JPS6058679A - Formation of gate electrode of schottky barrier gate type fet - Google Patents

Formation of gate electrode of schottky barrier gate type fet

Info

Publication number
JPS6058679A
JPS6058679A JP16773283A JP16773283A JPS6058679A JP S6058679 A JPS6058679 A JP S6058679A JP 16773283 A JP16773283 A JP 16773283A JP 16773283 A JP16773283 A JP 16773283A JP S6058679 A JPS6058679 A JP S6058679A
Authority
JP
Japan
Prior art keywords
gate
gate electrode
schottky barrier
forming
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16773283A
Other languages
Japanese (ja)
Inventor
Toshihiko Sakashita
俊彦 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16773283A priority Critical patent/JPS6058679A/en
Publication of JPS6058679A publication Critical patent/JPS6058679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable high speed action in a high frequency region of the titled transistor by a method wherein a gate electrode is formed by the formation of a semiconductor and a metal forming a Schottky barrier only at the aperture. CONSTITUTION:An active region 2 and an ohmic region 3 are formed in a GaAs substrate 1 by ion implantation. Further, a source electrode 4 and a drain electrode 5 are formed by vapor-deposition of an Au-Ge alloy film on the region 3. Next, the part servind as the gate is provided with the aperture 9 in an insulation film 8 by the use of a photo resist 7. Successively, an insulation film 10 is formed over the entire surface by evaporation, and the film 10 is removed. Pt or Al 12 is evaporated over the entire surface, and the gate electrode 6 is formed by leaving only the metal at the aperture 11. The Schottky barrier gate type FET of short gate length is manufactured thereby.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体の製造方法特にショットキ障壁ゲート型
電界効果トランジスタのゲート電極の形成方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor, and particularly to a method of forming a gate electrode of a Schottky barrier gate field effect transistor.

従来例の構成とその問題点 ショットキ障壁ゲート型電界効果トランジスタ(以下F
ETと略す)特にG a A s F E Tは、高速
、マイクロ波領域の半導体デバイスとして有用である。
Conventional structure and its problems Schottky barrier gate field effect transistor (F
In particular, GaAs FET (abbreviated as ET) is useful as a semiconductor device in the high-speed microwave region.

このためGaAsFET1構成素子として用いた集積回
路の開発が進められている。G a A s F E 
Tにおいてはマイクロ波領域で、高速動作させるために
はゲート電極の長さとしてサブミクロン長が要求される
For this reason, the development of integrated circuits used as components of the GaAsFET1 is progressing. G a As F E
T is in the microwave region, and in order to operate at high speed, a submicron length is required as the gate electrode length.

第1図は従来のG a A s F E Tの構造断面
図である。
FIG. 1 is a structural sectional view of a conventional GaAs FET.

1は半絶縁性G a A s基板、2は能動領域、3は
オーミック領域、4はソース電極、6はドレイン電極、
6はゲート電極である。
1 is a semi-insulating GaAs substrate, 2 is an active region, 3 is an ohmic region, 4 is a source electrode, 6 is a drain electrode,
6 is a gate electrode.

このような構造のGaAsFETにおいて、一般にゲー
ト電極はフォトレジスト法により形成されている。この
ためゲート長はフォトレジスト加工精度に依存する。よ
って上述の様な要求は十分達せられているとは言い難い
In a GaAsFET having such a structure, the gate electrode is generally formed by a photoresist method. Therefore, the gate length depends on the photoresist processing accuracy. Therefore, it cannot be said that the above-mentioned requirements have been fully met.

発明の目的 本発明はFETのゲート電極を形成する際に、このよう
な従来の欠点を除去しフォトレジスト加工精度(一般的
には約2μm)に依存せず、さらに微細なサブミクロン
長のゲート長を得ることによシ高周波領域で高速動作す
るFETを提供するものである。
Purpose of the Invention The present invention eliminates such conventional drawbacks when forming gate electrodes of FETs, does not depend on photoresist processing precision (generally about 2 μm), and forms gate electrodes with even finer submicron length. By obtaining a long length, an FET that operates at high speed in a high frequency region is provided.

発明の構成 本発明の7ヨツトキ障壁ゲート型電界効果トランジスタ
のゲート電極形成方法は、半導体基板に能動領域および
オーミック領域全形成する工程と、全面に第1の絶縁膜
を形成する工程と、ゲート電極を形成すべき部分の第1
の絶縁膜に開口部を形成する工程と、全面に第2絶縁膜
を形成し、前記開口部の側面以外の前記第2の絶縁膜を
除去する工程と、前記半導体とショットキ障壁を形成す
る金属を前記開口部のみに形成しゲート電極を形成する
工程を含むことを特徴としている。
Structure of the Invention The method for forming a gate electrode of a 7-way barrier gate field effect transistor of the present invention includes a step of forming all active regions and ohmic regions on a semiconductor substrate, a step of forming a first insulating film on the entire surface, and a step of forming a gate electrode on the entire surface. The first of the parts to be formed
forming an opening in the insulating film; forming a second insulating film over the entire surface and removing the second insulating film other than the side surfaces of the opening; and metal forming a Schottky barrier with the semiconductor. The method is characterized in that it includes a step of forming a gate electrode only in the opening.

