JPS61119641A - Highly corrosion-resistant ni-base alloy and its production - Google Patents

Highly corrosion-resistant ni-base alloy and its production

Info

Publication number
JPS61119641A
JPS61119641A JP24178584A JP24178584A JPS61119641A JP S61119641 A JPS61119641 A JP S61119641A JP 24178584 A JP24178584 A JP 24178584A JP 24178584 A JP24178584 A JP 24178584A JP S61119641 A JPS61119641 A JP S61119641A
Authority
JP
Japan
Prior art keywords
less
cracking resistance
resistant
cooling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24178584A
Other languages
Japanese (ja)
Inventor
Masaaki Igarashi
正晃 五十嵐
Yasutaka Okada
康孝 岡田
Akira Seki
彰 関
Takeo Kudo
赳夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24178584A priority Critical patent/JPS61119641A/en
Publication of JPS61119641A publication Critical patent/JPS61119641A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide superior stress corrosion cracking resistance and hydrogen cracking resistance, by limiting the additive amounts of Al, Ti, and Nb within a specific range and by controlling the Si and Mn content, when manufacturing the precipitation strengthening type Ni-base alloy of combined addition system. CONSTITUTION:The highly corrosion-resistant Ni-base alloy consists of, by weight, <0.05% C, <0.15% Si, 0.3-2% Mn, 45-60% Ni, 18-27% Cr, 0.4-3.5% Ti, 2.5-5.5% Mo and/or <11% W(2.5%<=Mo+1/2W<=5.5%), <1.5% Al, <6.2% Nb and/or <2% Ta(Nb+1/2Ta<=6.2%), <0.25% P, <0.005% S, <0.05% N, and the balance Fe with inevitable impurities and satisfies (2Al+Ti+1/2 Nb<=3.5%).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、腐食環境下、特に硫化水素、二酸化炭素およ
び塩素イオンの1種または2種以上を含む環境下におい
て良好な耐応力腐食割れ性および耐水素割れ性を示す高
強度、高靭性ニッケル基金゛金およびその製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides excellent stress corrosion cracking resistance in a corrosive environment, particularly in an environment containing one or more of hydrogen sulfide, carbon dioxide, and chlorine ions. and a high-strength, high-toughness nickel foundation exhibiting hydrogen cracking resistance and a method for producing the same.

(従来の技術) 従来、油井、化学工業、地熱発電等の設備用の構造材な
どのように、高強度でかつ高耐食性を要求される金属部
材は(固溶強化)+(冷間加工強化)によって強度上昇
をはかるものが大半であったため冷間加工等が施せない
ような複雑なあるいは特殊な形状を有する金属部材にあ
っては、上述のような従来の手段では強度上昇が困難で
あった。
(Conventional technology) Conventionally, metal parts that require high strength and high corrosion resistance, such as structural materials for equipment in oil wells, chemical industries, geothermal power generation, etc., have been produced by (solid solution strengthening) + (cold working strengthening). ), it is difficult to increase the strength of metal parts with complex or special shapes that cannot be subjected to cold working etc. using the conventional methods described above. Ta.

一方、特殊形状の部材にも適用できる強度上昇手段とし
て従来より知られている手段は合金組成としてTiおよ
びAlあるいはNbを添加してNt 3  (Ti、 
Al)を主体とする金属間化合物(r l相)あるいは
Ni3Nbを主体とする金属間化合物(T”相)を析出
させることである。このような析出強化を利用したもの
としては、すでに、インコネル−718、インコネルχ
−750(商品名)等のNi基合金があるが、これらの
従来の合金では低Cr、高TiであるためNi 3 T
iが析出し耐食性の劣化は免れない。例えばインコネル
−718等はNb、 Ti、 Al添加によるγ°およ
びγ”析出強化型Ni基合金であって、T”相による析
出強化を主体としているが、かなりのTi量を含み、N
i 3 TLが析出するため耐食性は必ずしも良好でな
かった。
On the other hand, a conventionally known means for increasing the strength that can be applied to members with special shapes is to add Ti and Al or Nb to the alloy composition.
This is to precipitate an intermetallic compound mainly composed of Al) (rl phase) or an intermetallic compound mainly composed of Ni3Nb (T" phase). Inconel -718, Inconel χ
There are Ni-based alloys such as -750 (trade name), but these conventional alloys have low Cr and high Ti, so Ni 3 T
i precipitates and deterioration of corrosion resistance is inevitable. For example, Inconel-718 is a γ° and γ" precipitation-strengthened Ni-based alloy with the addition of Nb, Ti, and Al, and is mainly precipitation strengthened by the T" phase, but it contains a considerable amount of Ti and has a large amount of N.
Corrosion resistance was not necessarily good due to precipitation of i 3 TL.

