JPS58199846A - Superhigh tensile steel - Google Patents

Superhigh tensile steel

Info

Publication number
JPS58199846A
JPS58199846A JP8357582A JP8357582A JPS58199846A JP S58199846 A JPS58199846 A JP S58199846A JP 8357582 A JP8357582 A JP 8357582A JP 8357582 A JP8357582 A JP 8357582A JP S58199846 A JPS58199846 A JP S58199846A
Authority
JP
Japan
Prior art keywords
steel
content
strength
toughness
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8357582A
Other languages
Japanese (ja)
Inventor
Yoshio Ashida
芦田 喜郎
Kazunori Ishihara
石原 和範
Hiroyuki Morimoto
森本 啓之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8357582A priority Critical patent/JPS58199846A/en
Publication of JPS58199846A publication Critical patent/JPS58199846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a superhigh tensile steel with superior toughness and strength, by especially reducing the content of C and by adding prescribed percentages of Ni, Mo, Ti, Al and Cu. CONSTITUTION:This high tensile steel consists of, by weight, <=0.05% C, 10- 25% Ni, 0.2-4.0% Mo, 0.1-5.0% Ti, 0.01-3.0% Al, 0.01-6.0% Cu and the balance essentially Fe. The steel is provided with high strength and toughness like 18% Ni maraging steel by utilizing hardening by the precipitation of an intermetallic compound. A martensite matrix phase with superior toughness is formed by adding 10-25% Ni, and Ti, Al and Cu are added as precipitation hardening elements. An intermetallic compound is precipitated in the matrix phase by aging to harden the steel. To ensure toughness at a superhigh strength level, the C content is restricted to a minimum, and the amounts of P and S as impurities are reduced to the utmost.

Description

【発明の詳細な説明】 本発明は超高張力鋼に関し、さらに詳しくは、航空機用
部材、ロケット・ミサイルのチャンバー、マンドレル、
ステム、グイキャスト、或いは、プラスチックの金型等
の工具、圧力容器、板、線等のバネ、ボルト、ファスナ
ー等に適用して好適な超高張力鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ultra-high tensile strength steel, and more particularly to aircraft parts, rocket and missile chambers, mandrels,
The present invention relates to ultra-high tensile strength steel suitable for use in tools such as stems, guicasts, and plastic molds, springs, bolts, and fasteners for pressure vessels, plates, and wires, and the like.

一般に、従来より使用され、又、提案されている超高張
力鋼として代表的な鋼種とその問題点について説明する
In general, typical types of ultra-high tensile strength steels that have been conventionally used or proposed and their problems will be explained.

(1)焼入焼戻し鋼(例えば、SNCM439.5KD
61)この鋼はC含有量が高いために、超高強度レベル
で靭性が低く、溶接性に問題があり、質量効果が大きく
極厚製品の品質が劣り、熱処理歪が大きく、かつ、冷開
加工性が悪いという問題点がある。
(1) Quenched and tempered steel (for example, SNCM439.5KD
61) Due to the high C content, this steel has ultra-high strength, low toughness, problems with weldability, large mass effect, poor quality of extremely thick products, large heat treatment distortion, and cold opening. There is a problem of poor workability.

(2)析出硬化型ステンレス鋼(例えば、17−4Pl
(ステンレス鋼) この鋼は超高張力鋼としては強度と靭性が不足しており
、熱処理が複雑で、かつ、溶接性に問題がある。
(2) Precipitation hardening stainless steel (e.g. 17-4Pl
(Stainless steel) This steel lacks the strength and toughness of an ultra-high tensile steel, requires complicated heat treatment, and has problems with weldability.

(3) 18%Niマルエージング鋼 この鋼は超高強度レベルで優れた靭性を有し、(1)、
(2)で説明した鋼の問題点は解消されたが、Co、 
Noを多量に含有するためコスト高となり省資源からも
問題がある。
(3) 18% Ni maraging steel This steel has excellent toughness at an ultra-high strength level, (1)
Although the problems of steel explained in (2) have been resolved, Co.
Since it contains a large amount of No, it becomes costly and there are also problems in terms of resource conservation.

