JPS6058696A - Bi-stable semiconductor laser - Google Patents

Bi-stable semiconductor laser

Info

Publication number
JPS6058696A
JPS6058696A JP16779883A JP16779883A JPS6058696A JP S6058696 A JPS6058696 A JP S6058696A JP 16779883 A JP16779883 A JP 16779883A JP 16779883 A JP16779883 A JP 16779883A JP S6058696 A JPS6058696 A JP S6058696A
Authority
JP
Japan
Prior art keywords
layer
inp
active layer
semiconductor
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16779883A
Other languages
Japanese (ja)
Other versions
JPH0422034B2 (en
Inventor
Yuichi Odagiri
小田切 雄一
Isao Kobayashi
功郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP16779883A priority Critical patent/JPS6058696A/en
Publication of JPS6058696A publication Critical patent/JPS6058696A/en
Publication of JPH0422034B2 publication Critical patent/JPH0422034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Abstract

PURPOSE:To improve the yield of the titled device by etching of the electrode close to the active layer to the location before the etched layer by a method wherein semiconductor etching stop layers of the same conductivity type and different material compositions are laminated on the clad layer immediately on the active layer. CONSTITUTION:The p-InP clad layer 11, InGaAsP active layer 12, and p-InP clad layer 13 are laminated on an n-InP substrate 10, and the first and second grooves 14 and 15 are formed by normal photolithography. Next, the first current block layer 16 of p-InP and the second current block layer 17 of n-InP are successively formed. At this time, layers 16 and 17 are not grown on a mesa stripe 18, the grooves 14 and 15 being completely filled after growth of the layer 17, and the periphery on the stripe 18 being then formed into a flat recess. Then, the p-InGaAsP etching stop layer 19 is formed, and the yield of the title device is improved by etching to the location before the layer 19, the third groove 30 that splits the P type electrode 22 close to the active layer 12 into two or more in the direction of the resonator axis.

Description

【発明の詳細な説明】 この発明は、光交換・光情報処理に用いる光機能素子と
して最も重要な構成要素の一つである双安定動作を示す
双安定半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bistable semiconductor laser exhibiting bistable operation, which is one of the most important components as an optical functional element used for optical exchange and optical information processing.

光機能素子の中でも光論理、光スィッチ、光記憶、光増
幅、光信号波形の整形等幅広い応用範囲を有する双安定
素子は、光の本質的な特徴を活かした素子として期待さ
れておシ、各所でその基礎検討が進められている。
Among optical functional devices, bistable devices have a wide range of applications such as optical logic, optical switches, optical storage, optical amplification, and optical signal waveform shaping, and are expected to be devices that take advantage of the essential characteristics of light. Basic studies are underway in various places.

双安定素子としては電気光学結晶や液晶等各種の材料で
その動作が確認されているが、特に半導体材料を用いた
ものがその高速性、集積化の可能性を最も良く活かせる
ものとして注目されている。
The operation of bistable devices has been confirmed using various materials such as electro-optic crystals and liquid crystals, but devices using semiconductor materials are attracting particular attention as they can best take advantage of their high speed and integration potential. ing.

これについては、例えばランシャー氏(G、J。Regarding this, see, for example, Mr. Ransher (G, J.

