JPS605862A - Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking - Google Patents
Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion crackingInfo
- Publication number
- JPS605862A JPS605862A JP11386183A JP11386183A JPS605862A JP S605862 A JPS605862 A JP S605862A JP 11386183 A JP11386183 A JP 11386183A JP 11386183 A JP11386183 A JP 11386183A JP S605862 A JPS605862 A JP S605862A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- resistance
- stress corrosion
- corrosion cracking
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は溶接性および耐応ツノ1良蝕稈jれ1生力C1
襞りすこAt Zn−h輸合金の製造法tこ1装置する
。[Detailed description of the invention] The present invention provides weldability and resistance to corrosion.
The manufacturing method of Zn-h transfer alloy is carried out using 1 equipment.
一般に、AI Zn Mビ系合金は、その1蔑(戒[1
!J性質や溶接性が優れて(するた、l/)、鉄道It
屯而面■屯/zの陸上構造物等に非常に広範囲に、力・
つ、多く(重用されている。In general, AI Zn M bi-based alloys are
! Excellent J properties and weldability (Suruta, l/), Railway It
A very wide range of land structures, etc. in the area
One, many (important).
しかしなが呟この種高力A1合’rt f土、A ’J
jlxになる【二従って応力腐蝕割れ力1発4−シ易く
な1)、Al−Zn−Mg系合金も例外ではな(、弓並
度を]島めるためにh旬、Zn含有量を増加すると、1
迂4・Aおよび溶接部の耐応力腐蝕割rL性力ζ′Iタ
イヒしてくる。However, this kind of high strength A1 go'rt f soil, A'J
Therefore, the stress corrosion cracking force per shot is less than 1), and Al-Zn-Mg alloys are no exception. When increasing, 1
4・A and the stress corrosion resistance of the welded part rL resistance force ζ′I will occur.
t まだ、AlZn−Mg系合金(土、l\1合金のう
ちで・溶接か行なえる最高強度の4=J 11で・麦)
る力C,M、、、Zn含有量が増加すると溶接性も劣化
してくる。t Still AlZn-Mg alloy (soil, l\1 alloy, the highest strength that can be welded 4 = J 11, barley)
As the Zn content increases, weldability also deteriorates.
このようなことが音強度溶接溝i J11小、l I)
の1)11発ので妨げられている原因ともなってb)る
。This is the sound intensity welding groove i J11 small, l I)
1) The 11 shots are also the cause of the blockage b).
しかして、応力)齢蝕割れ1.:つ5)て1よ現イ「ま
て1こ、1 含有成分および製造条件等の改良1こよっ
て、m卆オ(k&+2)jX老木オ)の板厚方向を除け
ば応力腐蝕割し発生の可能性はなくなったか、溶接部に
ついては、溶接部(1および使用条件によっては応力腐
蝕割れ発生の可能性かある。Therefore, stress) age corrosion cracking 1. 5) 1. Current 1. 1. Improvements in the contained ingredients and manufacturing conditions 1. Therefore, stress corrosion cracking occurs except in the thickness direction of m. There is a possibility that stress corrosion cracking may occur in the welded part (1) depending on the welded part (1) and the conditions of use.
そして、近年になって、構造物の大型化およびiik計
・施工の合理化のために、厚内材料の使用が増加して外
でおり、溶接部に発生する応力か大きく、溶接部の耐応
力腐蝕割れ性の向上か強く要望されている。In recent years, due to the increase in the size of structures and the rationalization of IIC measurement and construction, the use of thick materials has increased, and the stress generated in the welds is large, and the stress resistance of the welds is There is a strong demand for improved corrosion and cracking resistance.
本発明は−に記に説明したような高力l\1今金合金け
る種々の問題点を解決しだらのであり、特に、溶接性お
よび耐応力腐蝕割れ性が1qれたAl−Zn−Mg合金
の製造法を提供するものである。The present invention aims to solve various problems associated with high-strength Al-Zn-Mg metal alloys as explained in section 1-2 above. The present invention provides a method for manufacturing an alloy.