(4) 20%Ni、25%Niマルエージング鋼この
鋼は強度に優れているが時効処理時に粗大なN15(T
i、A1)が結晶粒界に析出し、このため靭性が著しく
劣化するという問題がある。
(4) 20% Ni, 25% Ni maraging steel This steel has excellent strength, but coarse N15 (T
i, A1) precipitates at grain boundaries, resulting in a problem in that toughness is significantly degraded.

(5)超強カマルエーソング鋼(特開昭48−15号公
報)この鋼ハ20%Ni、25%Niマルエージング鋼
にNoを添加してNi3(Ti、A1)の結晶粒界への
析出を阻止し、靭性を改善したマルエージング鋼である
が、この鋼は時効処理条件による延性、靭性の変化が大
きく、特に、歪時効処理をした場合に著しく脆化すると
いう問題点が実験の結果判明した。
(5) Super strong Kamal A song steel (Japanese Unexamined Patent Application Publication No. 1983-15) No is added to the 20% Ni, 25% Ni maraging steel to increase the strength of the Ni3 (Ti, A1) grain boundaries. This is a maraging steel that prevents precipitation and improves toughness, but the ductility and toughness of this steel vary greatly depending on the aging treatment conditions, and in particular, the problem of significant embrittlement when subjected to strain aging treatment has been demonstrated in experiments. The result is clear.

よって、熱処理において厳格な温度管理を要求されるの
である。
Therefore, strict temperature control is required during heat treatment.

本発明は上記に説明した従来における超高張力鋼の種々
の問題点に鑑みなされたものであり、優れた靭性や強度
を有する超高張力鋼を提供するものである。
The present invention has been made in view of the various problems of conventional ultra-high tensile strength steels described above, and provides an ultra-high tensile strength steel having excellent toughness and strength.

本発明(:係る優れザ性・強度0超高張力鋼は、(1)
C50,05%、Ni10〜25%、Mo0.2〜4.
0%、Ti O,1−5,0%、AI 0.01−3.
0%、Cu0.01〜6.0%を含有し、残部実質的に
Feであることを特徴とする超高張力鋼を@1の発明と
し、(2)C50,05%、Ni 10−25%、Mo
 0.2−4.0%、Ti0.1%〜5.0%、A10
.01−3.0%、Cub、01〜6.0%、Co2%
以下を含有し、残部実質的にFeであることを特徴とす
る超高張力鋼を第2の発明とする2つの発明よりなるも
のである。
The present invention (1)
C50.05%, Ni10-25%, Mo0.2-4.
0%, TiO, 1-5, 0%, AI 0.01-3.
0%, Cu 0.01-6.0%, and the remainder is substantially Fe, and (2) C50.05%, Ni 10-25 %, Mo
0.2-4.0%, Ti0.1%-5.0%, A10
.. 01-3.0%, Cub, 01-6.0%, Co2%
This invention consists of two inventions, the second invention being an ultra-high-strength steel characterized by containing the following, with the remainder being substantially Fe.

このような構成を有する本発明に係る超高張力鋼におい
ては以下のことが基本となっている。
The ultra-high tensile strength steel according to the present invention having such a configuration is based on the following.

(1)強靭化には18%Niマルエージング鋼と同しく
、金属間化合物の析出による強化を利用するものであっ
て、Ni1O〜25%の含有によって靭性の優れたマル
テンサイト母相を形成し、析出強化元素としてTi、A
I、Cuを含有させ、時効処理によってマルテンサイト
母相中に金属間化合物を析出させて強化し、さらに、超
高強度レベルでの靭性を確保するためC含有量は極力低
く抑えるとともに、P、Sも不純物元素として極力低く
する。
(1) Similar to 18% Ni maraging steel, strengthening by precipitation of intermetallic compounds is used to strengthen the steel, and the presence of 10 to 25% Ni forms a martensitic matrix with excellent toughness. , Ti, A as precipitation strengthening elements
I, Cu is contained, and intermetallic compounds are precipitated in the martensite matrix through aging treatment to strengthen it. Furthermore, in order to ensure toughness at an ultra-high strength level, the C content is kept as low as possible, and P, S is also kept as low as possible as an impurity element.