LASHER)によシソリッド・ステイト・エレクトロ
ニクス(SOLID−8TATE−ELECTRONI
C8)誌の1964年第7巻707頁に記載された論文
で半導体レーザにおける双安定動作の可能性が理論的に
推定され、後年室温の状態で発振閾値が低く実用レベル
に近いものがロー氏(K、Y、LAU)等によシアブラ
イド・フィツクス・レターズ(APPLIED PHY
SIC8LETTER8)誌の1982年第40巻36
9頁に記載された論文でタンデム型埋め込みへテロ構造
の双安定半導体レーザが報告されている。この半導体レ
ーザでは活性層に近い側の電極が溝によシ2分されてお
)、活性層での利得が損失金上部る光増幅領域と、電流
注入されないために損失が利得を上部る可飽和吸収領域
とにわかれている。溝は単に光増幅領域と可飽和吸収領
域を分けるだけのものである。この半導体レーザでは2
分された電極を共通にすると通常の半導体レーザの電流
−光出力特性を示し従って双安定特性は生じない。双安
定特性を得るためには可飽和吸収領域への注入電流を減
少させていき、−100pA程度(この場合光増幅領域
へは3QtnA程度の注入電流)にする必要がある。こ
のことは可飽和吸収領域があたかもフォトダイオードの
ような振舞をするものと考えられる。しかしながら可飽
和吸収領域への注入電流が数/JA変動すると、電流−
光出力特性でのヒステリシスの形状、双安定動作を示す
電流幅は大幅に変わってしまう。そのためこの双安定動
作を光機能素子で利用するには、注入電流の制御性を極
めて高める必要がちりた。この対策としては本願の発明
者等が昭和58年に電子通信学会総合全国大会に発表し
、同大会講演論文集分冊4第937.第23頁に記載さ
れたタンデム電極構造ディーシー・ピービーエイチ(D
C−PBH)半導体レーザがある。この双安定半導体レ
ーザでは、溝は単に電極間を分離するだけではなく、湾
直下への注入電流の廻シ込みが抑えられた電流非注入領
域として働いている。そのだめ2分割された電極を共通
にしても溝の存在によシ双安定動作が電流−光出力特性
で観測される。
LASHER) by SOLID-8TATE-ELECTRONI
The possibility of bistable operation in semiconductor lasers was theoretically estimated in a paper published in 1964, Vol. Shear Bride Fixtures Letters (APPLIED PHY) by Mr. (K, Y, LAU) etc.
SIC8LETTER8) magazine, 1982, Volume 40, 36
The paper on page 9 reports a tandem buried heterostructure bistable semiconductor laser. In this semiconductor laser, the electrode on the side closer to the active layer is divided into two parts by a groove); the optical amplification region where the gain in the active layer is higher than the loss; and the optical amplification region where the gain is higher than the loss due to no current injection. It is divided into a saturated absorption region. The groove merely separates the optical amplification region from the saturable absorption region. In this semiconductor laser, 2
If the separated electrodes are made common, the current-optical output characteristics of a normal semiconductor laser will be exhibited, and therefore no bistable characteristics will occur. In order to obtain bistable characteristics, it is necessary to reduce the injection current to the saturable absorption region to about -100 pA (in this case, the injection current to the optical amplification region is about 3QtnA). This is considered to be because the saturable absorption region behaves like a photodiode. However, if the current injected into the saturable absorption region changes by a number/JA, the current -
The shape of hysteresis in the optical output characteristics and the current width that indicates bistable operation will change significantly. Therefore, in order to utilize this bistable operation in optical functional devices, it is necessary to extremely improve the controllability of the injection current. As a countermeasure for this, the inventors of the present application presented their work at the General National Conference of the Institute of Electronics and Communication Engineers in 1981, and published it in Volume 4, Volume 937 of the Proceedings of the Conference. Tandem electrode structure described on page 23
C-PBH) semiconductor laser. In this bistable semiconductor laser, the groove not only separates the electrodes, but also serves as a current non-injection region where injection current is prevented from flowing directly under the bay. However, even if the two divided electrodes are made common, bistable operation is observed in the current-light output characteristics due to the presence of the groove.

また分離された電極への注入電流の組合せによシミ流−
光出力特性でのヒステリシスの形状、双安定動作を示す
電流−光出力特性でのヒステリシスの形状、双安定動作
を示す電流幅を所望の大きさに制御でき、さらに注入電
流の制御性も0.5mA程度の変動幅でよい。しかしな
がらこのような特性を有する双安定半導体レーザの歩留
まシはかならずしも良いとは言えず、その原因が溝を形
成するさいのエツチング深さにあることが最近の実験結
果で明らかとなった。エツチングが不十分の場合は従来
例で示したロー氏等の特性と殆んど差がなく、エツチン
グが過剰となって活性層まで達してしまうとレーザ発振
しなくなってしまう。そのため歩留シを上げるにはエツ
チングによる溝の形成をある適切な深さで止める必要が
あった。
Also, by combining the injection currents to the separated electrodes, the stain current
The shape of the hysteresis in the optical output characteristics, the shape of the hysteresis in the current-optical output characteristics indicating bistable operation, and the current width indicating bistable operation can be controlled to desired magnitudes, and the controllability of the injection current is also 0. A fluctuation range of about 5 mA is sufficient. However, the yield of bistable semiconductor lasers having such characteristics is not necessarily good, and recent experimental results have revealed that the cause of this is the etching depth when forming the grooves. If the etching is insufficient, there is almost no difference from the characteristics of Low et al. shown in the conventional example, and if the etching becomes excessive and reaches the active layer, laser oscillation will no longer occur. Therefore, in order to increase the yield, it was necessary to stop the formation of grooves by etching at a certain appropriate depth.

