JPS6058721A - Ad converting circuit - Google Patents

Ad converting circuit

Info

Publication number
JPS6058721A
JPS6058721A JP16591683A JP16591683A JPS6058721A JP S6058721 A JPS6058721 A JP S6058721A JP 16591683 A JP16591683 A JP 16591683A JP 16591683 A JP16591683 A JP 16591683A JP S6058721 A JPS6058721 A JP S6058721A
Authority
JP
Japan
Prior art keywords
output
current
circuit
current source
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16591683A
Other languages
Japanese (ja)
Other versions
JPS6354250B2 (en
Inventor
Hisayoshi Masuda
増田 久喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16591683A priority Critical patent/JPS6058721A/en
Publication of JPS6058721A publication Critical patent/JPS6058721A/en
Publication of JPS6354250B2 publication Critical patent/JPS6354250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/52Input signal integrated with linear return to datum

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To utilize advantages of both systems and to attain ease of variable resolution by combining the charge balance type and the feedback for pulse width modulation system. CONSTITUTION:When a clock pulse is fed to a frequency division circuit 9C, a signal BASE2 having a period 2<5> times the clock period and a signal CONTROL having a period 2<5> times thereof is produced to a frequency divider circuit 9C'. A switch 11 is changed over at an equal time interval by the signal BASE2. On the other hand, an output of a comparator 3 is sampled, stored in an FF4 and the output changes over the current of a current source 6 to 1r and 0. The output current of current sources 6, 12 changed over in this way and a current proportional to a voltage Ea to be converted are added and integrated by an integration device 2 and its output is changed as an INT2 in the Figure. In this case, conversion data Ed counting an output pulse AND2 of an AND gate 7 by a counter 8 is outputted. The resolution of 10 bits is provided in this example.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、アナログ信号をディジタル信号に変換するA
D変換回路、特に積分器全利用する積分形AD変換回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an A
This invention relates to a D conversion circuit, particularly an integral type AD conversion circuit that fully utilizes an integrator.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

AD変換回路は種々の形式のものがあシ、積分形に最も
近いものとして電荷平衡形AD変換器及び帰還形・ぐル
ス幅変調方式のAD変換器がある。
There are various types of AD conversion circuits, and the ones closest to the integral type include a charge balance type AD converter and a feedback type/Grus width modulation type AD converter.

まず、電荷平衡形AD変換器について第1図、第2図及
び第3図を参照しながら説明する。第1図及び第2図に
おいて、1は被変換電圧Eaを受ける・ぐッ7ア増幅器
、2は積分器であシ、演算増幅器op、コンデンサC1
抵抗Rなどによ多構成されて込る。3は積分出力電圧を
基準電位(ここではOV)と比較する電圧比較器、4は
ノリツブフロップ、5は電流スイッチで、前記フリツノ
フロツノ4のQ出力によシミ流をIrか、零に切換える
ものであシ、第2図では概略的にスイッチ記号として表
示している。
First, a charge-balanced AD converter will be explained with reference to FIGS. 1, 2, and 3. In Figures 1 and 2, 1 is an amplifier receiving the voltage to be converted Ea, 2 is an integrator, an operational amplifier OP, and a capacitor C1.
It is composed of many resistors such as R. 3 is a voltage comparator that compares the integrated output voltage with a reference potential (OV in this case), 4 is a control flop, and 5 is a current switch, which switches the stain current to Ir or zero according to the Q output of the above-mentioned flip-flop 4. In FIG. 2, it is schematically shown as a switch symbol.

6は定電流Ii生じる第1の電流源、7はりロックパル
スと前記ノリツブフロップ4のQ出力との論理積をとる
アンドダート、8はカウンタ、9はタイムペース設定回
路(分周回路)である。
6 is a first current source that generates a constant current Ii; 7 is an AND/DART operation that calculates the AND of the lock pulse and the Q output of the Noritsubu flop 4; 8 is a counter; and 9 is a time pace setting circuit (frequency dividing circuit). be.

