JPS60239083A - Optical bistable semiconductor laser - Google Patents

Optical bistable semiconductor laser

Info

Publication number
JPS60239083A
JPS60239083A JP9400684A JP9400684A JPS60239083A JP S60239083 A JPS60239083 A JP S60239083A JP 9400684 A JP9400684 A JP 9400684A JP 9400684 A JP9400684 A JP 9400684A JP S60239083 A JPS60239083 A JP S60239083A
Authority
JP
Japan
Prior art keywords
layer
groove
inp
active layer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9400684A
Other languages
Japanese (ja)
Other versions
JPH0632324B2 (en
Inventor
Yuichi Odagiri
小田切 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59094006A priority Critical patent/JPH0632324B2/en
Publication of JPS60239083A publication Critical patent/JPS60239083A/en
Publication of JPH0632324B2 publication Critical patent/JPH0632324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an optical bistable laser having uniform characteristics by forming a current injection interrupting layer on an active layer region just under a groove and coating sections except the groove with a layer consisting of another material composition having a conduction type reverse to that of the groove. CONSTITUTION:An N-InP buffer 11, an InGaAsP active layer 12 and a P-InP 13 are superposed on N-InP 10, and grooves 22, 23 having wide width 24 and narrow width 25 and reaching to the layer 11 are formed on both sides of a mesa stripe 20. When P and N type InP current block layers 14, 15 are superposed, the layers 14, 15 do not grow on the mesa 20 in the wide groove sections 24, the grooves are filled with the layer 14 in the narrow groove section 25, the upper section of the mesa is flattened, and the layer 15 is not disconnected. P-InGaAs 16, P-InP 17 and P-InGaAsP 18 are formed, and a P side electrode is attached. An etching groove 21 is shaped on the narrow groove section 25 in the direction of a resonator axis 30, the current block layer 15 is exposed, and the P side electrode is divided into two 26, 27. When the electrodes 26, 27 are biassed positively and an electrode 28 negatively, injection currents aproximately flow through the active layer, a resistance value between the electrodes 26, 27 is increased, and injection currents to the electrodes 26, 27 are not affected mutually, thus obtaining a laser conducting uniform optical stable operation.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光交換・光情報処理に用いる光機能素子と
して最も重要な構成要素の一つである双安定動作を示す
光双安定半導体レーザに関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to an optical bistable semiconductor laser exhibiting bistable operation, which is one of the most important components as an optical functional element used for optical exchange and optical information processing. Regarding.

(従来技術とその問題点) 光機能素子の中でも光論理、光スィッチ、光記憶、光信
号波形、整形増幅等幅広い応用範囲を有する光双安定半
導体レーザは、光の本質的な特長を活かした素子として
期待されており、その基礎検討が進められている。光双
安定半導体レーザの開発に関しては、20年前にラッシ
ャ氏(G、J。
(Prior art and its problems) Among optical functional devices, optical bistable semiconductor lasers have a wide range of applications such as optical logic, optical switches, optical storage, optical signal waveforms, and shaping amplification. It is expected to be used as a device, and basic studies are underway. Regarding the development of optical bistable semiconductor lasers, Mr. Lascha (G, J.