(発明が解決すべき問題点) ところで、油井、化学工業および地熱発電環境等のよう
に硫化水素、二酸化炭素および塩素イオンの1種または
2種以上含有する環境下で使用される材料に対しては高
強度・高靭性とともにすぐれた耐食性、すなわち耐応力
腐食割れ性および耐水素割れ性が要求される。このよう
な用途に構造材として使用される材料の場合、板あるい
は管のように比較的成形の容易なものは冷間加工によっ
て強度上昇をはかることが望ましいが、バルブ、継手、
配管等で冷間加工の施せないような特殊形状を有するも
のについては析出強化によって強度上昇をはからなけれ
ばならない。
(Problems to be Solved by the Invention) By the way, for materials used in environments containing one or more of hydrogen sulfide, carbon dioxide, and chlorine ions, such as oil wells, chemical industries, geothermal power generation environments, etc. In addition to high strength and toughness, it requires excellent corrosion resistance, that is, resistance to stress corrosion cracking and resistance to hydrogen cracking. For materials used as structural materials in such applications, it is desirable to increase the strength of materials that are relatively easy to form, such as plates or pipes, by cold working, but for materials such as valves, joints,
For items such as piping that have a special shape that cannot be cold worked, the strength must be increased by precipitation strengthening.

しかしながら、TiおよびAl添加によるT゛析出強化
型Ni基合金が大半を占めている上述のような従来の・
析出強化合金では、本発明者らの研究の結果によれば、
本質的に耐食性の劣化し易いことが判明した。
However, the conventional alloys mentioned above, which are mostly T precipitation-strengthened Ni-based alloys by adding Ti and Al,
In precipitation strengthened alloys, according to the results of our research,
It was found that corrosion resistance is inherently susceptible to deterioration.

(問題点を解決するための手段) 本特許出願人は上記析出強化型Ni基合金における耐食
性を改善する方法として、従来のTi添加系に代えて、
Nb単独添加系(特願昭58−109422号)・およ
びNb−M複合添加系(特願昭58−217774号)
を採用することをそれぞれ開示した。
(Means for Solving the Problems) The applicant of this patent has developed a method for improving the corrosion resistance of the precipitation-strengthened Ni-based alloy, in place of the conventional Ti addition system.
Nb single addition system (Japanese Patent Application No. 58-109422) and Nb-M combined addition system (Japanese Patent Application No. 58-217774)
They each disclosed that they would adopt the following.