本発明に係る溶接性および耐応力腐蝕割れ1′Jが優れ
たl\1−Zn tV1g合金の製造法の1、r徴とす
るところは、Zn 3.0〜8.0田1%、MBo、5
〜3.Ou+j%、1゛i 0.005−0.20u+
L%、B O,0005−(1,05u+L%、CLI
(1,03〜0.5u+1%、]\g0.5・〜1.0
す1%(0,5uuL%は含まず)を含有し、かつ、M
u O,05−0,50u+L%、CrO,05−0,
40u+L%、Zr0105−0.25+u 1%、V
O,01−0,15u+t%、Mo 0.01−0.
15u+1%のうちから選んだ少なくとも1挿具」二を
含み、残flls A lおよび不純物からなるA1合
金の結晶粒径を1500μVノ、下に微細化した鋳塊を
、400〜550’Cの温度で1〜241Lν間の均質
化処理を行なった後、350〜500 ’Cの温度で6
0%以」二の加工率で熱間打丁■−を行ない、Jυ終熟
熱処理後結晶粒の短径と長径の比を 1:13以−にと
し、かつ、短径の長さをSOμ以下とすることにある。The manufacturing method of the l\1-Zn tV1g alloy with excellent weldability and stress corrosion cracking resistance 1'J according to the present invention is as follows: Zn 3.0-8.0%, MBo , 5
~3. Ou+j%, 1゛i 0.005-0.20u+
L%, B O,0005-(1,05u+L%, CLI
(1,03~0.5u+1%,]\g0.5・~1.0
1% (excluding 0.5uuL%), and M
u O, 05-0, 50u+L%, CrO, 05-0,
40u+L%, Zr0105-0.25+u 1%, V
O, 01-0, 15u+t%, Mo 0.01-0.
An ingot containing at least one insert selected from 15u+1% and refined to a grain size of 1500 μV of A1 alloy consisting of residual aluminum and impurities was heated at a temperature of 400 to 550'C. After homogenization treatment between 1 and 241 Lν at a temperature of 350 and 500'C,
Hot cutting is carried out at a processing rate of 0% or more, and after Jυ final ripening heat treatment, the ratio of the short axis to the long axis of the crystal grains is 1:13 or more, and the length of the short axis is SOμ. The purpose is to do the following.
本発明に係る溶接性および耐応力腐蝕割れヤ1.が優れ
たAIZn−Mg合金の製造法は、溶接性を損なうこと
なく耐応力腐蝕割れ性を向上させるものであり、本発明
者は先に溶接性および溶接部の耐応力腐蝕割れ性か優れ
たAI−Zn−Mg合金の製造法を開発して出願してい
るが、その後の研究により次のようなことを知見したの
である。Weldability and stress corrosion cracking resistance layer according to the present invention1. The method for producing an AIZn-Mg alloy with excellent weldability improves stress corrosion cracking resistance without impairing weldability. They developed and applied for a manufacturing method for AI-Zn-Mg alloy, and as a result of subsequent research, they discovered the following.
即ち、応力腐蝕割れは結晶粒界に発生する一種の脆性破
壊であり、その発生初期の原因は結晶粒界と粒内の電位
差による粒界の優先溶出とされており、応力腐蝕割れカ
弓1張応力に起因するため、結晶粒界に加わる応力、即
ち、結晶粒の形状に太きくz:〉響され、そして、溶接
部近1勇は溶接時の熱影響によって再結晶組織となり、
伸長粒のけ材に比へ結晶粒界に加わる応力配分か大きく
なり、さらに、加熱急冷により累月状態での過時効処理
による耐応力腐1i!It割れ性向」二の効果かなくな
り、このようなことから耐応ノ月Ii!l蝕割れ性が劣
化する。In other words, stress corrosion cracking is a type of brittle fracture that occurs at grain boundaries, and the initial cause of its occurrence is said to be preferential elution of the grain boundaries due to the potential difference between the grain boundaries and within the grains, and the stress corrosion cracking process 1 Because it is caused by tensile stress, the stress applied to the grain boundaries, that is, the shape of the crystal grains, is greatly affected, and the weld area near the weld becomes a recrystallized structure due to the thermal effect during welding.