即ち、被変換電圧Effi抵抗Rにより電流に変換し、
電流源6の電流Irまたは零と加算して、更に積分する
。この積分出力を電圧比較器3で基準電位(Ov)と比
較しその結果全クロックi9ルスによシサンプリングし
、ノリツブフロップ4に保持させ、その出力によシミ流
源6の電流全二つの値(Irと0)の間で切換えるよう
に動作させ、離散フィードバック系を構成している。こ
の構成により、積分器2の積分コンデンサCに蓄積され
る電荷の時間平均値が零となるように動作するため、電
荷平衡形と呼ばれている。
That is, the voltage to be converted Effi is converted into a current by the resistor R,
It is added to the current Ir of the current source 6 or zero, and further integrated. This integrated output is compared with the reference potential (Ov) by the voltage comparator 3, and the result is sampled by the entire clock i9 pulse, held in the Noritub flop 4, and the output is used to control the current of the spot current source 6. It operates so as to switch between values (Ir and 0), and constitutes a discrete feedback system. This configuration operates so that the time average value of the charge accumulated in the integrating capacitor C of the integrator 2 becomes zero, and is therefore called a charge-balanced type.

い1、ノリツブフロップ4の出力の平均デユーティ−レ
シオtDとすると、平衡状態では入力電圧EaがR8・
Ir−Dに等しくなるため、タイムペース設定回路9の
設定時間の間、7リツノフロツプ4の出力とクロックパ
ルスCPの論理積であるアンドグードアの出力全カウン
タ8で計数し、デユーティ−レシオDffi測定するこ
とによシ、変換データE−燗ている。
1. Assuming that the average duty ratio of the output of the Noritsu flop 4 is tD, the input voltage Ea is R8·
In order to be equal to Ir-D, during the set time of the time pace setting circuit 9, count the outputs of the AND Goodor, which is the logical product of the output of the 7 ritsunoflop 4 and the clock pulse CP, by the total counter 8, and measure the duty ratio Dffi. By the way, the conversion data E-warm.

この場合、電流源6の切換え全クロックCPに同期して
行っているため、入力電圧と電流源6の差による残留電
荷が積分器2に蓄積される。
In this case, since the switching of the current source 6 is performed in synchronization with the full clock CP, residual charge due to the difference between the input voltage and the current source 6 is accumulated in the integrator 2.

このため、第3図に示す積分器2の出力INTφの平均
電圧は少しずつ変化する。従って、タイムペースの長さ
を長くすれば変換分解能は向上する。
Therefore, the average voltage of the output INTφ of the integrator 2 shown in FIG. 3 changes little by little. Therefore, increasing the length of the time pace improves the conversion resolution.

このように電荷平衡形AD変換器は分解能全容易に変え
得るという利点を有するが、次のような欠点がある。
Although the charge-balanced AD converter has the advantage of being able to easily change the resolution, it has the following drawbacks.

(、) デユーティ−レシオDが0.5付近の場合、電
流源6がクロック周波数で切換えられるため、使用する
積分器2はかなシ高周波特性にすぐれたものが必要とな
る。
(,) When the duty ratio D is around 0.5, the current source 6 is switched at the clock frequency, so the integrator 2 used needs to have excellent high frequency characteristics.

(b) rニーティーレシオDが0または1に近い場合
には、積分器2の出力波形は一方向が急激で、他方向が
非常に緩やかな時間変化となム緩やかな時間変化を示す
側では比較器3の不感帯の影wi受けるとか、入力信号
が小さい場合には比較器3のスイッチング時間が長くな
ることによる影響を受ける。また、入力信号によシ変換
中の電流源の切換え回数が異なるため、電流スイッチ5
0オンとオフの切換え時間の差が直線性に影41を与え
る。
(b) When the r-neity ratio D is close to 0 or 1, the output waveform of the integrator 2 has a sharp time change in one direction and a very gradual time change in the other direction. In this case, it is affected by the dead zone of the comparator 3, or by the longer switching time of the comparator 3 when the input signal is small. In addition, since the number of times the current source is switched during conversion varies depending on the input signal, the current switch 5
0 The difference in switching time between on and off gives a shadow 41 to the linearity.