この発明の目的は双安定動作の歩留少を向上させて均一
な特性を有する双安定半導体レーザを提供することにあ
る。
An object of the present invention is to improve the yield of bistable operation and provide a bistable semiconductor laser having uniform characteristics.

この発明によれば、活性層にまで達する2本のほぼ平行
な第1.第2の溝で形成した活性層を含むメサストライ
プを少なくとも前記メサストライプを少なくとも前記メ
サストライプの上部の半導体層とは異なる導電型の半導
体層で埋め込んだ半導体レーザにおいて、活性層直上の
半導体クラッド層の上層部に同じ導電型で且つ材料組成
の異なル半導体エツチングストップ層を積層し、さらに
活性層に近い側の電極を共振器軸方向に2つ以上に分割
する第3の溝が半導体エツチングストップ層の手前まで
エツチングされていることを特徴とする双安定半導体レ
ーザが得られる。
According to this invention, there are two substantially parallel first... In a semiconductor laser in which a mesa stripe including an active layer formed by a second groove is embedded with at least a semiconductor layer of a conductivity type different from the semiconductor layer above the mesa stripe, a semiconductor cladding layer immediately above the active layer is provided. A semiconductor etching stop layer of the same conductivity type but different material composition is laminated on the upper layer, and a third groove that divides the electrode near the active layer into two or more in the resonator axis direction is the semiconductor etching stop layer. A bistable semiconductor laser is obtained which is characterized in that the layer is etched to the front.

この発明では、共振器軸方向に分割された2つ以上の電
極を持つ半導体レーザにおいて、双安定動作に重要な溝
の形成すなわち溝の幅と深さを再現性よく所望の大きさ
にすることにある。このうち溝の幅は現在通常の7オト
リングラフイツク技術によシ±1μmの精度で形成可能
である。ところが溝の深さに関しては結晶成長後のウエ
ノ・毎に、また同一ウエバ内でも場所毎のばらつきによ
シ活性層から電極までの深さに再現性かや\乏しい。
In this invention, in a semiconductor laser having two or more electrodes divided in the direction of the cavity axis, it is possible to form a groove, which is important for bistable operation, or to make the width and depth of the groove to a desired size with good reproducibility. It is in. The width of the groove can be formed with an accuracy of ±1 .mu.m using the current standard 7-orthotlin graphic technology. However, with regard to the depth of the groove, the reproducibility of the depth from the active layer to the electrode is rather poor due to variations from wafer to wafer after crystal growth or from location to location even within the same wafer.