(2)Co、Moの含有量を減少し、これに伴なう強度
低下をTi、AI、Cuによる析出強化で補ない、通常
の18%Niマルエージング鋼のCo7〜14%、Mo
4〜6%もある含有量をCoを含有させながうたり、ま
た、Co2%以下、Mo 0.2−4.0%と低い含有
量とし、か−〕、超高強度レベルでの靭性確保のためT
 i、 A I、Cuを複合添加する。このようにして
、省資源、経済的理由からCo、Moを低含有量とする
のである。
(2) By reducing the Co and Mo content and compensating for the accompanying strength loss by precipitation strengthening with Ti, AI, and Cu, Co7 to 14% and Mo of normal 18% Ni maraging steel
The content of Co can be as low as 4-6%, and the content can be as low as 2% or less of Co and 0.2-4.0% of Mo. T to secure
i, A I, and Cu are added in combination. In this way, the content of Co and Mo is reduced for resource saving and economical reasons.

(3)Ti、AIは(1)、(2)でも説明したように
、強力な析出強化元素であり強化には有効であるが、T
i、AIで強化すると亜時効処理時に靭性が著しく低下
する傾向があ智)、これはTi、AIの析出の成長速度
が小さく歪時効処理の広い範囲にわたって遅れ破壊感受
性の高いとされるゾーン、或いは、整合析出相が存在す
るためである。従って、この亜時効処理時の遅れ破壊に
よる脆化を防止し、広範な時効処理条件で安定した靭性
を確保するために、Cuを含有させるのが有効であり、
このC1lの析出はT i、 A Iに比し低温短時間
で起り、歪時効処理でも遅れ破壊感受性の低い析出物を
形成するためである。このため、時効処理時の熱的な取
扱い、大型製品の処理などが容易になる。
(3) As explained in (1) and (2), Ti and AI are strong precipitation-strengthening elements and are effective for strengthening, but T
This is because the growth rate of Ti and AI precipitates is low and the susceptibility to delayed fracture is high over a wide range of strain-aging treatments, Alternatively, this is because a coherent precipitated phase exists. Therefore, in order to prevent embrittlement due to delayed fracture during sub-aging treatment and ensure stable toughness under a wide range of aging treatment conditions, it is effective to include Cu.
This is because the precipitation of C1l occurs at a lower temperature and in a shorter time than that of T i and A I, and forms precipitates with low delayed fracture susceptibility even during strain aging treatment. Therefore, thermal handling during aging treatment, processing of large products, etc. are facilitated.

(4)熱処理はAf温度以上でオーステナイ)化し、常
温まで冷却して(冷却速度は問わない。)、マルテンサ
イト相とする(深冷処理は不要。)。これを300°〜
650℃X(0,5−100)hrの時効処理を行なっ
て析出強化するのである。
(4) The heat treatment is performed to austenite at a temperature higher than the Af temperature, and the material is cooled to room temperature (the cooling rate does not matter) to form a martensitic phase (deep cooling treatment is not required). 300°~
Precipitation strengthening is performed by aging at 650°C for 0.5-100 hours.

次に、本発明に係る超高張力鋼の含有成分、および、成
分割合について詳細に説明する9Cは強度を高める作用
をするが、強化にCを使用した場合従来の焼入焼戻し超
高張力鋼のように靭性が低くなり、溶接性に問題があり
、熱処理歪が大きく、また、冷間加工性が悪くなるとい
う問題が生じるので、本発明に係る超高張力鋼では、C
は不純物元素と考え強化には金属間化合物の析出を利用
するのでC含有量は0.05% 以下とする。
Next, we will explain in detail the components and component ratios of the ultra-high-strength steel according to the present invention. 9C has the effect of increasing strength, but when C is used for strengthening, the conventional quenched and tempered ultra-high-strength steel In the ultra-high tensile steel according to the present invention, C
Since C is considered to be an impurity element and the precipitation of intermetallic compounds is used for strengthening, the C content is set to 0.05% or less.