The stress distribution applied to the grain boundaries becomes larger compared to the elongated grain shaving material, and the stress corrosion resistance is 1i! The effect of "It cracking tendency" is gone, and from this reason, the resistance month II! l Corrosion resistance deteriorates.
しかして、CLI、A =、の含有は結晶粒界の優先溶
出を妨げ、曲・1応力腐蝕割れ性を向上させる効果があ
る。しかし、CLI、A8の単独の含有でも耐応力腐蝕
割れ性が向」ニするか大川上光分な効果はイ:1られす
、また、含有量か増加すると溶接性や耐蝕性か劣化する
ようになるので含有量を増加しても耐応力腐蝕割iz性
を向」ニさせることは剥1がしい。従って、CLI、A
Bの2種を同++j7に適量含有させることによって、
溶接性を劣化させることなく単なる相加効果ではなく相
乗効果によυ耐応7J腐蝕割れ性を著しく向−1ニさせ
ることかできる。Therefore, the inclusion of CLI, A =, has the effect of inhibiting the preferential elution of grain boundaries and improving the curve/1 stress corrosion cracking resistance. However, even if CLI or A8 is contained alone, the stress corrosion cracking resistance will be improved.The effect is 1:1, and if the content is increased, weldability and corrosion resistance will be deteriorated. Therefore, it is difficult to improve the stress corrosion resistance even if the content is increased. Therefore, CLI,A
By containing two types of B in appropriate amounts in the same ++j7,
The υ resistance to 7J corrosion and cracking can be significantly improved by a synergistic effect, not just an additive effect, without deteriorating the weldability.
また、Al−Zn−Mg系合金は、N・18、Zn含有
量か増加すると結晶粒界の417出物が多くなり溶融温
度か武士するので、溶接時の温度上昇およびi疑固時の
収縮応力により結晶粒界における割れが起り易くなるか
、鋳塊の結晶粒径を15(10μ以下に微細化し、40
0〜550°Cの温度で1〜24時間の均Tj化処理後
に、350〜500’Cの温度で60%以上の熱間加工
を行なって、結晶粒の短径と長径の比を1:5以−にと
し、かつ、短径の長さを80μ以下とすることにより)
8按性を向上させるのである。In addition, in Al-Zn-Mg alloys, as the N-18 and Zn contents increase, the number of 417 particles at the grain boundaries increases and the melting temperature increases, so the temperature rise during welding and the shrinkage during solidification occur. If cracking at grain boundaries is likely to occur due to stress, or if the crystal grain size of the ingot is refined to 15 (10μ or less),
After uniform Tj treatment at a temperature of 0 to 550°C for 1 to 24 hours, hot working of 60% or more is performed at a temperature of 350 to 500'C to reduce the ratio of the short axis to the long axis of the crystal grains to 1: 5 or more, and the length of the short axis is 80μ or less)
8 It improves the stability.
本発明に係る溶接性および耐応力腐蝕割れ性か優れたA
I−Zn−h録合金の製造法についで説明する。Excellent weldability and stress corrosion cracking resistance A according to the present invention
Next, the method for manufacturing the I-Zn-h alloy will be explained.
先ず、使用するAlZn−Mg合金の含有成分および成
分割合について説明する。First, the components and proportions of the AlZn-Mg alloy used will be explained.
Znは強度を向」二さぜるための最も重要な元素であり
、含有量が3.Ou+1%未1−eiでは光分な強度を
1Sることができず、また、8.0すし%を越えて含有
されると応力腐蝕割れが発生し易くなる。よって、Zn
fi有量ハ3.0=8.0+u1%とrる。Zn is the most important element for improving strength, and the content is 3. If Ou+1% is less than 1-ei, the optical intensity cannot be increased to 1S, and if the content exceeds 8.0%, stress corrosion cracking is likely to occur. Therefore, Zn
The fi quantity is 3.0=8.0+u1%.