これを改善するには活性層から電極までの間に周囲の半
導体層とは材料組成の異なる半導体エツチングストップ
層を設けて、第3の溝の形成の際に、半導体エツチング
ストップ層の手前までの半導体層を完全に除いてしまえ
ばよい。このような処理を行なえば溝から活性層までの
深さはほぼ一定となシ、特性上のばらつきを少なくする
ことができる。活性層から溝までの深さが1pm以下と
なるため、電極から電流非注入領域である荷置下の活性
層への漏れ電流は大幅に減少し双安定動作の再現性はほ
ぼ溝の大きさで決まる。溝幅の制御は容易なので、均一
な特性を有する双安定半導体レーザが高歩留シで得られ
る。
To improve this, a semiconductor etching stop layer with a material composition different from that of the surrounding semiconductor layer is provided between the active layer and the electrode, and when forming the third groove, the etching stop layer is etched to the front of the semiconductor etching stop layer. It is sufficient to completely remove the semiconductor layer. If such processing is performed, the depth from the groove to the active layer will be approximately constant, and variations in characteristics can be reduced. Since the depth from the active layer to the groove is less than 1 pm, the leakage current from the electrode to the active layer under the load, which is the non-current injection area, is significantly reduced, and the reproducibility of bistable operation is almost the same as the groove size. It is determined by Since the groove width can be easily controlled, bistable semiconductor lasers with uniform characteristics can be obtained with high yield.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1スはこの発明の第1の実施例である双安定半導体レ
ーザの斜視図をあられす。プレーナ型の埋め込みへテロ
構造の半導体レーザは、活性層を含むメサストライプを
p及びn型の半導体層で埋め込んだもので、これについ
ては、北村氏等にょシ出願中の発明、特願昭56−16
6666に詳しい。
The first diagram shows a perspective view of a bistable semiconductor laser which is a first embodiment of the present invention. A planar type buried heterostructure semiconductor laser is one in which a mesa stripe including an active layer is buried with p and n type semiconductor layers. -16
I am familiar with 6666.

第1の実施例は以下のようにして製作される。先づ液相
もしくは気相成長法によシ、n−InP基板10上に、
n−InPバッファ層11、ノンドープのInGaAs
P活性層12、P−InPクラッド層13を積層させた
DH基板に、フォトレジストを塗布して通常の7オトリ
ノグラクイツク技術によ多用1.*2の溝14.15を
もつウェハを製作する。次にこのウェハを液相成長技術
によ’)、p−InPの第1の電流ブロック層16、n
−InPの第2の電流ブロック層17を順次形成させる
。この場合メサストライプ18の幅が通常1〜2μmと
狭いため、メサストライプ18上には第1.第2の電流
ブロック層16.17は成長しない。第2の電流ブロッ
ク層17の成長後は、第1.第2の溝14.15が完全
に埋め終シメサストライプ18上部周辺はl’Lぼ平坦
な凹地となる。次にエツチングによる第3溝18の深さ
の制御に重要なp−I nGaAsPエツチングストッ
プ層19、続いてp−InP埋め込み層20、p−In
GaAsP キー221層21を形成させる。結晶成長
後p側のオーミックコンタクトをとるためキャップ層上
にAuZnを蒸着する。
The first embodiment is manufactured as follows. First, by liquid phase or vapor phase growth method, on the n-InP substrate 10,
n-InP buffer layer 11, non-doped InGaAs
A photoresist is coated on the DH substrate on which the P active layer 12 and the P-InP cladding layer 13 are laminated, and the conventional 7-input graphic technique is applied.1. A wafer with *2 grooves 14 and 15 is manufactured. Next, this wafer is deposited with a first current blocking layer 16, n of p-InP using a liquid phase growth technique.
- A second current blocking layer 17 of InP is sequentially formed. In this case, since the width of the mesa stripe 18 is usually narrow, 1 to 2 μm, there is a first stripe on the mesa stripe 18. The second current blocking layer 16.17 is not grown. After the growth of the second current blocking layer 17, the first current blocking layer 17 is grown. When the second grooves 14 and 15 are completely filled, the area around the upper part of the mesa stripe 18 becomes a flat concave area approximately l'L. Next, a p-InGaAsP etching stop layer 19, which is important for controlling the depth of the third groove 18 by etching, is formed, followed by a p-InP buried layer 20, a p-In
A GaAsP key 221 layer 21 is formed. After crystal growth, AuZn is deposited on the cap layer to establish ohmic contact on the p-side.

さらにフォトレジストを塗布して通常のフォトリノグラ
フィック技術とエツチングによシ、p側電極22を共振
器軸方向に2分割されるように第3の溝30を形成させ
る。この場合A u Z n (l−1,K I + 
I 。
Further, a photoresist is applied and a third groove 30 is formed by ordinary photolinographic technology and etching so as to divide the p-side electrode 22 into two in the resonator axis direction. In this case A u Z n (l-1, K I +
I.

