (en) * 1975-12-11 1977-08-04 White John U Fluorescent spectrophotometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436716Y2 (en) * 1975-04-23 1979-11-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292583A (en) * 1975-12-11 1977-08-04 White John U Fluorescent spectrophotometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same

Also Published As

Publication number Publication date
JPS5661633A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
US4081215A (en) Stable two-channel, single-filter spectrometer
US5011284A (en) Detection system for Raman scattering employing holographic diffraction
US4022529A (en) Feature extraction system for extracting a predetermined feature from a signal
JP2002542482A (en) Novel scanning spectrophotometer for high-throughput fluorescence detection
JP2511057B2 (en) Spectral analysis method and apparatus
CA1229897A (en) Optics system for emission spectrometer
JP2001527214A (en) Detector with transmission grating beam splitter for multi-wavelength sample analysis
US5422719A (en) Multi-wave-length spectrofluorometer
AU1555900A (en) Set-up of measuring instruments for the parallel readout of spr sensors
RU2223479C2 (en) Method and device for analysis of isotope-carrying molecules by absorption spectrum
US3814939A (en) Chromato-fluorographic drug detector
US7321423B2 (en) Real-time goniospectrophotometer
JPH0219897B2 (en)
US4165937A (en) Magneto-optic spectrophotometer
US4166697A (en) Spectrophotometer employing magneto-optic effect
US7446867B2 (en) Method and apparatus for detection and analysis of biological materials through laser induced fluorescence
JPS61173141A (en) Particle analyzing instrument
JP4737896B2 (en) Sample concentration measuring device
JP3126718B2 (en) Multi-channel fluorescence spectrometer
GB2169075A (en) Optical arrangement for photometrical analysis measuring devices
JPS58143254A (en) Substance identifying device
CN111965152A (en) A identification appearance that is used for on-spot biological spot of criminal investigation to detect
JP2005331419A (en) Microscopic spectral measuring instrument
RU2072515C1 (en) Multichannel x-ray element composition analyzer
RU2251668C2 (en) Spectrometer