MgはZnと同様に、強度向上に重要な元素であり、含
有量が0.5wL%未満では充分な強度か141られす
、また、3.0LllL%を越えて含有されると応力j
91.蝕、’i’lれか発生し易くなる。よって、Mε
含有量は0.5〜:1.[)+111%とする。Like Zn, Mg is an important element for improving strength, and if the content is less than 0.5wL%, it will not have sufficient strength, and if the content is more than 3.0LllL%, it will increase the stress.
91. Eclipses are more likely to occur. Therefore, Mε
The content is 0.5 to 1. [)+111%.
1′1.13はダj塊の組j&微4111化のための重
要な元素であり、i’ i 含有量が0.005u+1
%未+i:l!iおよび13含有”i カ0. (10
05tu 1%未満f 1.t M 品粒1’fA 1
lll 化1.:: 効果かなく1.tだ、T i 0
.20+uL%t; 、k ヒ13 (1,05+uL
%を越えて含有されると巨人化合物が発生する1可能性
かある。、1って、゛「1含有triハ0.005−0
.20wL%13 、J: ヒB含有量ハ0.0005
・−1)、05+u1%トスル。1'1.13 is an important element for the formation of the group j & micro 4111 of the daj mass, and the i' i content is 0.005u+1
%not+i:l! Contains i and 13"i Ka0. (10
05tu less than 1% f 1. t M Grain 1'fA 1
lll conversion 1. :: No effect 1. T, T i 0
.. 20+uL%t; , k Hi13 (1,05+uL
If the content exceeds 1%, there is a possibility that giant compounds will occur. , 1 means ``1-containing triha 0.005-0
.. 20wL%13, J: HiB content 0.0005
-1), 05+u1% tossle.
CLI、A8はこの2Jffiを同時に含有させること
により耐応力腐蝕割れ性を5旨しく向−1ニさせるが、
含有Q カCLl (1,0311%未il:ej 、
A (HO,5u+1%未h:tj r li同時に
重代含有させてもこのような効果はなく、また、Cu
O,5田I%、At; 1.Ou〕1%を、凶えて含有
されると効果か飽和し、また、溶4? i91れが起り
易くなる。よッテ、Cu含有量1j: 0.0:I −
0,5u+t%、AB含有量は0.5〜1.01%((
1,5+IIL%は含まない、)とする。CLI and A8 improve stress corrosion cracking resistance by simultaneously containing 2Jffi, but
Contained Q CLl (1,0311% unil:ej,
A (HO, 5u + 1% non-h:tj r li does not have such an effect even if it is added at the same time, and Cu
O, 5% I%, At; 1. If 1% of Ou] is contained, the effect will be saturated, and the effect will be saturated. i91 is more likely to occur. Yotte, Cu content 1j: 0.0:I −
0.5u+t%, AB content is 0.5-1.01% ((
1.5+IIL% is not included).
田1、Cr、Zr、\、′、MOは組織安定化ノタメニ
必要な元素であり、均質化、熱間加工の組合せによって
結晶粒を微細に制御するか、含有?、がM++0.05
u+L%未澗J、 Cr 0.05+uL%未111も
、Zr O,(15u+1%未γ;ei 、\I 09
01u+I%未7:I:i、へ4o fl、o1u+L
%未11テi)ではこの効果はなく、また、八’In
O,5()田1%、Cr・0.40u+L%、Zr O
,25u+1%、\’ 0.]5u+1%、Mo O,
]5u+1%を越えて含有されると巨大化合物が発生す
るI′i丁能性がある。よって、きり11含有川は0.