の混合液によ)除去され、キャップ層21は硫酸十過酸
化水素系のエツチング液で除去され、さら釦埋め込み層
20は硝酸系のエツチング液で除去される。硝酸系のエ
ツチング液ではInPはエツチングされるがInGaA
sPがエツチングされないため、p−InGaA++P
エツチングストップ層が表面にでるところでエツチング
が停止し第3の溝30が形成さ几る。次いでAuZnを
アロイする。次にn−InP基板10を研磨して120
μm程度の厚さとしたのち、n側のオーミックコンタク
ト用にA u −G e −N i f蒸着し、アロイ
し°Cウェハ製作を終了する。このウェハを通常の弁開
法によシ、第3の溝30によってp側電極22が分割さ
れるようにメサストライプ18に直角に共振器を形成し
て素子が製作される。この素子の2分さfLfc p 
fllU電極22を正、nIIII電極23を負として
バイアスすると1.この素子は電流入力あるいは元入力
に対して安定な2準位をもつ双安定半導体レーザとして
働く。これは次の理由による。この双安定半導体レーザ
では第3の溝30が電流非注入領域となるため、第3の
溝30直下の部分は可飽和吸収領域と考えられる。可飽
和吸収領域とは7オトン密度あるいはキャリア密度が十
分小さいときにはめる有限の大きさを持つ損失として働
き、ある程度大きくなると非線形的に損失が零となる性
質を有するものである。この双安定半導体レーザは埋め
込みへテロ構造であるため、室温で容易に低い動作電流
で働かせることができる。また第3の溝30が可飽和吸
収領域であるから、2分割されたp側電極22への注入
電流を適切に組合わせて、可飽和吸収領域の大きさを変
えることにより双安定動作の幅例えば電流幅を変化させ
ることができる。第1の実施例では2分割されたp側電
極22への注入電流が等しい場合に発振開始の閾値が室
温で40mAでおり、このときの双安定動作を示す電流
幅は10mAであった。またp側電極22への注入電流
を組合わせて、双安定動作を示す電流幅を1〜30mA
の範囲で変化させることができた。
The cap layer 21 is removed with a sulfuric acid/decahydrogen peroxide based etching solution, and the button embedding layer 20 is removed with a nitric acid based etching solution. Nitric acid-based etching solution etches InP, but InGaA etches.
Since sP is not etched, p-InGaA++P
Etching stops when the etching stop layer appears on the surface, and the third groove 30 is formed. Next, AuZn is alloyed. Next, the n-InP substrate 10 is polished to 120
After making the thickness about μm, Au-Ge-Nif is vapor-deposited for the n-side ohmic contact, and alloyed to complete the °C wafer fabrication. This wafer is subjected to a normal valve opening method to form a resonator at right angles to the mesa stripe 18 so that the p-side electrode 22 is divided by the third groove 30, thereby producing an element. Half length of this element fLfc p
When the flIU electrode 22 is biased as positive and the nIII electrode 23 is biased as negative, 1. This device works as a bistable semiconductor laser with two levels that are stable with respect to current input or source input. This is due to the following reason. In this bistable semiconductor laser, the third groove 30 serves as a current non-injection region, so the portion directly below the third groove 30 is considered to be a saturable absorption region. The saturable absorption region acts as a loss having a finite magnitude when the 7-oton density or carrier density is sufficiently small, and has the property that when it becomes large enough, the loss nonlinearly becomes zero. Because this bistable semiconductor laser is a buried heterostructure, it can easily be operated at room temperature and with low operating currents. Furthermore, since the third groove 30 is a saturable absorption region, by appropriately combining the currents injected into the p-side electrode 22 divided into two and changing the size of the saturable absorption region, the width of the bistable operation can be increased. For example, the current width can be changed. In the first example, when the currents injected into the two divided p-side electrodes 22 are equal, the threshold for starting oscillation is 40 mA at room temperature, and the current width indicating bistable operation at this time is 10 mA. In addition, by combining the current injected into the p-side electrode 22, the current width indicating bistable operation is set to 1 to 30 mA.
could be varied within a range.