Niはマルテンサイト母相を形成する重要な元素であり
、靭性の優れた高強度ラスマルテンサイト相を生成させ
るためには、Ni含有量は10%未満ではこの効果が得
られず、また、25%を越えて含有されるとオーステナ
イト相が安定化して室fMで100%マルテンサイト相
にならない。よって、Ni含有社は10〜25%とする
。また、N:は時効処理によりT1、l\1.cu、M
oと金属間化合物を形成して強度をに昇させる作用があ
る。
Ni is an important element that forms the martensite matrix, and in order to generate a high-strength lath martensite phase with excellent toughness, this effect cannot be obtained if the Ni content is less than 10%. If the content exceeds %, the austenite phase becomes stabilized and does not become 100% martensite phase at chamber fM. Therefore, the Ni content is set at 10 to 25%. Also, N: is T1, l\1. due to aging treatment. cu, M
It has the effect of forming an intermetallic compound with o and increasing the strength.

Moは超高強度レベルでの粒界脆化を防止する元素で、
含有量が0.2%未満ではこの効果は少なく、また、時
効処理によりN13Mo、Fe2Moとして析出し強化
に奇怪するが、含有量が多くなると経済的でないので4
.0%を越えて含有させない。よって、Mo含有量は0
.2〜4.0%とする。
Mo is an element that prevents grain boundary embrittlement at ultra-high strength levels.
If the content is less than 0.2%, this effect will be small, and the aging treatment will precipitate N13Mo and Fe2Mo and cause strange strengthening, but if the content increases, it is not economical.
.. Do not contain more than 0%. Therefore, Mo content is 0
.. 2 to 4.0%.

T1は強度を付与する重要な元素で、時効処理によりN
i5Tiが析出して著しく強化するが、含有量が0.1
%未満では析出強化にはあまり期待ができず、また、多
量に含有すると脆化するので5.0%を越えて含有させ
る必要はない。よりて、Ti含有量は0.1〜5.0%
とする。
T1 is an important element that imparts strength, and N
i5Ti precipitates and strengthens significantly, but the content is 0.1
If it is less than 5.0%, precipitation strengthening cannot be expected much, and if it is contained in a large amount, it will become brittle, so it is not necessary to contain it in excess of 5.0%. Therefore, the Ti content is 0.1 to 5.0%
shall be.

A1は強化に大きな影響を与える元素であり、時効処理
によすN、i、s^1を析出し強度を上昇させるが、含
有量が0.01%未満ではこの効果が少なく、また、3
.0%を越えて多量に含有されると脆化する。よって、
A1含有量は0.01〜3.0%とする。
A1 is an element that has a great effect on strengthening, and increases the strength by precipitating N, i, and s^1 during aging treatment, but if the content is less than 0.01%, this effect is small;
.. If it is contained in a large amount exceeding 0%, it becomes brittle. Therefore,
The A1 content is 0.01 to 3.0%.

Cuは時効処理により析出し強度を上昇させるとともに
脆化を防止するのに有効な元素であり、そして、T i
、 A Iにより強化した場合に亜時効処理時に遅れ破
壊感受性が増し脆化する傾向があるが、Cu含有量が0
.01%を越えて含有させることによってこの脆化を防
止上広範な時効処理条件で安定した靭性を確保するため
に有効である。
Cu is an element effective in increasing precipitation strength and preventing embrittlement by aging treatment, and Ti
, When reinforced with AI, delayed fracture susceptibility increases during sub-aging treatment and tends to become brittle, but when the Cu content is 0
.. It is effective to prevent this embrittlement and ensure stable toughness under a wide range of aging treatment conditions by containing more than 0.01%.