05〜0.5lll%、Cr含有量は0.050.40
u+1%、Zr含有敵は0.05−0.25u+L%
、\’ 0.0]、−0,]5u+L%、Mo 0.0
]〜0.15u+L%とする。1. Cr, Zr, \, ′, MO are necessary elements for stabilizing the structure, and whether the crystal grains are finely controlled by a combination of homogenization and hot working, or whether they are included? , is M++0.05
u + L% unknown J, Cr 0.05 + uL% unknown 111, Zr O, (15u + 1% unknown γ; ei, \I 09
01u+I%un7:I:i, to 4o fl, o1u+L
In
O, 5() 1%, Cr・0.40u+L%, Zr O
,25u+1%,\' 0. ]5u+1%, MoO,
] If the content exceeds 5u+1%, there is a possibility that a giant compound will be generated. Therefore, the river containing Kiri 11 is 0.
05-0.5lll%, Cr content is 0.050.40
u+1%, Zr containing enemies 0.05-0.25u+L%
, \' 0.0], -0, ]5u+L%, Mo 0.0
] ~0.15u+L%.
なお、不純物としては主として、Fe、Siを不可避不
純物として含有している。Note that the impurities mainly include Fe and Si as unavoidable impurities.
このような含有成分および成分割合のノ\I−χ11−
Mg合金を溶解して鈷造した′+)j塊の結晶粒径は1
゛1、Bの含有によす1500μ以下に微細化するので
あり、結晶粒径が1500μより火トいと製品の粒径か
肥大して溶接性を劣化させるので、シJ塊の結晶粒径は
1500μ以下としなければならない。Such content components and component ratios\I-χ11-
The crystal grain size of the ′+)j lump formed by melting Mg alloy is 1
゛1. Due to the inclusion of B, the crystal grain size is refined to 1500μ or less, and if the grain size is heated above 1500μ, the grain size of the product will increase and the weldability will deteriorate, so the grain size of the J lump should be Must be 1500μ or less.
次に熱処理について説明する。Next, heat treatment will be explained.
」二記の2)j塊を4(10−550’C)温度で1−
24時間の均質化処理を行なうのであるが、400’C
未満の温度では、八4n、Cr、 Zr、\・′、Mo
の析出が充分でなく、製品の結晶粒が゛j肥大し、また
、550’Cを越える温度では田1、Cr・、Zr、’
V、Moの析出物が再固溶し始めて、鋳塊の結晶粒が
微細であっても製品の結晶粒径が肥大して溶接性が劣化
する。2) J mass at 4 (10-550'C) temperature 1-
Homogenization treatment is carried out for 24 hours at 400'C.
At temperatures below 84n, Cr, Zr, \・', Mo
The crystal grains of the product become enlarged due to insufficient precipitation of Cr.
Precipitates of V and Mo begin to form a solid solution again, and even if the crystal grains of the ingot are fine, the crystal grain size of the product increases and weldability deteriorates.
この均質比処理後、;(5o−500’C(望ましくは
4oO〜450℃)の温度で60%以上(¥!ましくは
8n%以上)の熱間打丁[後溶体化・焼入れを行なうこ
とにより、へ4n、 Cr、 Z、r、\I′、1Vl
oとl\1の化合物が再結晶粒の成長をl!It止して
微細なファイバー組織となり、結果的に短径と長径の比
を1:5以上とし、がっ、短径の長さを80μ以下に制
御する。After this homogeneity ratio treatment, hot cutting of 60% or more (¥! or 8n% or more) is performed at a temperature of 5o-500'C (preferably 4oO-450oC) [post-solution treatment and quenching] Therefore, to4n, Cr, Z, r, \I', 1Vl
The compound o and l\1 inhibits the growth of recrystallized grains l! It stops and becomes a fine fiber structure, and as a result, the ratio of the short axis to the long axis is set to 1:5 or more, and the length of the short axis is controlled to 80μ or less.
し劣化て、熱間圧延、熱間押出、熱間鍛造等の熱開加]
二は、350’C未1角の低温度では加工が困5!11
、となり、500°Cを越える高jji1度では熱11
旧17Qれの可能性があり、製品の結晶粒径が肥大して
溶接性が劣化する。また、加工率が60%未満では製品
の結晶粒径が肥大し、さらに、最終的に得られた製品の
短径と長径の比が1ニ5未満および短径か80μを越え
る大きさでは溶接性が劣るようになる。[Thermal opening during hot rolling, hot extrusion, hot forging, etc.]