ここに、本発明者らはさらに研究を続けたところ、Ti
添加系にあっても(Nb、A(2との複合添加でも同じ
) Si、 Mnの微量調整によって耐食性を飛躍的に
向上できるばかりか、靭性の向上もはかれることを見い
出した。すなわち、Ti添加系およびTi、 Nb (
あるいはA(2)の複合添加系の析出強化型Ni基合金
にあってAl、 Ti、 Nbが2A(2+Ti+1/
2Nb≦3.5 %(7)範囲内テSiおよびMnの含
有量をSiS2.15%、0.3%≦Mn≦2.0%に
制限することによって粒界強度の向上が可能となり、こ
れに伴って耐食性が向上するばかりか、靭性をも向上で
きることを見い出し、本発明を完成した。
The present inventors continued their research and found that Ti
It has been found that even in the additive system (Nb, A (same as when combined with 2), Si, and Mn can be slightly adjusted, corrosion resistance can be dramatically improved, as well as toughness can be improved. In other words, the addition of Ti systems and Ti, Nb (
Alternatively, in A(2), a precipitation-strengthened Ni-based alloy with a composite addition system, Al, Ti, and Nb are 2A (2+Ti+1/
2Nb≦3.5% (7) Within the range By limiting the content of Si and Mn to SiS2.15% and 0.3%≦Mn≦2.0%, grain boundary strength can be improved. The present invention was completed based on the discovery that not only the corrosion resistance but also the toughness can be improved as a result of this.

ここに、本発明の要旨とするところは、重量%で、 c : 0.050%以下、 Si : 0.15%以
下、Mn : 0.30〜2.0%、 Ni : 45
〜60%、MO: 2.5〜5.5%およびW : 1
1%以下の少なくとも1種ただし、2.5%≦−〇十〃
W≦5.5%、A2:1.5%以下、 Nb : 6.2%以下およびTa : 2.0%以下
の少なくとも1種ただし、Nb+V2Ta≦6.2%、
2A<2+Ti+!/GNb≦3.5%、 P : 0.025%以下、 S : 0.0050%
以下、N : 0.050%以下、 さらに必要により、Cu : 2.0%以下およびCo
:15%以下の少なくとも1種、および/または1?E
M  :Q、10%以下、Mg:0.10%以下、Ca
: 0.10%以下およびY : 0.20%以下の少
なくともlpi、 残部Feおよび付随不純物 から成る組成を有する耐応力腐食割れ性および耐水素割
れ性にすぐれた高耐食性Ni基合金である。
Here, the gist of the present invention is as follows: c: 0.050% or less, Si: 0.15% or less, Mn: 0.30-2.0%, Ni: 45% by weight.
~60%, MO: 2.5-5.5% and W: 1
At least one type less than 1%, but 2.5%≦-〇1〃
At least one of W≦5.5%, A2: 1.5% or less, Nb: 6.2% or less, and Ta: 2.0% or less, however, Nb+V2Ta≦6.2%,
2A<2+Ti+! /GNb≦3.5%, P: 0.025% or less, S: 0.0050%
Hereinafter, N: 0.050% or less, and if necessary, Cu: 2.0% or less and Co
:15% or less of at least one species and/or 1? E
M: Q, 10% or less, Mg: 0.10% or less, Ca
It is a highly corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance and hydrogen cracking resistance, having a composition of at least lpi of: 0.10% or less and Y: 0.20% or less, the remainder being Fe and incidental impurities.