LASHER)によるソリッド・ステイト・エレクトロ
ニクス(5OLID 5TATE ELECTRO−N
1.C8)誌の1964年第7巻707頁に記載された
論文が最初であり、後年室温状態で発振閾値が低く実用
レベルに近いものがロー氏(K、Y、LAU)等によシ
アブライド・フィジクス・レターズ(APPLIED 
PHYSIC8LETTER8)誌の1982年第40
巻369頁に記載された論文でタンデム電極埋め込みへ
テロ構造の形で報告されている。この半導体レーザでは
、活性層に近い側の電極が溝によシ2分されておシ、活
性層での利得が損失を上相る光増幅領域と、電流注入さ
れないために損失が利得を上相る可飽和吸収領域とに分
かれている。この場合の溝は単に2つの領域を電気的に
遮断するため?も、のであり・溝直下の活性層には光増
幅領域からの拡散電流によって電流注入されている。こ
のためこの半導体レーザでは2分された電極を共通にす
ると、通常の半導体レーザと同様の光出力−電流特性(
以後L−I特性とする)を示し光双安定動作は生じない
。光双安定動作を行なうには、可飽和吸収領域への注入
電流を減少させて一100μA程度にする必要がある(
この場合の光増幅領域への注入電流は+30mA程度)
。ところが可飽和吸収領域への注入電流が数μA変動す
るだけで、L−I特性でのヒステリシス形状、光双安定
動作を示す電流幅が大幅に変わってしまうという結果が
ロー氏等の論文で報告されている。このため安定な動作
の要求される光機能素子としては、この注入電流の制御
性を高めることが重要であった。この対策としては、本
願の発明者等によシ発明された光双安定半導体レーザ(
特願昭58−142922 )がある。これは、活性層
の一部に、電流注入を遮断するような半導体層を積層さ
せて、その直上に溝を形成する構造の半導体レーザであ
る。この半導体層の採用により可飽和吸収領域が溝直下
の活性層部分に形成され、2分された電極への注入電流
はいづれも数十mA程度なる。この場合には、外部要因
その他で数百μA注入電流変動したとしても光双安定動
作のL−■特性が変化することは殆んど無視できた。と
ころが溝を活性層近くまでエツチングしない場合には、
2分された電極間の抵抗が例えば溝幅30μmの場合で
61Ω程度にしかならず、したがって2分された電極間
の電位差によって注入電流の一部がその間ヲミリアンペ
アのオーダで流れることとなり、静特性では特性が安定
でも動特性では多少不安定になるなど注入電流自体の独
立性が保たれないという問題があった。溝部エツチング
する方法は、結晶成長後の半導体層厚が場所によってば
らつくことがあり、単にエツチング時間だけで溝の深さ
を決める方法は余り望ましいとは言えず、信頼性の面に
多少問題があった。そこで鹸者等后は溝のエツチングの
深さを決める方法とじて活性層の上方にエツチングを止
めるような半導体層の形成を提案し[双安定半導体レー
ザ」という名称で特許出願した(特願昭58−1677
98)。この発明の場合には、2分された電極間の抵抗
をIKOにまで高めることができ、また特性の均一化と
いう点でも従来にくらべて向上できた。
Solid state electronics (5OLID 5TATE ELECTRO-N) by LASHER)
1. The first paper was published in vol. 7, page 707 of C8) magazine in 1964, and in later years Mr. Low (K, Y, LAU) et al.・Physics Letters (APPLIED
PHYSIC8LETTER8) magazine 1982 No.40
This is reported in the paper on page 369 of Vol. 3 in the form of a heterostructure with embedded tandem electrodes. In this semiconductor laser, the electrode near the active layer is divided into two parts by a groove: an optical amplification region where the gain exceeds the loss in the active layer, and an optical amplification region where the gain exceeds the loss because no current is injected. It is divided into two distinct saturable absorption regions. Is the groove in this case simply to electrically isolate the two regions? Also, current is injected into the active layer directly under the trench by the diffusion current from the optical amplification region. Therefore, in this semiconductor laser, if the two divided electrodes are made common, the optical output-current characteristics (
(hereinafter referred to as L-I characteristic), and optical bistable operation does not occur. To achieve optical bistable operation, it is necessary to reduce the current injected into the saturable absorption region to about -100 μA (
In this case, the current injected into the optical amplification region is approximately +30mA)
. However, a paper by Dr. Low et al. reported that a change in the current injected into the saturable absorption region by just a few μA can significantly change the hysteresis shape in the L-I characteristic and the current width that indicates optical bistable operation. has been done. Therefore, for optical functional devices that require stable operation, it is important to improve the controllability of this injection current. As a countermeasure to this problem, an optical bistable semiconductor laser (
There is a patent application No. 58-142922). This is a semiconductor laser having a structure in which a semiconductor layer that blocks current injection is laminated on a part of an active layer, and a groove is formed directly above the semiconductor layer. By employing this semiconductor layer, a saturable absorption region is formed in the active layer portion directly under the groove, and the current injected into the two halves of the electrode is approximately several tens of mA. In this case, even if the injection current fluctuated by several hundred μA due to external factors or other factors, the change in the L-■ characteristic of optical bistable operation could be almost ignored. However, if the grooves are not etched close to the active layer,
For example, when the groove width is 30 μm, the resistance between the two divided electrodes is only about 61Ω, and therefore, due to the potential difference between the two divided electrodes, a part of the injected current flows on the order of milliamperes during that time, and the static characteristics are Even if the characteristics were stable, there was a problem that the independence of the injection current itself could not be maintained, such as the dynamic characteristics becoming somewhat unstable. In the trench etching method, the thickness of the semiconductor layer after crystal growth may vary depending on the location, and a method of determining the trench depth simply by the etching time is not very desirable, and there are some problems in terms of reliability. Ta. Therefore, Ken et al. proposed forming a semiconductor layer above the active layer to stop the etching as a method of determining the etching depth of the groove, and filed a patent application under the name ``Bistable Semiconductor Laser.'' 58-1677
98). In the case of this invention, the resistance between the divided electrodes can be increased to IKO, and the characteristics can also be made more uniform compared to the conventional method.