実施例の説明 本発明の実施例を主にゲート形成を中心に図面を用いて
工程順に説明する。第2図は本発明にょpGaAsFE
Tにおいて短ゲート長を得るためのゲート電極形成方法
の各工程における素子断面全模式的に示したものである
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be explained in order of steps with reference to the drawings, mainly focusing on gate formation. Figure 2 shows the pGaAsFE according to the present invention.
12 schematically shows the entire device cross section at each step of the gate electrode forming method for obtaining a short gate length at T.

まず第2図aに示すように半絶縁性あるいは絶縁性Ga
As基板1にイオン注入法により能動領域2およびオー
ミック領域3を形成する。さらにオーミック領域3の上
部にオーミンクメタルとなる材料例えば金・ゲルマニウ
ム合金膜を蒸着しソース電極4およびドレイン電極5を
形成し、第2図すのような断面構造を得る。次に第2図
Cに示すようにゲートとなる部分にフォトレジスト7を
用いて絶縁膜8例えばS iO2に開口部9をあける。
First, as shown in Figure 2a, semi-insulating or insulating Ga
An active region 2 and an ohmic region 3 are formed on an As substrate 1 by ion implantation. Further, a material to be an ohmic metal, such as a gold-germanium alloy film, is deposited on the upper part of the ohmic region 3 to form a source electrode 4 and a drain electrode 5, thereby obtaining a cross-sectional structure as shown in FIG. Next, as shown in FIG. 2C, an opening 9 is formed in the insulating film 8, for example SiO2, using a photoresist 7 in a portion that will become the gate.

次に第2図dに示すように蒸着によシ絶縁膜1゜を全面
に形成する。この絶縁膜10例えばS iO2を異方性
ドライエツチング法により除去する。この際、G a 
A g基板1に垂直な方向と水平な方向の膜厚の違いか
ら開口部9の側面の絶縁膜は除去されずに残り第2図e
のような断面構造となり、フォトレジストによシ形成さ
れた開口部よシも狭い開口11が形成される。
Next, as shown in FIG. 2d, an insulating film 1° is formed over the entire surface by vapor deposition. This insulating film 10, for example SiO2, is removed by anisotropic dry etching. At this time, Ga
A gDue to the difference in film thickness between the vertical and horizontal directions of the substrate 1, the insulating film on the side surface of the opening 9 is not removed and remains as shown in Figure 2e.
The cross-sectional structure is as follows, and an opening 11 is formed which is narrower than the opening formed by the photoresist.

次に第2図fに示すよう[GaAs1C対してショット
キ障壁を形成するような金属12例えば白金やアルミニ
ウムを全面蒸着しリフトオフ法によシ開口11のみの金
属を残しゲート電極6を形成する。具体的な数値例とし
て開口部9の幅が2μmのとき絶縁膜10’15000
人つければ開口部110幅は1μmとなる。このように
してqに示すゲート長のGaAsFET1製造すること
ができる。
Next, as shown in FIG. 2F, a metal 12, such as platinum or aluminum, which forms a Schottky barrier with respect to the GaAs 1C is deposited on the entire surface, and a lift-off method is used to form the gate electrode 6, leaving only the metal in the opening 11. As a specific numerical example, when the width of the opening 9 is 2 μm, the insulating film 10'15000
If a person is attached, the width of the opening 110 will be 1 μm. In this way, the GaAsFET 1 having the gate length shown in q can be manufactured.

なお、本実施例ではG a A gについて説明したが
他の半導体のFETにも応用でき、一基板として半絶縁
性基板を用いたが他の絶縁性n型あるいはp型基板でも
よい。また能動領域およびオーミック領域をイオン注入
で形成したがエピタキシャル法によって形成してもよい
。またソース電極およびドレイン電極全ゲート電極よシ
も先に形成したが順序は逆でも可能である。
Although the present embodiment has been described with respect to G a A g, it can also be applied to FETs of other semiconductors, and although a semi-insulating substrate is used as one substrate, other insulating n-type or p-type substrates may be used. Further, although the active region and the ohmic region are formed by ion implantation, they may be formed by an epitaxial method. Furthermore, although the source electrode, drain electrode, and all the gate electrodes are formed first, the order may be reversed.