次に帰還パルス幅変調方式のAD変換器を第4図及び第
5図に基づいて説明する。このAD5− 変換回路は、第4図のように比較器3の出力をクロック
パルスCPでザンプリングすることなく第1の電流源6
を切換えることと、第1の電流源6の電流■ よシも大
きな絶対値を有し、かつ等しい値の正負の電流I、−I
’を出力する第II 2の電流源12を設け、これを第2の電流スイッチ11
′?c介して積分器2に接続したこと、タイムペース設
定回路を回路9A、9Bの2段に分けてその中間よシ抽
出した信号BASEIで前記第2の電流スイッチ11を
デユーティ−比50饅で切換え、その周期全変換時間と
するようにしたことが第1図と異なる。
Next, a feedback pulse width modulation type AD converter will be explained based on FIGS. 4 and 5. This AD5- conversion circuit converts the output of the comparator 3 into the first current source 6 without sampling it with the clock pulse CP as shown in FIG.
The current of the first current source 6 has a large absolute value and equal positive and negative currents I, -I.
A second current source 12 is provided which outputs
′? The time pace setting circuit is divided into two stages of circuits 9A and 9B, and the second current switch 11 is switched at a duty ratio of 50 with the signal BASEI extracted from the middle. , is different from FIG. 1 in that the period is set to be the total conversion time.

この場合も、比較器3の出力のデユーティ−レシオiD
とすると、入力電圧E1はR6・■1・Dに等しくなる
が、計数ノfルスと比較器3出力の変化は非同期で行わ
れるため、+1カウント分以内の誤差が第2の電流源1
2の切換え周期当た多発生する。従って、変換時間は必
ず第2の電流源12の切換え周期としなければならない
In this case as well, the duty ratio iD of the output of comparator 3
Then, the input voltage E1 becomes equal to R6・■1・D, but since the change in the count nolus and the output of the comparator 3 are performed asynchronously, an error within +1 count is caused by the second current source 1.
This occurs frequently every 2 switching cycles. Therefore, the conversion time must always correspond to the switching period of the second current source 12.

例えば、−第4図でカウンタ8の計数時間全8−6= 倍長くしたとしても、変換結果は1回当たりの誤差の8
倍の誤差を持ってしまうため、得られるデータは単に1
倍の場合の8倍の値となるだけで分解能は向上しない。
For example, even if the total counting time of counter 8 in Figure 4 is increased by 8-6 = times, the conversion result will be 8 times the error per time.
Since the error is twice as large, the obtained data is simply 1
The value is only 8 times the value in the case of double, and the resolution does not improve.

これは、第5図における信号SWIの1周期での誤差(
斜線部分)が次の周期でも同量発生してしまうためであ
る。
This is due to the error (
This is because the same amount of the shaded portion) will occur in the next cycle as well.

その点、第2図、第3図に示す電荷平衡形AD変換回路
では、電流源の切換えがクロックと同期して行われるた
め、誤差は計数時間の増加によシ減少し、±1カウント
の誤差以内となる。これに対し、帰還形パルス幅変調方
式のAD変換回路では誤差が大きくなる。
On the other hand, in the charge-balanced AD conversion circuits shown in Figures 2 and 3, the switching of the current source is performed in synchronization with the clock, so the error decreases as the counting time increases, and the error is reduced by ±1 count. It will be within the error. On the other hand, an AD conversion circuit using a feedback pulse width modulation method has a large error.

従って、第2の電流源12の切換え周期は変換時間と等
しくする必要があυ、この種AD変換回路を積分器出力
全零とするように動作させる離散時間フィードバック系
と考えた場合には、フィードバックをAD変換中2回行
うのみであるため、被変換信号である入力電圧が変化し
た場−8−ヲ考えると、正確なAD変換値が得られるよ
うになるまでに必要な時間は、同一のクロック周波数で
動作する電荷平衡形AD変換回路に比べて遅くなる。
Therefore, the switching period of the second current source 12 must be equal to the conversion time.If this type of AD conversion circuit is considered as a discrete time feedback system that operates so that the integrator output is all zero, Feedback is only performed twice during AD conversion, so if the input voltage, which is the signal to be converted, changes, the time required to obtain an accurate AD conversion value will be the same. This is slower than a charge-balanced AD conversion circuit that operates at a clock frequency of .