さらに、本発明は、 重量%で、 C: 0.050%以下、 Si : 0.15%以下
、Mn : 0.30〜2.0%、 Ni : 45〜
60%、Cr : 18〜27%、  Ti : 0.
40%超、3.5%以下、Mo : 2.5〜5.5%
およびW:11%以下の少なくとも1種ただし、2.5
%≦)lo+1/2W≦5.5%、A(!:1.5%以
下、 Nb : 6.2%以下およびTa : 2.0%以下
の少なくとも1種ただし、Nb+V2Ta≦6.2%、
2Al+Ti+V2Nb≦3.5%、 P 70.025%以下、 S : 0.0050%以
下、N 、70.050%以下、 さらに必要により、Cu : 2.0%以下およびCo
:15%以下の少なくとも1種、および/またはREM
 :0.10%↓人下、 Mg : 0.10%以下、
Ca: 0.10%以下およびY:0.20%以下の少
なくとも1種、 残部Feおよび付随不純物 からなる組成を有する合金に1200〜800℃で断面
減少率50%以上に熱間加工を施した後、900〜12
00℃で3分ないし5時間保持後空冷以上の冷却速度で
冷却し、次いで600〜750℃で1時間〜200時間
の時効処理を1回もしくは2回以上施すことから成る、
耐応力腐食割れ性および耐水素割れ性にすぐれた高耐食
性Ni基合金の製造法である。
Furthermore, the present invention has the following properties in weight%: C: 0.050% or less, Si: 0.15% or less, Mn: 0.30-2.0%, Ni: 45-45%.
60%, Cr: 18-27%, Ti: 0.
More than 40%, 3.5% or less, Mo: 2.5 to 5.5%
and W: at least one type of 11% or less, but 2.5
%≦)lo+1/2W≦5.5%, A(!: 1.5% or less, Nb: 6.2% or less and Ta: 2.0% or less, but Nb+V2Ta≦6.2%,
2Al+Ti+V2Nb≦3.5%, P 70.025% or less, S: 0.0050% or less, N 70.050% or less, and if necessary, Cu: 2.0% or less and Co
: 15% or less of at least one species and/or REM
: 0.10%↓lower, Mg: 0.10% or less,
An alloy having a composition consisting of at least one of Ca: 0.10% or less and Y: 0.20% or less, the remainder Fe and incidental impurities was subjected to hot working at 1200 to 800°C to a cross-section reduction rate of 50% or more. After, 900-12
After holding at 00°C for 3 minutes to 5 hours, cooling at a cooling rate higher than air cooling, and then aging treatment at 600 to 750°C for 1 to 200 hours once or twice.
This is a method for producing a highly corrosion resistant Ni-based alloy with excellent stress corrosion cracking resistance and hydrogen cracking resistance.

(作用) 以下に本発明にあって合金組成および加工条件を上述の
ように限定した理由についてさらに詳しく説明する。
(Function) The reason why the alloy composition and processing conditions are limited as described above in the present invention will be explained in more detail below.

■)化学成分 C:析出強化の妨げとなり、また、0.050%を超え
るとNbC、TiC等の介在物量が増加し延性、靭性、
耐食性が劣化する。好ましくはC50,020%である
がC50,010%では延性、靭性および耐食性はさら
に向上する。
■) Chemical component C: hinders precipitation strengthening, and if it exceeds 0.050%, the amount of inclusions such as NbC and TiC increases, resulting in poor ductility and toughness.
Corrosion resistance deteriorates. Preferably C50,020%, but C50,010% further improves ductility, toughness and corrosion resistance.

Si : Siは脱酸剤として有効なため通常添加され
るが、多量に添加するとσ、μ、P 、、Laves相
などの延性、靭性、耐食性にたいして好ましくない金属
間化合物(以下TCP相と称する)を生成し易くなると
考えられていた。ところが本発明者らによりSiにはさ
らに炭化物、窒化物、炭窒化物等の粒界析出を促進する
効果が見い出された。ある場合にはSiのこの効果が有
効となるが、更に研究の結果、むしろ本合金系ではMn
との組合せでSiS2.15%に制限することによって
Tiの関与した上述のような粒界析出を抑制することが
可能となり、耐食性ばかりか靭性をも向上できることが
判明した。好ましくは0.010〜0.10%である。
Si: Si is usually added because it is effective as a deoxidizing agent, but when added in large amounts, it forms intermetallic compounds such as σ, μ, P, and Laves phases, which are unfavorable for ductility, toughness, and corrosion resistance (hereinafter referred to as TCP phase). It was thought that it would be easier to generate. However, the present inventors have discovered that Si further has the effect of promoting grain boundary precipitation of carbides, nitrides, carbonitrides, and the like. In some cases, this effect of Si is effective, but as a result of further research, in this alloy system, Mn
It has been found that by limiting SiS to 2.15% in combination with Ti, it is possible to suppress the above-mentioned grain boundary precipitation involving Ti, and it is possible to improve not only corrosion resistance but also toughness. Preferably it is 0.010 to 0.10%.