しかしながら溝の深さだけを再現よく形成させる方法だ
けでは、溝直下が可飽和吸収領域として機らの拡散電流
によって溝直下の活性層にも注入電流がまわりこむため
である。その丸めより光双安定動作を均一に実現できる
ような構造の光双安定半導体レーザが望まれていた。
However, if only the depth of the groove is formed with good reproducibility, the area directly under the groove becomes a saturable absorption region, and the diffusion current will cause the injection current to flow into the active layer directly under the groove. There has been a desire for an optically bistable semiconductor laser with a structure that can uniformly realize optically bistable operation due to rounding.

(発明の目的) この発明の目的は光双安定動作の歩留りを一層向上させ
て均一な特性を有する光双安定半導体レーザを提供する
ことにある。
(Objective of the Invention) An object of the present invention is to provide an optically bistable semiconductor laser having uniform characteristics by further improving the yield of optically bistable operation.

5− (発明の構成) この発明は、溝により電極が鉄損軸方向に複数に分割さ
れた半導体レーザにおいて、活性層上方溝部を除く第1
の半導体層の上部に第1の半導体層とは異なる導電形で
且つ異なる材料組成の半導体層を有することに特徴があ
る。
5- (Structure of the Invention) The present invention provides a semiconductor laser in which an electrode is divided into a plurality of parts in the direction of the core loss axis by a groove.
The second semiconductor layer is characterized by having a semiconductor layer having a conductivity type different from that of the first semiconductor layer and a material composition different from that of the first semiconductor layer.

(構成の詳細な説明) この発明は、上述の構成をとることにより従来技術の問
題点を解決した。まず、活性層の一部で可飽和吸収領域
が形成されるように電流注入が遮断されるような第1の
半導体層を結晶成長させ、さらにその上に材料組成の異
なる第2の半導体層を結晶成長させる、そのあとで例え
ば化学エツチングで溝を形成する場合、第1の半導体層
と第2の半導体層の材料組成が異なるためにエッチャン
トの違いによるエツチング速度の差を利用することによ
り、溝の深さを電極から第1の半導体層が残6− るところまでに抑える。このようにして共振器軸方向に
分割された2つ以上の電極の間の抵抗はIKΩ以上にす
ることができる。通常の半導体レーザ自身の抵抗が5〜
7Ω程度であるから、分割された電極間の電流は数十μ
A以下に抑えられる。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. First, a first semiconductor layer is crystal-grown so that current injection is blocked so that a saturable absorption region is formed in a part of the active layer, and then a second semiconductor layer having a different material composition is formed on top of the first semiconductor layer. When a groove is formed by, for example, chemical etching after crystal growth, the first semiconductor layer and the second semiconductor layer have different material compositions, so the groove can be formed by utilizing the difference in etching speed due to the difference in etchant. The depth of the first semiconductor layer is limited from the electrode to a point where the first semiconductor layer remains. The resistance between two or more electrodes divided in the resonator axis direction in this manner can be made greater than IKΩ. The resistance of a normal semiconductor laser itself is 5~
Since it is about 7Ω, the current between the divided electrodes is several tens of μ.
Can be kept below A.