このように帰還形・千ルス幅変調方式のAD変換回路は
、可変分解能とすることが難しく、あえて可変とする場
合には回路構成が複雑となシ、また、入力電圧が変化し
た場合、正しい変換結果が得られる葦での時間が長いと
いった欠点がある。
In this way, it is difficult to make the AD conversion circuit of the feedback type/thousand width modulation method variable resolution, and if the resolution is made variable, the circuit configuration will be complicated. The drawback is that it takes a long time to obtain the conversion results.

ただし、積分器20入力電流の符号変化はII DII
rlとしているため、2回となシ、積分器20入力周波
数は低くなる。また、積分器出力の時間変化速度もII
 I−IIrIの値によ)一定速度以上で変化するため
、比較器30入力電圧はクロックの1周期内で一定値以
上の値となシ、不感帯の影響などは電荷平衡形に比べて
少なくなる。更に、スイッチのオンとオフの切換え時間
の差の影響は切換え回数が2回と一定であるため、直線
性に影vを与えることはないといった利点がある。
However, the sign change of the integrator 20 input current is II DII
rl, the input frequency to the integrator 20 becomes lower for the second time. Also, the time rate of change of the integrator output is II
(depending on the value of I-IIrI), the input voltage to the comparator 30 must not exceed a certain value within one clock cycle, and the effects of dead zones are less compared to the charge-balanced type. . Furthermore, since the influence of the difference in switching time between on and off of the switch is constant, with the number of switching times being two, there is an advantage that it does not affect linearity v.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電荷平衡形と帰還形パルス幅変調方式
の長所を活かし、かつ分解能の可変が容易なAD変換回
路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an AD conversion circuit that takes advantage of the charge balance type and feedback pulse width modulation methods and whose resolution can be easily varied.

〔発明の概要〕[Summary of the invention]

本発明に係るAD変換回路は、二つの値の電流を出力す
る第1の電流源及び絶対値が等しい正負の電流を出力す
る第2の電流源の出力電流と被変換電圧に比例した電流
を積分器で加算積分し、その出力電圧と基準電位を電圧
比較器で比較し、その結果を一定周期のクロックでサン
プリングしてフリップフロップに記憶する一方、前記ク
ロックを分周回路で分周しその出力によシ前記第2の電
流源の電流を等時間間隔で切換えるとともに、前記第1
の電流源全前記フリップフロップの出力で切換えて帰還
させ、前記フリップフロップの出力とクロックの論理積
出力であるノクルスを前記分周回路の出力の周期の整数
倍の時間、カウンタで計数し、AI)変換データとして
出力するものである。
The AD conversion circuit according to the present invention has a first current source that outputs currents of two values, a second current source that outputs positive and negative currents with equal absolute values, and a current that is proportional to the voltage to be converted. An integrator performs addition and integration, the output voltage and a reference potential are compared with a voltage comparator, and the result is sampled using a constant cycle clock and stored in a flip-flop, while the clock is divided by a frequency divider circuit. The current of the second current source is switched at equal time intervals according to the output, and the current of the first current source is switched at equal time intervals.
All of the current sources are switched and fed back by the output of the flip-flop, and the Noculus, which is the AND output of the output of the flip-flop and the clock, is counted by a counter for a time that is an integral multiple of the period of the output of the frequency divider circuit, and the AI ) is output as converted data.