発明の効果 このように本発明はフォトレジスト加工精度よシも微細
なゲート領域を形成することができ、このようにして形
成された短ゲート長のショットキ障壁ゲート型電界効果
トランジスタでは高周波領域において高速動作が可能と
なる。
Effects of the Invention As described above, the present invention can form a gate region that is even finer than the photoresist processing accuracy, and the Schottky barrier gate field effect transistor with a short gate length formed in this manner can achieve high speed in a high frequency region. operation becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFETの断面図、第2図a −qは本発
明の一実施例によるG a A g F E Tの製造
工程順の素子断面図である。 1・・・・・・半絶縁性G a A s基板、2・・・
・・・能動領域、3・・・・・・オーミック領域、4・
・・・・・ソース電極、5・・・・・・ドレイン電極、
6・・・・・・ゲート電極、7・・・・・・フォトレジ
スト、8・・・・・・絶縁膜、9・・・・・・開口部、
10・・・・・・絶縁膜、11・・・・・・開口部、1
2・・・・・・金属膜。
FIG. 1 is a cross-sectional view of a conventional FET, and FIGS. 2A-2Q are device cross-sectional views in the order of manufacturing steps of a GaAg FET according to an embodiment of the present invention. 1...Semi-insulating GaAs substrate, 2...
...Active region, 3...Ohmic region, 4.
...Source electrode, 5...Drain electrode,
6...Gate electrode, 7...Photoresist, 8...Insulating film, 9...Opening part,
10... Insulating film, 11... Opening, 1
2...Metal film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に能動領域およびオーミック領域を形成する
工程と、全面に第1の絶縁膜を形成しゲート電極を形成
すべき部分の前記第1の絶縁膜にフォトレジス)(r用
いて開口部を形成する工程と、前記フォトレジストを含
む半導体基板全面に第2の絶縁膜を形成し、前記開口部
の側面以外の前記第2の絶縁膜を除去する工程と、前記
半導体とショットキ障壁を形成する金属を前記開口部の
みに形成しゲート電極を形成する工程とを含むことを特
徴とするショットキ障壁ゲート型電界効果トランジスタ
のゲート電極形成方法。
A step of forming an active region and an ohmic region on a semiconductor substrate, forming a first insulating film over the entire surface, and forming an opening using photoresist (r) on the first insulating film in a portion where a gate electrode is to be formed. a step of forming a second insulating film over the entire surface of the semiconductor substrate including the photoresist, and removing the second insulating film other than the side surfaces of the opening, a metal forming a Schottky barrier with the semiconductor; A method for forming a gate electrode of a Schottky barrier gate type field effect transistor, comprising the step of forming a gate electrode only in the opening.
JP16773283A 1983-09-12 1983-09-12 Formation of gate electrode of schottky barrier gate type fet Pending JPS6058679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16773283A JPS6058679A (en) 1983-09-12 1983-09-12 Formation of gate electrode of schottky barrier gate type fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16773283A JPS6058679A (en) 1983-09-12 1983-09-12 Formation of gate electrode of schottky barrier gate type fet

Publications (1)

Publication Number Publication Date
JPS6058679A true JPS6058679A (en) 1985-04-04

Family

ID=15855119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16773283A Pending JPS6058679A (en) 1983-09-12 1983-09-12 Formation of gate electrode of schottky barrier gate type fet

Country Status (1)

Country Link
JP (1) JPS6058679A (en)

Similar Documents

Publication Publication Date Title
US4599790A (en) Process for forming a T-shaped gate structure
US4618510A (en) Pre-passivated sub-micrometer gate electrodes for MESFET devices
US4727404A (en) Field effect transistor of the MESFET type for high frequency applications and method of manufacturing such a transistor
JPH0156534B2 (en)
JPS6058679A (en) Formation of gate electrode of schottky barrier gate type fet
JPH0346239A (en) Manufacture of semiconductor device
JP3035994B2 (en) Method for manufacturing semiconductor device
JPS6122873B2 (en)
JP2679077B2 (en) Semiconductor device and manufacturing method thereof
JPH07107906B2 (en) Method for manufacturing semiconductor device
JP2825284B2 (en) Method for manufacturing semiconductor device
JPS61163664A (en) Manufacture of semiconductor device
JPS59111372A (en) Manufacture of semiconductor device
JP3063296B2 (en) Field effect transistor
JPS6057980A (en) Manufacture of semiconductor device
JPH05275456A (en) Semiconductor device and its manufacture
JPH0327536A (en) Manufacture of field effect transistor
JPH0362017B2 (en)
JPS59126676A (en) Field effect type transistor
JPH05275455A (en) Semiconductor device and its manufacture
JPH02102544A (en) Semiconductor device
JPH05175243A (en) Manufacture of semiconductor device
JPS6177374A (en) Manufacture of fet
JPS62211960A (en) Manufacture of semiconductor device
JPS6318678A (en) Manufacture of semiconductor device