これらの特性は第3の溝30から活性層重2までの深さ
が各素子とも同程度になるよう改善されたため、従来の
ようなばらつきのある特性ではなく比較的特性のそろっ
たものが得られるようになった。この実施例の双安定半
導体レーザの大きさはメサストライプ幅1.5μm2つ
のp側電極22の長さは各々100/’J150/’F
n、第3の溝300幅は251’mである。結晶成長の
様子は、成長方法や成長条性等によシ大幅に変わるので
、それらとともに適切な寸法を採用すべきことは言うま
でもない。
These characteristics have been improved so that the depth from the third groove 30 to the active layer layer 2 is approximately the same for each element, so instead of having characteristics that vary as in the past, it is possible to obtain devices with relatively uniform characteristics. Now you can. The size of the bistable semiconductor laser of this embodiment is mesa stripe width 1.5 μm, and the lengths of the two p-side electrodes 22 are each 100/'J150/'F.
n, the width of the third groove 300 is 251'm. Since the appearance of crystal growth varies greatly depending on the growth method, growth line characteristics, etc., it goes without saying that appropriate dimensions should be adopted in conjunction with these factors.

次に第2図はこの発明の第2の実施例である双安定半導
体レーザの断面図をあられす。この第2の実艶例では、
第1の実施例で形成させたp−InGaAsPエツチン
グストップ層工9の成長層重をn−InP電流電流ソロ
22層17に行なう代わシに、DH結晶を形成させる最
終工程であるp−InPクラッド層13の成長に引続い
て行なう。そのため第1.第2の溝14.15を形成す
るときにエツチングストップ層19は第2図で示すよう
に除かれる。その他の工程は第1の実施例と同じである
。この実施例においても、第1の実施例と同様、双安定
動作の歩留シを向上させて均一な特性が得られた。
Next, FIG. 2 shows a sectional view of a bistable semiconductor laser which is a second embodiment of the present invention. In this second real gloss example,
Instead of layering the p-InGaAsP etching stop layer 9 formed in the first embodiment onto the n-InP current solo 22 layer 17, the p-InP cladding layer 9, which is the final step of forming a DH crystal, is used. This is carried out subsequent to the growth of layer 13. Therefore, the first. When forming the second trenches 14,15, the etch stop layer 19 is removed as shown in FIG. Other steps are the same as in the first embodiment. In this example as well, as in the first example, the yield of bistable operation was improved and uniform characteristics were obtained.

なお上記実施例ではp側電極をAuZnの全面電極構造
としたが、2つのpO1lI電極22間抵抗を大きくす
るためオキサイドストライプ構造にしたシあるいはp−
I nGaA++P キャップ層21の代夛にn−In
GaAsPキャップ層を成長させてメサストライプ18
の上面付近にのみ例えばZn拡散することによ92層に
変換させてもよい。また以上の実施例ではInP/In
GaAsP 系の半纏体材料を用いたが、GaAlAg
/GaAs系等他の半導体材料を用いてもよい。また以
上の実施例では第3の溝30でp側電極を2分割しだが
、第3の溝30に相当するような溝を2つ以上作ってp
側電極を3つ以上に分割させて双安定さらには多安定(
マルチステーブル)な特性を持つようにしてもよい。
In the above embodiment, the p-side electrode had a full-surface electrode structure of AuZn, but in order to increase the resistance between the two pO1II electrodes 22, an oxide stripe structure or a p-side electrode was used.
InGaA++P n-In for the cap layer 21
Mesa stripe 18 by growing a GaAsP cap layer
For example, it may be converted into 92 layers by diffusing Zn only in the vicinity of the upper surface. Furthermore, in the above embodiments, InP/In
GaAsP-based semi-solid material was used, but GaAlAg
Other semiconductor materials such as /GaAs may also be used. Further, in the above embodiment, the p-side electrode is divided into two by the third groove 30, but two or more grooves corresponding to the third groove 30 are made to divide the p-side electrode into two.
By dividing the side electrode into three or more parts, bistable or even multistable (
It may also have multi-stable characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の斜視図、第2図は第2
の実施例の断面図を示す図である。 なお図において、10・・・n−InP基板、11・・
・p−InPクラッド層、12−InGaAsP活性層
、13・・・p−InPクラッド層、14・・・第1の
溝、15・・・第2の溝、16・・・p−InP第1の
電流ブロック層、17・・・n−InP第2の電流ブロ
ック層、18−・メサストライプ、19− p−I n
GaAgP x 7チングストツプ層、20−・・p−
InP埋め込み層、21− p−InGaAsPキー?
/プ層、22 ・p側電極、23・・・n側電極、30
・・・第3のみ、をそれぞれあられす。
FIG. 1 is a perspective view of a first embodiment of the present invention, and FIG. 2 is a perspective view of a second embodiment of the present invention.
It is a figure which shows the sectional view of the Example. In the figure, 10... n-InP substrate, 11...
・p-InP cladding layer, 12-InGaAsP active layer, 13... p-InP cladding layer, 14... first groove, 15... second groove, 16... p-InP first current blocking layer, 17- n-InP second current blocking layer, 18- mesa stripe, 19- p-InP
GaAgP x 7 pulling stop layer, 20-...p-
InP buried layer, 21- p-InGaAsP key?
/p layer, 22 -p side electrode, 23...n side electrode, 30
...Only the third hail, respectively.