Second, it is difficult to process at temperatures as low as 350'C.5!11
, and at a high temperature of 1 degree exceeding 500 degrees Celsius, the temperature is 11 degrees.
There is a possibility of old 17Q warping, which increases the crystal grain size of the product and deteriorates weldability. In addition, if the processing rate is less than 60%, the crystal grain size of the product will increase, and if the ratio of the short axis to the long axis of the final product is less than 1 to 5 or the short axis exceeds 80 μ, welding will occur. Become less sexually active.
本発明に係る溶接性および耐応力腐蝕割れ性か優れたA
l−Zn−Mg合金の製造法の実施例を比較例と共に説
明する。Excellent weldability and stress corrosion cracking resistance A according to the present invention
Examples of the method for manufacturing l-Zn-Mg alloy will be described together with comparative examples.
実施例
第1表に示す含有成分および成分割合のAl−Zn−M
g合金を通常の方法により:8製しSJJ造したダミ塊
を下記の条件により処理した。Example Al-Zn-M with the components and component ratios shown in Table 1
A dummy ingot prepared by SJJ using g-alloy by a conventional method was treated under the following conditions.
(1)本発明に係る溶接性および耐応力腐蝕割れ性が優
れたAI Zn M8合金の製造法の条件450℃の温
度で24時間の均質化処理後、400−450℃の温度
で90%の熱間圧延を行なって、25m+nLの板4・
1を製作した。(1) Conditions for the production method of AI Zn M8 alloy with excellent weldability and stress corrosion cracking resistance according to the present invention After homogenization treatment at a temperature of 450°C for 24 hours, 90% After hot rolling, a 25m+nL plate 4.
I made 1.
(2)比較条件
570℃の温度で24時間の均質化処理後、450〜5
00’Cの温度で90%の熱間圧延を行なって、25m
+nLの板拐を製作した。(2) Comparative conditions After 24 hours of homogenization at a temperature of 570°C, 450-5
25m by 90% hot rolling at 00'C temperature.
A +nL plate was produced.
これらの板祠な450’Cの温度で30分間の溶体化処
理を行なった後、水冷し、+20’cの温度で2・1時
間の時効を行なった。After performing solution treatment for 30 minutes at a temperature of 450'C, these plates were cooled with water and aged for 2.1 hours at a temperature of +20'C.
第2表にこの根4・]の性質を調査した結果を示す。Table 2 shows the results of investigating the properties of this root 4.].
1)氷111品粒仔:板および形イ・イのに毛方向に平
行断面視ぢく。1) Particles of 111 pieces of ice: A cross section parallel to the hair direction of the plates and shapes A and A.
2)11il応ノ月昌蝕111すれ性:C−R1世試験
片を用いて厚さ方向に応力を負荷し、l Otl ’C
のj匂;/lNaCl 、’((i3/1KHcrr(
L、−:NIH;/l(二r Ol:iA合水lf:ン
(姶こ浸)ず[した。OG:0分で割れなし、Xα:0
分で111りれ発生。2) 11il Otl 'C
/lNaCl,'((i3/1KHcrr(
L, -: NIH; /l (2r Ol: iA combined water lf: n (8-ko immersion) [did. OG: no cracking at 0 minutes, Xα: 0
111 leaks occurred in minutes.
:()スワント型1’tiれ試験:厚さ] 2 mml
のスリ7ト型溶接割れ試験片を用いた。:() Swant type 1'tire test: Thickness] 2 mml
A 7-slit type weld crack test piece was used.