なく独立性を保持することができる。またL−I特性に
関しては溝直下が可飽和吸収領域となるため均一な特性
の光双安定動作を実現できる。以上のようにして光双安
定動作の歩留りを一層向上させて均一な特性を有する光
双安定半導体レーザが実現できる。
independence can be maintained. In addition, regarding the L-I characteristic, since the region directly below the groove becomes a saturable absorption region, optical bistable operation with uniform characteristics can be realized. As described above, the yield of optical bistable operation can be further improved and an optically bistable semiconductor laser having uniform characteristics can be realized.

(実施例) させない場合での活性層の形状を示す平面断面図、第2
図(a)は第1図のA−A’ 断面図、(blFiB−
B’断面図、第3図は本実施例の斜視図を各々示す。
(Example) Plane sectional view showing the shape of the active layer in the case where no
Figure (a) is a sectional view taken along line AA' in Figure 1, (blFiB-
B' sectional view and FIG. 3 each show a perspective view of this embodiment.

する2本の溝のメサストライプとは反対側の側面が部分
的に狭くなった形状で電極を2分する溝が所望の深さに
なるようにしたものである。ブレーナ・ストライフ−形
の埋め込みへテロ構造の半導体レーザは、活性層を含む
メサストライプをP及びnの形半導体層で埋め込んだも
ので、これについては北村氏等により特許出願中の発明
[特願昭56−166666Jに詳しい。
The side surface of the two grooves opposite to the mesa stripe is partially narrowed so that the groove dividing the electrode into two has a desired depth. A Brehner-Strife-type buried heterostructure semiconductor laser is a semiconductor laser in which a mesa stripe including an active layer is buried with P- and N-type semiconductor layers, and this is a patent-pending invention by Mr. Kitamura et al. I am familiar with Gansho 56-166666J.

この実施例は以下のように製作される。先づ液相 ゛も
しくは気相成長法により、n−InP基板1o上に、n
−InPバ、77層11、ノンドープのInQaAsP
活性層は、P−InPクラッド層]3を積層させたDH
基板に、フォトレジストを塗布して通常のフォトリング
ラフイーとエツチングにより第1図に示した形状のウェ
ハを製作する。次に、このウェハを液相成長法により、
P−InPの第1の電流ブロック層14、n−InPの
第2の電流ブロック層15、P−InGaAsPのエツ
チング層16、P−InPの埋め込み層17、P−In
GaAsPキ’ryプ層18を順次層成8せる。第1図
で示したように、活性層12を含むメサストライプ20
を形成するための2本の第2、第3の溝22.23はメ
サストライプ20の側で直線、メサストライプ20から
離れた側では一部に幅の広い部分24と狭い部分25を
有している。2回目の結晶成長において、メサストライ
プ20を形成する第2、第3の溝22.23の幅の広い
部分24では第2図で示したように、第1、第2の電流
ブロック層14、】5はメサストライプ20上には成長
しない。他方第2、第3の溝22.23の幅の狭い部分
25では第2、第3の溝22.23内を第1の電流ブロ
ック層】4が埋めてしまうために、第2の電流ブロック
層15を成プ旦 長する直前のメサストライプ付近の形状が千声となる。
This embodiment is fabricated as follows. First, by liquid phase or vapor phase growth, n-InP is deposited on the n-InP substrate 1o.
-InP layer 77 layer 11, non-doped InQaAsP
The active layer is a DH layered with P-InP cladding layer]3.
A wafer having the shape shown in FIG. 1 is fabricated by coating a substrate with photoresist and performing conventional photolithography and etching. Next, this wafer is grown using a liquid phase growth method.
P-InP first current blocking layer 14, n-InP second current blocking layer 15, P-InGaAsP etching layer 16, P-InP buried layer 17, P-In
GaAsP cap layers 18 are sequentially formed. As shown in FIG. 1, a mesa stripe 20 including an active layer 12
The two second and third grooves 22 and 23 for forming the grooves are straight on the mesa stripe 20 side, and have a partially wide part 24 and a narrow part 25 on the side away from the mesa stripe 20. ing. In the second crystal growth, in the wide portions 24 of the second and third grooves 22 and 23 forming the mesa stripe 20, as shown in FIG. ] 5 does not grow on the mesa stripe 20. On the other hand, in the narrow portions 25 of the second and third grooves 22.23, the second and third grooves 22.23 are filled with the first current blocking layer ]4, so that the second current block The shape near the mesa stripe immediately before the formation of layer 15 becomes a thousand voices.