9− 〔発明の実施例〕 第6図は本発明の一実施例を示すもので、1は被変換電
圧Eaを受けるバッファ増幅器、2は積分器であり、前
記バッファ増幅器1の出方を前記被変換電圧E8に比例
した電流に変換する抵抗R6、演算増幅器op、積分コ
ンデンサCなどによ多構成している。3はこの積分器2
の出方電圧と基準電位C0V)’r:比較する電圧比較
器4はこの比較器3の出力を一定周期のクロックパルス
でサンプリングし、記憶するフリップフロップ、5は第
1の電流スイッチ、6は二つの値、(例えばIrと零)
の電流全出方するmlの電流源であり、その切換えは前
記スイッチ5によって行う。
9- [Embodiment of the Invention] FIG. 6 shows an embodiment of the present invention, in which 1 is a buffer amplifier receiving the voltage to be converted Ea, and 2 is an integrator. It is composed of a resistor R6 for converting a current proportional to the voltage to be converted E8, an operational amplifier OP, an integrating capacitor C, and the like. 3 is this integrator 2
output voltage and reference potential C0V)'r: The voltage comparator 4 to be compared samples the output of this comparator 3 with a clock pulse of a constant period and stores it in a flip-flop, 5 is a first current switch, and 6 is a flip-flop. two values, (e.g. Ir and zero)
It is a current source of ml that outputs a total current of 100 ml, and the switching is performed by the switch 5.

7は前記フリップフロップ4の出力とクロックツ平ルス
の論理積をとるアンドゲート、8はこのダートの出力パ
ルスを計数するカウンタ、9C及び9 C’はタイムベ
ース設定回路(分周回路)であわ、例えば(A)5の分
局比として縦続接続し、クロ、ツク・fルス全分周して
中間より後述10− の第2の電流源の電流切換えに供する信号BASE2を
取出し、後段の回路9C’の出力を前記カウンタ8を制
御する信号C0NTR0Lとしている。即ち、第2の電
流源の切換えはクロック周期の25倍の周期で行い、変
換時間は更にその2倍としている。
7 is an AND gate that performs the logical product of the output of the flip-flop 4 and the clock pulse; 8 is a counter that counts the output pulses of this dart; 9C and 9C' are time base setting circuits (frequency dividing circuits); For example, (A) is connected in cascade with a division ratio of 5, the clock, clock and f pulses are completely frequency-divided, and the signal BASE2 used for switching the current of the second current source 10-, which will be described later, is taken out from the middle, and the subsequent circuit 9C' The output of the counter 8 is used as a signal C0NTR0L for controlling the counter 8. That is, the switching of the second current source is performed at a cycle that is 25 times the clock cycle, and the conversion time is further doubled.

1ノは第2の電流スイッチ、12は第2の電流源であシ
、絶対値が等しい正負の電流I、 、 −1,ffi出
力する。この第2の電流源12の電流切換えは前記信号
BASE Rを制御信号とする第2の電流スイッチ11
によって等時間間隔で行うようにしている。
1 is a second current switch, 12 is a second current source, and outputs positive and negative currents I, , -1,ffi having equal absolute values. The current switching of this second current source 12 is performed by a second current switch 11 using the signal BASE R as a control signal.
This is done at equal time intervals.

なお、電流源は、第1図に示すものと同様なものを用込
るか、あるいは第7図に示すようにCMOSバッファ1
3基準となる電圧ダイオード14抵抗15などによシミ
光スイツチを含めた構成とする。
Note that the current source may be similar to that shown in FIG. 1, or may be a CMOS buffer 1 as shown in FIG.
The configuration includes a voltage diode 14, a resistor 15, etc., which serve as three standards, and a stain light switch.

次に動作について述べる。クロックツ4ルスがタイムペ
ース設定回路9Cに加わると、その出力としてクロック
周期の25倍の周期の信号BABE、?が生じ(第8図
参照)、その後段のタイムペース設定回路9 C’には
更にその25倍の周期の信号C0NTR0Lが生じる。
Next, we will discuss the operation. When the clock pulse is applied to the time pace setting circuit 9C, its output is a signal BABE, ? with a period 25 times the clock period. is generated (see FIG. 8), and a signal C0NTR0L having a period 25 times that period is further generated in the time pace setting circuit 9C' at the subsequent stage.