割れ%= 割れ長さ/溶接全員X ] (tlO;d加
#4’ 535 G
電 流 280A 電圧 3()\゛
4)ミクロフィンシャー:突合ぜ溶接4・4の78接部
近傍を観察。Crack % = Crack length / All welding members
厚さ G inn L
溶加4’A’ !’i :856
電iit 26+1 ノ\ 電圧3oV第2表にJ3け
る溶接部の銅応ノ月911蝕割れ性:4)と同し試片の
突合ぜ溶接部を用い、添イτj図面に示すように ピン
5を有する支持金具3に溶接ビード2のある仮相1を支
持する3点支持法にて15KPi/nun2の応力を加
えた。Thickness G inn L Weld filler 4'A'! 'i: 856 Electrical Iit 26+1 \ Voltage 3oV Table 2 shows the welded area of J3 in Copper O-no Tsuki 911 corrosion resistance: 4) Using the butt welded part of the same specimen, as shown in the accompanying drawing τj. A stress of 15 KPi/nun2 was applied to the support fitting 3 having the pin 5 by a three-point support method to support the temporary phase 1 with the weld bead 2.
試験条件
] (10”Cの3g/ 1Nacl 368/ I(
、:t・0 、−30 g/ l K 2 Cr 20
7混合水溶液に没潰して割れを観察した。Test conditions] (3g of 10”C/1Nacl 368/I(
,:t・0, -30 g/l K2Cr20
No. 7 was submerged in a mixed aqueous solution and cracks were observed.
この第2表から明らかなように、本発明に係る製造法の
条件により製造した仮相は、比較柔性により製造した板
材に比して、溶接性に優れ、さらに、耐応〕月晶蝕割れ
性に1愛れていることかわかる。As is clear from Table 2, the temporary phase manufactured under the conditions of the manufacturing method according to the present invention has superior weldability compared to the plate materials manufactured using comparative flexibility, and is also resistant to lunar eclipse cracking. I can see that you are in love with sex.
添4=I図面は溶接部の耐応力腐蝕割れ性の試験法を示
す41!X略図である。
1〜板4・、l、2〜溶接ビード′、;(へ・支持金具
1、・1〜割れ発生部、5〜ピン。Appendix 4 = I drawing shows the test method for stress corrosion cracking resistance of welded parts 41! X is a schematic diagram. 1 to plate 4, l, 2 to weld bead', (to/support metal fitting 1, 1 to crack occurrence area, 5 to pin.
Claims (1)
t%、T i O,005−0,2(buL%、B 0
00005−0.05wt%、Cu O,03−0,5
wL%、AgO,5−1,O+u1%(0,5u+L%
は含まず)を含有し、かつ、Mu O,05〜0.50
田1%、Cr O,05−0,40uL%、χr O,
05−(1,25u+t%、V 0.01−0.15w
L%、Mo O,01−0,15u+L%のうちから選
んだ少なくとも1挿具−(、を含み、残部Al少よび不
純物からなるA1合金の結晶粒径を1500A以下に微
+l:+11化した鋳塊を、400・〜550°Cの温
度で1〜24時間の均質化処理を行なった後、:(50
〜500’(の温/Aで60%以上の加工(・ζで熱間
加工を11ない最終熱処理後の結晶粒の短径と長径の比
を に5以上とし、かつ、短径の長さを80μ以下とす
ることを1、′i徴とする溶接性す;よび耐応力腐蝕割
れヤシ)$優れr、−A l−7,n M R合金のり
12「迂7Zu 3.0-8,0+uL%, M60.5-3,0w
t%, T i O, 005-0,2 (buL%, B 0
00005-0.05wt%, CuO,03-0,5
wL%, AgO,5-1,O+u1% (0,5u+L%
), and Mu O,05-0.50
1%, CrO, 05-0, 40uL%, χrO,
05-(1,25u+t%, V 0.01-0.15w
L%, Mo O, 01-0, 15u+L%, including at least one insert selected from among L%, Mo O, 01-0, 15u+L%, the crystal grain size of A1 alloy consisting of a small amount of Al and impurities was made fine to 1500 A or less +l:+11 After homogenizing the ingot at a temperature of 400-550°C for 1-24 hours,
Processing of 60% or more at a temperature of ~500' 80 μ or less for weldability; and stress corrosion resistance and cracking resistance).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11386183A JPS605862A (en) | 1983-06-24 | 1983-06-24 | Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11386183A JPS605862A (en) | 1983-06-24 | 1983-06-24 | Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS605862A true JPS605862A (en) | 1985-01-12 |
JPS6360821B2 JPS6360821B2 (en) | 1988-11-25 |
Family
ID=14622922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11386183A Granted JPS605862A (en) | 1983-06-24 | 1983-06-24 | Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS605862A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621573A (en) * | 1985-06-28 | 1987-01-07 | Ricoh Co Ltd | Heat-sensitive melt transfer sheet |