そのため第2の電流ブロック層15はメサストライプ2
0の上部で途切れることなく全体を覆ってしまう。同様
にしてエツチング層16も全体を覆ってしまう。結晶成
長後はP側のオーミツlニ クコンタクトをとるためキャップ層18 g Au Z
n9− を蒸着する。さらにフォトレジス//を塗布して通常の
フォトリソグラフィーとエツチングにより第2、第3の
溝22.23の幅い狭い部分25直上のAuZn、キャ
ップ層18、埋め込み層17、エツチング層16を順次
抜いて共振器軸3o方向にP側電極が2つに分割される
ように第1の溝21を形成させる。AuZnのエツチン
グについてはKI+I2の混合液を、InGaAsP 
のキャラツ一層18、エツチング層16のエツチングに
ついてはH2SO4十H2O2の混合液を、工nP の
埋め込み層17のエツチングについてはHe I 十H
20の希釈液を用いた。H2SO4+H20z−?HC
1+H20が他の材料ヲ殆Znをアロイする。次にn−
InP基板1oを研磨して100〜150μmの範囲内
の厚さとしたのち、n側のオーミックコンタクト用にA
LAGeNi ft蒸着してアロイし、ウェハ製作を終
了する。このウェハを通常のヘキ開法により、第1の溝
21 によって第1、第2のP側電極26.27が分割
される10− ようにメサストライプ20に直角に共振器面を形成し、
素子が製作される。この素子の第1、第2のIゝ側電極
26.27を正、n側電極28を負にバイアスすると、
この素子←L−I特性や光入出力特性において安定な双
安定動作を示すことができる。第1のP側電極26と第
2のP側電極27とはP−InPクラッド層13が電気
的な橋渡しをするが、活性層に隣接しているので、注入
電流の殆んどが活性層へ流れる。そのため第1の溝21
の幅が25μmの場合にP側の電極間抵抗はIKQを越
えることができた。この程度の抵抗があるために、第1
、第2のP側電極26.27への注入電流は互いに影響
しあうことなく20〜40mAの範囲で均一な光双安定
動作を歩留りよく実現することができた。この実施例の
光双安定半導体レーザの大きさは、メサストライプ20
の幅が1.5μm、溝幅の広い部分24の幅が7μm狭
い部分25の幅が3μmや溝幅の狭い部分25の長さが
20μm1 第1のP側電極26の長さが100μm、
第2のP側電極27の長さが150μmである。結晶成
長の様子は、成長方法や成長条件等により大幅に変わる
ので、それらとともに適切な寸法を採用すべきことは言
うまでもない。また第1のP側電極26と第2のP側電
極27の共撮器軸30方向の長さの比も限定されるもの
ではない、 なお上記実施例においては、第1の溝21直下での第2
の電流ブロック層15がメサストライプ20の上部を含
めて全体にわたって形成させる方法として、第2、第3
の溝22.23がメサストライプ20の側で直線。メサ
ストライプ20から離れた側で幅の広い部分24と狭い
部分25を有するようにしたが、メサストライプ20か
ら離れた側で直線、メサストライプの側で幅の広い部分
24と狭い部分25を有するようにしてもよい。この場
合にも第1の溝2】直下が幅の狭い部分25に対応して
おれば上記実施例と同じ結晶成長が可能であり、特性面
の差はない。実施例ではP側電極をAuZnの全面電極
構造としたが、オキサイドストライプ構造にしたりある
いはP−InGaAsPキャッ1鳩18の代りにn−I
nGaAsPキャップ層としてメサストライプ20上面
付近にのみ例えばZn拡散することによりP層に変換さ
せてもよい。
Therefore, the second current blocking layer 15 has a mesa stripe 2
It covers the entire area without being interrupted at the top of 0. Similarly, the etching layer 16 is also completely covered. After crystal growth, a cap layer of 18g Au Z is used to make an ohmic contact on the P side.
Deposit n9-. Furthermore, a photoresist// is applied and the AuZn, cap layer 18, buried layer 17, and etching layer 16 directly above the wide narrow portions 25 of the second and third grooves 22 and 23 are sequentially removed by normal photolithography and etching. The first groove 21 is formed so that the P-side electrode is divided into two in the direction of the resonator axis 3o. For AuZn etching, use a mixture of KI+I2 and InGaAsP.
For etching the single layer 18 and etching layer 16, use a mixture of H2SO4 and H2O2, and for etching the buried layer 17 of nP, use HeI and H2O2.
20 dilutions were used. H2SO4+H20z-? H.C.
1+H20 alloys most of the other materials with Zn. Then n-
After polishing the InP substrate 1o to a thickness within the range of 100 to 150 μm, A is used for the n-side ohmic contact.
LAGeNi ft is deposited and alloyed to complete wafer fabrication. A resonator surface is formed on this wafer at right angles to the mesa stripe 20 so that the first and second P-side electrodes 26 and 27 are divided by the first groove 21 by a normal cleavage method.