信号BASE 2によシ第2のスイッチ11が等時間間
隔で切換わる。つまり、第2の電流源12の電流I、−
I の切換えが行8 B われる。
The signal BASE 2 switches the second switch 11 at equal time intervals. That is, the current I of the second current source 12, -
A switch of I is made in line 8B.

一方、比較器3の出刃がクロックによりサンプリングさ
れ、フリッノフロップ4に記憶されておシ、フリッノフ
ロップ4の出力がダート制御信号としてアンドゲート7
に、スイッチ制御信号SW2として第1のスイッチ5に
それぞれ供給され、これにより第1の電流源6の電流切
換え、つまりIrと零の切換えが行われる。
On the other hand, the output of the comparator 3 is sampled by the clock and stored in the Flinno flop 4, and the output of the Flinno flop 4 is used as a dart control signal at the AND gate 7.
The signals are respectively supplied to the first switches 5 as switch control signals SW2, thereby switching the current of the first current source 6, that is, switching between Ir and zero.

このような電流源6,120電流切換えに応じた両電流
源6,12の出力電流と被変換電圧Eに比例した電流が
積分器2で加算積分され、その出力J′l:第8図のI
NT 2のように変化する。
The output currents of the current sources 6 and 12 corresponding to the current switching of the current sources 6 and 120 and the current proportional to the converted voltage E are added and integrated by the integrator 2, and the output J'l is as shown in FIG. I
Changes like NT 2.

このとき、アンドゲート7の出カッfルスAND2がカ
ウンタ8で計数され変換データE、が出力される。この
実施例では10ビツトの分解能金持つことになる。
At this time, the output pulse AND2 of the AND gate 7 is counted by the counter 8 and converted data E is output. This embodiment has a resolution of 10 bits.

なお、上記実施例では、第1の電流源6は工、と零との
2値の電流を出力するものとしたが、■ と−工 とす
れば正負の入力電圧に対するADr r 変換となシ、また、一般に■yl# Ir2の2値電流
とすれば、R3・工r1とR8・■、2の間の電圧を変
換することになる。但し、積分器から電流をシンクする
向きを正とした場合である。
In the above embodiment, the first current source 6 outputs a binary current of 1 and 0, but if 2 and 2 are used, then ADr r conversion for positive and negative input voltages is possible. , In general, if it is a binary current of ■yl#Ir2, then the voltage between R3·r1 and R8·■,2 will be converted. However, this is the case where the direction of sinking the current from the integrator is positive.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、積分器入力波形の基本周期はクロック
周期の25倍であシ、また)積分器出力の時間変化量も
IIIII−II 1の値に応じて一定値以上が確保さ
れるため、電荷平衡形AD変換回路の積分器及び比較器
の条件が緩和される。
According to the present invention, the basic period of the integrator input waveform is 25 times the clock period, and the amount of change in the integrator output over time is also ensured to be at least a certain value depending on the value of III-II1. , the conditions for the integrator and comparator of the charge-balanced AD conversion circuit are relaxed.

また、電流源の切換え回数は共に25回と一定であり、
オン、オフの時間差が直線性に影響を及ぼすことはなく
、シかも入力信号が変化した場合の応答は、変換時間の
長さのうちで26回積分器の出力を零へ収束させるフィ
ートノ9ツクを行うため、帰還形ノ音ルス幅変調方式の
AD変換回13− 路よりも速い。更に、第2の電流源の切換え周期(==
: 25 Xクロ、り周期)内で発生する残留電荷は、
クロックと同期して切換えているため、逐次補正されて
最終的に±1カウント以内である。
In addition, the number of times the current sources are switched is constant at 25 times,
The on/off time difference does not affect the linearity, and the response when the input signal changes is as follows: the integrator output converges to zero 26 times during the conversion time. Therefore, it is faster than the AD conversion circuit 13 using the feedback pulse width modulation method. Furthermore, the switching period of the second current source (==
: The residual charge generated within 25
Since it is switched in synchronization with the clock, it is successively corrected and the final result is within ±1 count.