JPS6425161U (en) * | 1987-08-05 | 1989-02-10 | ||
JPH03122247A (en) * | 1989-10-06 | 1991-05-24 | Furukawa Alum Co Ltd | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance |
JP2011241449A (en) * | 2010-05-18 | 2011-12-01 | Aisin Keikinzoku Co Ltd | High strength 7000 series aluminum alloy extruded material |
CN111663091A (en) * | 2019-03-08 | 2020-09-15 | 南京理工大学 | Method for improving corrosion resistance of industrial pure copper |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0647035B2 (en) * | 1989-03-01 | 1994-06-22 | 株式会社竹屋 | Air purifier at pachinko game hall |
-
1983
- 1983-06-24 JP JP11386183A patent/JPS605862A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621573A (en) * | 1985-06-28 | 1987-01-07 | Ricoh Co Ltd | Heat-sensitive melt transfer sheet |
JPS6425161U (en) * | 1987-08-05 | 1989-02-10 | ||
JPH03122247A (en) * | 1989-10-06 | 1991-05-24 | Furukawa Alum Co Ltd | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance |
JP2011241449A (en) * | 2010-05-18 | 2011-12-01 | Aisin Keikinzoku Co Ltd | High strength 7000 series aluminum alloy extruded material |
CN111663091A (en) * | 2019-03-08 | 2020-09-15 | 南京理工大学 | Method for improving corrosion resistance of industrial pure copper |
Also Published As
Publication number | Publication date |
---|---|
JPS6360821B2 (en) | 1988-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69511717T2 (en) | Process for the production of cylinder parts and nickel-based alloys | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
JPS62177143A (en) | Aluminum alloy sheet excellent in formability and baking hardening and its production | |
EP3550051B1 (en) | Steel for mold, mold, use of a steel for manufacturing a mold, and a process of manufacturing a mold | |
JP4185247B2 (en) | Aluminum-based alloy and heat treatment method thereof | |
EP3208354A1 (en) | Ni-based superalloy for hot forging | |
TW201600611A (en) | [alpha]+[beta] type cold-rolled and annealed titanium alloy sheet having high strength and high young's modulus, and method for producing same | |
JPS605862A (en) | Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking | |
JPS58167757A (en) | Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability | |
JPS6128746B2 (en) | ||
JPS6058300B2 (en) | Method for manufacturing Al-Zn-Mg alloy with excellent weldability and stress corrosion cracking resistance | |
JPS59170244A (en) | Strong and tough co-free maraging steel | |
JPH07509535A (en) | Nickel-molybdenum alloy | |
JPH0114991B2 (en) | ||
KR20000058123A (en) | Heavy wall steel material having superior weldability and method for producing the same | |
CN109321844B (en) | Rare earth super-strong steel and preparation method thereof | |
JPS6013050A (en) | Heat-resistant alloy | |
JPS60145365A (en) | Manufacture of al-zn-mg alloy having superior weldability and resistance to stress corrosion cracking | |
JPS596356A (en) | Ultra-high tensile steel | |
JP2001279386A (en) | Maraging steel excellent in castability, and its production method | |
JPH024944A (en) | Steel for electric-resistance weld steel tube having excellent fatigue characteristics | |
JPH03140412A (en) | Production of steel having high strength and high toughness | |
JPH02228451A (en) | Iron-base shape memory alloy | |
Suhariyanto et al. | Mechanical Property Improvement for Aluminum Alloy Al-7Si with Additive Material of Al-TiB and Heat Treatment of T5 | |
JPS634905B2 (en) |