A device is manufactured. When the first and second I' side electrodes 26 and 27 of this element are biased positively and the n side electrode 28 is biased negatively,
This element can exhibit stable bistable operation in terms of L-I characteristics and optical input/output characteristics. The first P-side electrode 26 and the second P-side electrode 27 are electrically bridged by the P-InP cladding layer 13, but since they are adjacent to the active layer, most of the injected current flows through the active layer. flows to Therefore, the first groove 21
When the width of the electrode was 25 μm, the resistance between the electrodes on the P side could exceed IKQ. Because of this degree of resistance, the first
The currents injected into the second P-side electrodes 26 and 27 were able to realize uniform optical bistable operation with a high yield in the range of 20 to 40 mA without affecting each other. The size of the optical bistable semiconductor laser in this example is 20 mesa stripes.
The width of the wide groove portion 24 is 7 μm, the width of the narrow portion 25 is 3 μm, the length of the narrow groove portion 25 is 20 μm1, the length of the first P-side electrode 26 is 100 μm,
The length of the second P-side electrode 27 is 150 μm. Since the appearance of crystal growth varies greatly depending on the growth method, growth conditions, etc., it goes without saying that appropriate dimensions should be adopted in conjunction with these factors. Furthermore, the ratio of the lengths of the first P-side electrode 26 and the second P-side electrode 27 in the direction of the camera axis 30 is not limited. the second of
As a method for forming the current blocking layer 15 over the entire area including the upper part of the mesa stripe 20, the second and third current blocking layers 15 are formed.
Grooves 22 and 23 are straight on the mesa stripe 20 side. The side away from the mesa stripe 20 has a wide part 24 and a narrow part 25, but the side away from the mesa stripe 20 has a straight line, and the side away from the mesa stripe has a wide part 24 and a narrow part 25. You can do it like this. In this case as well, if the first groove 2 corresponds to the narrow portion 25, the same crystal growth as in the above embodiment is possible, and there is no difference in characteristics. In the example, the P-side electrode had a full-surface electrode structure of AuZn, but it could also have an oxide stripe structure, or an n-I electrode instead of the P-InGaAsP cap.
For example, the nGaAsP cap layer may be converted into a P layer by diffusing Zn only in the vicinity of the upper surface of the mesa stripe 20.