換言すれば、電荷平衡形と帰還形ノ4ルス幅変調方式の
欠点を取シ除き、両者の長所を取シ入れたことKなる。
In other words, the drawbacks of the charge balance type and feedback type pulse width modulation systems are eliminated, and the advantages of both are incorporated.

しかも、カウンタの計数長及びタイムペースの後段の計
数長を変更するだけで分解能を変えることが可能であり
、比較的簡単に可変分解能の構成とすることができる。
Furthermore, the resolution can be changed by simply changing the counting length of the counter and the counting length of the latter stage of the time pace, and a variable resolution configuration can be achieved relatively easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電荷平衡形AD変換回路の基本構成を示すプロ
、り図、第2図は同変換回路の概略構成を示すブロック
図、第3図は同変換回路の各部の波形図、第4図は帰還
ノ4ルス幅変調方式のAD変換回路の概略構成を示すブ
ロック図、第5図は同変換回路の各部の波形図、第6図
は本発明に5係るAD変換回路の一実施例を示すブロッ
ク図、第7図は同実施例における電流源の14− −例を示すブロック図、第8図は同実施例の動作説明の
ための各部の波形図である。 2・・・積分器、3・・・電圧比較器、4・・・7す、
プフロッグ、5・・・第1の電流スイッチ、6・・・第
1の電流源、7・・・アンドf−)、8・・・カウンタ
、9C及び9 C’・・・タイムベース設定回路(分周
回路)、1ノ・・・第3の電流スイッチ、12・・・第
2の電流源。 出願人代理人 弁理士 鈴 江 武 彦15− 弓 田
Figure 1 is a schematic diagram showing the basic configuration of a charge-balanced AD conversion circuit, Figure 2 is a block diagram showing a schematic configuration of the conversion circuit, Figure 3 is a waveform diagram of each part of the conversion circuit, and Figure 4 is a diagram showing the basic configuration of the charge-balanced AD conversion circuit. The figure is a block diagram showing a schematic configuration of an AD conversion circuit using the feedback pulse width modulation method, FIG. 5 is a waveform diagram of each part of the conversion circuit, and FIG. FIG. 7 is a block diagram showing an example of the current source in the same embodiment, and FIG. 8 is a waveform diagram of each part for explaining the operation of the same embodiment. 2... Integrator, 3... Voltage comparator, 4... 7th,
Pfrog, 5... first current switch, 6... first current source, 7... and f-), 8... counter, 9C and 9 C'... time base setting circuit ( (frequency dividing circuit), No. 1: third current switch, No. 12: second current source. Applicant's agent Patent attorney Takehiko Suzue 15- Yumida

Claims (2)

【特許請求の範囲】[Claims] (1)二つの値の電流を出力する第1の電流源と、絶対
値が等しい正負の電流を出力する第2の電流源と、被変
換電圧に比例した電流と前記第1及び第2の電流源の出
力電流を加算積分する積分器と、この積分器の出力電圧
と基準電位とを比較する電圧比較器と、この電圧比較器
の出力を一定周期のクロックパルスでサンプリングし記
憶するフリップ70ツブと、前記クロックパルスを分周
する分周回路と、前記フリップフロップの出力を制御信
号として前記クロックパルスの通過、阻止を制御するダ
ート回路と、このダート回路の出力パルスを計数するカ
ウンタとを備え、前記第2の電流源の電流を前記分周回
路の出力信号によシ等時間間隔で切換えるとともに、前
記第1の電流源の電流を前記クリップフロッグの出力で
切換えて帰還させ、前記ダート回路の出力パルスを前記
分周回路の出方の周期の整数債の時間、前記カウンタで
計数し、AD変換データとして出力することに%徴とす
るAD変換回路。
(1) A first current source that outputs two current values, a second current source that outputs positive and negative currents with equal absolute values, and a current proportional to the voltage to be converted and the first and second current sources that output two values of current. An integrator that adds and integrates the output current of a current source, a voltage comparator that compares the output voltage of this integrator with a reference potential, and a flip 70 that samples and stores the output of this voltage comparator with a clock pulse of a constant period. a frequency divider circuit that divides the frequency of the clock pulse, a dart circuit that controls passing or blocking of the clock pulse using the output of the flip-flop as a control signal, and a counter that counts the output pulses of the dart circuit. The current of the second current source is switched at equal time intervals according to the output signal of the frequency dividing circuit, and the current of the first current source is switched and fed back by the output of the clip frog, An AD conversion circuit that counts output pulses of the circuit in the counter for an integer period of the output period of the frequency dividing circuit and outputs the result as AD conversion data.
(2)前記カウンタ及び前記分周回路の出刃の周期の整
数倚の時間幅のカウンタ制御信号を作3分周回路として
、可変計数長のものを用いた特許請求の範囲第1項記載
のAD変換回路。
(2) The AD according to claim 1, wherein the counter and the frequency divider circuit generate a counter control signal with a time width that is an integer of the cutting edge period.As the frequency divider circuit, a variable counting length is used. conversion circuit.
JP16591683A 1983-09-09 1983-09-09 Ad converting circuit Granted JPS6058721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16591683A JPS6058721A (en) 1983-09-09 1983-09-09 Ad converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16591683A JPS6058721A (en) 1983-09-09 1983-09-09 Ad converting circuit