Cuの析出はTi、AIに比べて低温、短時間側で起る
のでCuとTi、AIの析出を組合せれば、亜時効から
過時効まで広範な時効処理条件において遅れ破壊感受性
の低い組織を形成し、脆化を防ぐとともに、より高強度
化が可能となる。また、含有量が6.0%を越えると強
化に伴ない脆化するとともに高温酸化が着しくなる。よ
って、Cu含有量は0.01〜6.0%とする。なお、
Cuは耐蝕性を改善する効果もある。
Since Cu precipitation occurs at lower temperatures and shorter times than Ti and AI, by combining Cu, Ti, and AI precipitation, it is possible to create a structure with low delayed fracture susceptibility under a wide range of aging treatment conditions from sub-aging to over-aging. This prevents embrittlement and increases strength. Moreover, if the content exceeds 6.0%, it becomes brittle as it is strengthened, and high-temperature oxidation tends to occur. Therefore, the Cu content is set to 0.01 to 6.0%. In addition,
Cu also has the effect of improving corrosion resistance.

□ CoはMoの固溶度を低下させ、N13Moなどの析出
を促進する作用があるといわれているが、本発明に係る
超高張力鋼ではMoよりはむしろTi、A1、Cuによ
る析出効果が主であり、CO金含有効果は少ない。また
、Coは高価であることもあって、Co含有量は2%以
下とする。
□ Co is said to have the effect of reducing the solid solubility of Mo and promoting the precipitation of N13Mo, but in the ultra-high tensile steel of the present invention, the precipitation effect is due to Ti, A1, and Cu rather than Mo. The effect of CO containing gold is small. Further, since Co is expensive, the Co content is set to 2% or less.

S i、 Mn、 p、 Sは不純物元素とみなされる
ので、できる限り低く抑える必要があり、含有量として
は、S1≦0.3%、M口≦0.3%、P≦0.05%
、及び、S≦0.05%とするのが望ましい。
Since Si, Mn, p, and S are considered as impurity elements, they must be kept as low as possible, and the content is S1≦0.3%, M≦0.3%, P≦0.05%.
, and it is desirable that S≦0.05%.

本発明に係る超高張力鋼の実施例について比較例ととも
に説明する。
Examples of ultra-high tensile strength steel according to the present invention will be described together with comparative examples.

実施例 第1表に示す含有成分、及び、成分割合となるように、
各鋼種を通常の溶製法により溶製して鋳造した。その後
、加工して試料を調整した。
The ingredients and proportions shown in Example Table 1 are as follows:
Each steel type was melted and cast using the usual melting method. Thereafter, the sample was prepared by processing.

第2表に熱処理条件と機械的性質について示す。Table 2 shows the heat treatment conditions and mechanical properties.

また、第1図に、No、5、N007、N088の本発
明に係る超高張力鋼と、No、16.No、19の比較
鋼との絞りと引張強度について示しである。
FIG. 1 also shows ultra-high tensile strength steels according to the present invention No. 5, No. 5, N007, and No. 088, and No. 16. The drawings show the reduction of area and tensile strength compared to No. 19 comparative steel.

この第2表、及び、第1図から明らかなように、本発明
に係る超高張力鋼は比較鋼と同等か、または、それ以上
の引張性質、絞り、又は、伸びを示し優れた超高張力鋼
である。
As is clear from this Table 2 and FIG. It is tension steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は時効処理温度と絞りと引張強度との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between aging treatment temperature, reduction of area, and tensile strength.

Claims (2)

【特許請求の範囲】[Claims] (1)C50,05%、Ni 10−25%、Mo 0
.2−4.0%、Ti O,1−5,0%、Al O,
01−3,0%、Cu O,01−6,0%を含有し、
残部実質的にFeであることを特徴とする超高張力鋼。
(1) C50.05%, Ni 10-25%, Mo 0
.. 2-4.0%, TiO, 1-5.0%, AlO,
Contains 01-3,0%, Cu O,01-6,0%,
An ultra-high tensile strength steel characterized in that the remainder is substantially Fe.
(2)C50,05%、Ni 10−25%、Mo O
,2−4,0%、Ti 0.1−5.0%、A10.0
1−3.0%、Cu0.01−6.0%、Co2%以下
を含有し、残部実質的にFeであることを特徴とする超
高張力鋼。
(2) C50.05%, Ni 10-25%, MoO
,2-4.0%, Ti 0.1-5.0%, A10.0
1-3.0% Cu, 0.01-6.0% Cu, and 2% or less Co, with the remainder being substantially Fe.
JP8357582A 1982-05-18 1982-05-18 Superhigh tensile steel Pending JPS58199846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8357582A JPS58199846A (en) 1982-05-18 1982-05-18 Superhigh tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8357582A JPS58199846A (en) 1982-05-18 1982-05-18 Superhigh tensile steel