Claims (1)

【特許請求の範囲】[Claims] 活性層にまで達する2本のほぼ平行な第1.第2の溝で
挾まれた前記活性層を含む多層構造のメサストライプを
少なくとも前記メサストライプの上部の半導体層とは異
なる導電型の半導体層で埋め込んだ半導体レーザにおい
て、活性層直上の半導体クラッド層の上層部に同じ導電
型で且つ材料組成の異なる半導体エツチングストップ層
を積層し、さらに活性層に近い側の電極を共振器軸方向
に2つ以上に分割する第3の溝が半導体エツチングスト
ップ層の手前までエツチングさかていることを特徴とす
る双安定半導体レーザ。
There are two almost parallel first lines that reach the active layer. In a semiconductor laser in which a multilayered mesa stripe including the active layer sandwiched between second grooves is buried with at least a semiconductor layer of a conductivity type different from the semiconductor layer above the mesa stripe, a semiconductor cladding layer immediately above the active layer. A semiconductor etching stop layer of the same conductivity type but different material composition is laminated on the upper layer, and a third groove that divides the electrode near the active layer into two or more in the resonator axis direction forms the semiconductor etching stop layer. A bistable semiconductor laser characterized by being etched upside down to the front.
JP16779883A 1983-09-12 1983-09-12 Bi-stable semiconductor laser Granted JPS6058696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16779883A JPS6058696A (en) 1983-09-12 1983-09-12 Bi-stable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16779883A JPS6058696A (en) 1983-09-12 1983-09-12 Bi-stable semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6058696A true JPS6058696A (en) 1985-04-04
JPH0422034B2 JPH0422034B2 (en) 1992-04-15

Family

ID=15856300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16779883A Granted JPS6058696A (en) 1983-09-12 1983-09-12 Bi-stable semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6058696A (en)

Also Published As

Publication number Publication date
JPH0422034B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
JPS61284987A (en) Semiconductor laser element
JPS6058696A (en) Bi-stable semiconductor laser
JPS61102086A (en) Semiconductor laser
JPS62291192A (en) Surface emission laser
JPS6034089A (en) Optical bistable semiconductor laser
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS63269594A (en) Surface emission type bistable semiconductor laser
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JPH0578810B2 (en)
JPS61150293A (en) Bi-stable semiconductor laser
JPS60239083A (en) Optical bistable semiconductor laser
JPS59154088A (en) Semiconductor laser
JPH05190977A (en) Semiconductor laser
JPS63211785A (en) Multiple quantum well type optical bistable semiconductor laser
JPH11135884A (en) Semiconductor laser device and manufacture thereof
JPS641075B2 (en)
JP4024319B2 (en) Semiconductor light emitting device
JPS62286017A (en) Optical switch
JPS596588A (en) Semiconductor laser
JPS6370474A (en) Manufacture of semiconductor laser element
JPS60163485A (en) Photo bi-stable semiconductor laser
JPS617682A (en) Bistable semiconductor laser
JPS61244082A (en) Semiconductor laser device
JPS6347357B2 (en)
JPH05226775A (en) Semiconductor laser element