Publications (2)

Publication Number Publication Date
JPS6058721A true JPS6058721A (en) 1985-04-04
JPS6354250B2 JPS6354250B2 (en) 1988-10-27

Family

ID=15821443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16591683A Granted JPS6058721A (en) 1983-09-09 1983-09-09 Ad converting circuit

Country Status (1)

Country Link
JP (1) JPS6058721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566766U (en) * 1992-02-20 1993-09-03 株式会社三協精機製作所 Roller feeder with cleaning mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640536A (en) * 1979-09-10 1981-04-16 Hitachi Cable Ltd Injection machine for long rubber, plastic body
JPS5749866A (en) * 1980-09-09 1982-03-24 Yokogawa Hokushin Electric Corp Analog-digital converter and digital voltmeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640536A (en) * 1979-09-10 1981-04-16 Hitachi Cable Ltd Injection machine for long rubber, plastic body
JPS5749866A (en) * 1980-09-09 1982-03-24 Yokogawa Hokushin Electric Corp Analog-digital converter and digital voltmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566766U (en) * 1992-02-20 1993-09-03 株式会社三協精機製作所 Roller feeder with cleaning mechanism

Also Published As

Publication number Publication date
JPS6354250B2 (en) 1988-10-27

Similar Documents

Publication Publication Date Title
AU668055B2 (en) Analog to digital converter
US4395701A (en) High speed integrating analog-to-digital converter
US4587477A (en) Binary scaled current array source for digital to analog converters
WO2000049713A1 (en) Digital pulse width modulator
US4984254A (en) Frequency counter
US5410310A (en) Method and apparatus for extending the resolution of a sigma-delta type analog to digital converter
EP0534638A1 (en) Low jitter clock phase adjust system
US4876699A (en) High speed sampled data digital phase detector apparatus
US5321369A (en) Wide-range, wide-bandwidth, high-speed phase detector
JPS6058721A (en) Ad converting circuit
US4389637A (en) Digital to analog converter
US4636773A (en) Binarily weighted pulse width digital-to-analog converter
EP0162496B1 (en) Phase-locked loop with switchable phase detector
US4851844A (en) D/A converter with switched capacitor control
US4542332A (en) Precision current-source arrangement
US5357248A (en) Sampling rate converter
US11720066B2 (en) Time-to-digital converter and phase-locked loop
US5196804A (en) Phase detectors
GB2227381A (en) Analogue to digital converters
JPS6022681Y2 (en) Digital to analog converter
US4470019A (en) Rate multiplier square root extractor with increased accuracy for transmitter applications
CA1304457C (en) Narrow range digital clock circuit
JPS5817728A (en) Composite type analog-to-digital converter
RU2052891C1 (en) Sawtooth voltage generator
JPS6359217A (en) Frequency synthesizer