Publications (1)

Publication Number Publication Date
JPS58199846A true JPS58199846A (en) 1983-11-21

Family

ID=13806300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8357582A Pending JPS58199846A (en) 1982-05-18 1982-05-18 Superhigh tensile steel

Country Status (1)

Country Link
JP (1) JPS58199846A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103157A (en) * 1983-11-11 1985-06-07 Hitachi Metals Ltd Superhigh strength steel having superior delayed fracture characteristic
US7981521B2 (en) * 2005-08-30 2011-07-19 Ati Properties, Inc. Steel compositions, methods of forming the same, and articles formed therefrom
US8444776B1 (en) 2007-08-01 2013-05-21 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9121088B2 (en) 2007-08-01 2015-09-01 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9182196B2 (en) 2011-01-07 2015-11-10 Ati Properties, Inc. Dual hardness steel article
US9657363B2 (en) 2011-06-15 2017-05-23 Ati Properties Llc Air hardenable shock-resistant steel alloys, methods of making the alloys, and articles including the alloys

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103157A (en) * 1983-11-11 1985-06-07 Hitachi Metals Ltd Superhigh strength steel having superior delayed fracture characteristic
US7981521B2 (en) * 2005-08-30 2011-07-19 Ati Properties, Inc. Steel compositions, methods of forming the same, and articles formed therefrom
US8444776B1 (en) 2007-08-01 2013-05-21 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9121088B2 (en) 2007-08-01 2015-09-01 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9593916B2 (en) 2007-08-01 2017-03-14 Ati Properties Llc High hardness, high toughness iron-base alloys and methods for making same
US9951404B2 (en) 2007-08-01 2018-04-24 Ati Properties Llc Methods for making high hardness, high toughness iron-base alloys
US9182196B2 (en) 2011-01-07 2015-11-10 Ati Properties, Inc. Dual hardness steel article
US10113211B2 (en) 2011-01-07 2018-10-30 Ati Properties Llc Method of making a dual hardness steel article
US10858715B2 (en) 2011-01-07 2020-12-08 Ati Properties Llc Dual hardness steel article
US9657363B2 (en) 2011-06-15 2017-05-23 Ati Properties Llc Air hardenable shock-resistant steel alloys, methods of making the alloys, and articles including the alloys

Similar Documents

Publication Publication Date Title
US4652315A (en) Precipitation-hardening nickel-base alloy and method of producing same
US5759484A (en) High strength and high ductility titanium alloy
EP0411515A1 (en) High strength heat-resistant low alloy steels
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
US4534805A (en) Low alloy steel plate and process for production thereof
JPS6349738B2 (en)
JPS6220855A (en) Non-magnetic high-strength stainless steel and its production
JPS58199846A (en) Superhigh tensile steel
US3294527A (en) Age hardening silicon-containing maraging steel
US4824492A (en) Method for producing a precipitation hardenable martensitic low alloy steel forging
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
US4049430A (en) Precipitation hardenable stainless steel
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPS625986B2 (en)
JPS59170244A (en) Strong and tough co-free maraging steel
JPS61119641A (en) Highly corrosion-resistant ni-base alloy and its production
JPH01242761A (en) Ultra high strength steel having low yield ratio and its manufacture
JPS61238942A (en) Heat resisting alloy
JPS645098B2 (en)
US3719476A (en) Precipitation-hardenable stainless steel
JP2661875B2 (en) Superplastic duplex stainless steel with low deformation resistance and excellent elongation properties
JPS63134648A (en) Precipitation hardening-type high tensile steel excellent in corrosion resistance
JPS63145752A (en) Austenitic iron alloy having strength and toughness
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
CA1177680A (en) Manganese steels