以上の実施例ではInP/InGaAsP系の半導体材
料を用いたが、GaA I As /GaA、s系等他
の半導体材料を用いてもよい。
Although InP/InGaAsP-based semiconductor materials were used in the above embodiments, other semiconductor materials such as GaA I As /GaA, s-based, etc. may also be used.

また、実施例とでは埋め込み型のストライプ構造を採用
していたが他のストライプ構造でもよい。
Furthermore, although the embodiment employs a buried stripe structure, other stripe structures may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の平面断面図、第2図(a
)、(b)は第1図の部分断面図、第3図はこの発明の
一実施例の斜視図である。 図において、 10・・・・・・n−InP 基板、11・・・・・・
n−InPバッファ層、12・・・・・・InGaAs
P活性層、13・・・・・・P−InPクラッド層、1
4・・・・・・P−InPの第1の電流ブロック層、1
5・・・・・・n−In、Pの第2の電流ブロック層、
16・・・・・・P−InGaAsP−[−ッチング層
、17−−−−−− P−I n Pの埋め込み層、]
8・・・・・・P−InGaA、sPキャップ層、20
・・・・・ メサストライプ、21・・・・・・第1の
溝、22・・・・・・第13− 2の溝、23・・・・・・第3の溝、24・・・・・・
幅の広い部分、25・・・・・・幅の狭い部分、26・
・・・・・第1のP側電極、27・−・・・・第2のP
側電極、28・・・・・・n側電極、30・・・・・・
共撮器軸をそれぞれ示す。 14−
FIG. 1 is a plan sectional view of an embodiment of the present invention, and FIG.
) and (b) are partial sectional views of FIG. 1, and FIG. 3 is a perspective view of an embodiment of the present invention. In the figure, 10... n-InP substrate, 11...
n-InP buffer layer, 12...InGaAs
P active layer, 13...P-InP cladding layer, 1
4... P-InP first current blocking layer, 1
5... Second current blocking layer of n-In, P,
16...P-InGaAsP-[-etching layer, 17----- P-I n P buried layer,]
8...P-InGaA, sP cap layer, 20
...Mesa stripe, 21...First groove, 22...13-2 groove, 23...Third groove, 24... ...
Wide part, 25... Narrow part, 26.
...First P side electrode, 27... Second P side electrode
Side electrode, 28...n side electrode, 30...
The respective camera axes are shown. 14-

Claims (1)

【特許請求の範囲】[Claims] 溝によシミ極が共振器軸方向に複数に分割されている半
導体レーザにおいて、活性層上方に、当該活性層の前記
溝直下の領域への電流注入を遮断する第1の半導体層を
備え、さらに、少なくとも前記溝部を除く前記第1の半
導体層の上部に当該第1の半導体層とは異なる導電形で
、かつ、異なる材料組成の第2の半導体層を備えている
ことを特徴とする光双安定半導体レーザ。
A semiconductor laser in which a groove divides a stain pole into a plurality of parts in the cavity axis direction, including a first semiconductor layer above an active layer that blocks current injection into a region of the active layer immediately below the groove, Furthermore, a second semiconductor layer having a conductivity type different from that of the first semiconductor layer and having a different material composition is provided above the first semiconductor layer excluding at least the groove portion. Bistable semiconductor laser.
JP59094006A 1984-05-11 1984-05-11 Optical bistable semiconductor laser Expired - Lifetime JPH0632324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59094006A JPH0632324B2 (en) 1984-05-11 1984-05-11 Optical bistable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59094006A JPH0632324B2 (en) 1984-05-11 1984-05-11 Optical bistable semiconductor laser

Publications (2)

Publication Number Publication Date
JPS60239083A true JPS60239083A (en) 1985-11-27
JPH0632324B2 JPH0632324B2 (en) 1994-04-27

Family

ID=14098343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59094006A Expired - Lifetime JPH0632324B2 (en) 1984-05-11 1984-05-11 Optical bistable semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0632324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296573A (en) * 1986-06-17 1987-12-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967680A (en) * 1982-10-12 1984-04-17 Nec Corp Photo bi-stable element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967680A (en) * 1982-10-12 1984-04-17 Nec Corp Photo bi-stable element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296573A (en) * 1986-06-17 1987-12-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device

Also Published As

Publication number Publication date
JPH0632324B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
JPS60239083A (en) Optical bistable semiconductor laser
JPS6034089A (en) Optical bistable semiconductor laser
JPS61102086A (en) Semiconductor laser
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
JPH0578810B2 (en)
US7598106B2 (en) Optical semiconductor device and fabrication method therefor
JPH0710015B2 (en) Semiconductor laser device and method of manufacturing the same
JPS641075B2 (en)
JPH0422034B2 (en)
JPH05226774A (en) Semiconductor laser element and its production
JPS60163485A (en) Photo bi-stable semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JPS59200484A (en) Semiconductor laser
JPS61150293A (en) Bi-stable semiconductor laser
JP2940185B2 (en) Embedded semiconductor laser
JPS617682A (en) Bistable semiconductor laser
JPS6347357B2 (en)
JPH03288489A (en) Distribution feedback semiconductor laser device
JPS60124982A (en) Bi-stable laser
JPH0380589A (en) Semiconductor laser element and manufacture thereof
JPH03116991A (en) Semiconductor laser device
JPH02237190A (en) Semiconductor laser
JPS6370474A (en) Manufacture of semiconductor laser element
JPS62286017A (en) Optical switch
JPH0283991A (en) Semiconductor laser