Mn : Mnは通常説硫剤として添加するが、TCP
相生成を促進する場合があるため多量添加は望ましくな
い。ところがMnにはSiと全く逆の効果のあることが
判明し、Mn<0.30%の範囲ではかえって粒界析出
を促進する場合がある。この粒界析出の抑制とTCP相
生成の抑制を考慮して0.30%≦Mn≦2゜0%とす
る。好ましくは0.60%≦Mn≦1.Oo%である。
Mn: Mn is usually added as a sulfurizing agent, but TCP
It is not desirable to add a large amount because it may promote phase formation. However, it has been found that Mn has an effect completely opposite to that of Si, and in the range of Mn<0.30%, it may even promote grain boundary precipitation. Considering the suppression of grain boundary precipitation and TCP phase formation, the content is set to 0.30%≦Mn≦2°0%. Preferably 0.60%≦Mn≦1. It is Oo%.

Ni:本発明における合金はオーステナイト基地にT゛
相あるいはT”相のいずれかまたは両者を時効により析
出し強化することを基本としており、CrおよびMo、
 Fes Coの添加量をバランスさせることによって
TCP相を生成しないようにオーステナイト基地を安定
化するに足るNi量が必要であり、そのためにはNi上
45%となる。またNiが60%を越えると耐水素割れ
性が著しく劣化するためNi560%が望ましいが、好
ましくは、強度、靭性を共に満足させる範囲として50
%≦Ni≦55%とする。
Ni: The alloy in the present invention is basically strengthened by precipitating either T' phase or T' phase or both on an austenite base by aging, and contains Cr and Mo,
By balancing the amount of Fes Co added, it is necessary to have a sufficient amount of Ni to stabilize the austenite base so as not to generate a TCP phase, and for this purpose, the amount of Ni must be 45%. Furthermore, if Ni exceeds 60%, the hydrogen cracking resistance will deteriorate significantly, so 560% Ni is desirable.
%≦Ni≦55%.

Cr : Moとともに耐食性を向上させる。このため
には18%以上必要であるが、27%を越えると熱間加
工性が低下し、さらにTCP相が生成し易くなる。
Cr: Improves corrosion resistance together with Mo. For this purpose, a content of 18% or more is required, but if it exceeds 27%, hot workability deteriorates and TCP phases are more likely to be generated.

好ましくは、Crは22〜27%である。Preferably, Cr is 22-27%.

Ti : TiはAlSNbとともにNi3M  (M
はTi、 Al、 Nb)のγ“相あるいはγ”相を形
成し強度上昇に寄与する。7’ 、T’相の析出割合お
よび量はTi、%、Nbの添加割合、量に依存して変化
する。従来Tiは0.40%を越えて添加するとNi 
3 Tiを形成し耐食性、特に耐水素割れ性を著しく劣
化させることが判明していたが、本発明にあっては前述
のようにSisMn量を微量調整することによって’l
Al+T<+1/2Nb≦3.5%の範囲内であるかぎ
りTi O,40%を越えて添加することによって耐食
性を劣化させることなく強度上昇に寄与しうるのである
。しかしながら、3.5%を越えてTiを添加すると靭
性の低下が著しくなる可能性があるため、0.4%<T
iS2.5%とする。
Ti: Ti is Ni3M (M
forms a γ phase or γ phase of Ti, Al, Nb) and contributes to an increase in strength. The precipitation ratio and amount of the 7' and T' phases vary depending on Ti, %, and the addition ratio and amount of Nb. Conventionally, when Ti is added in excess of 0.40%, Ni
It has been found that Ti forms 3 Ti and significantly deteriorates corrosion resistance, especially hydrogen cracking resistance, but in the present invention, as mentioned above, by slightly adjusting the amount of SisMn,
As long as Al+T<+1/2Nb<3.5%, adding more than 40% TiO can contribute to an increase in strength without deteriorating corrosion resistance. However, if more than 3.5% of Ti is added, the toughness may decrease significantly, so 0.4%<T
iS is set to 2.5%.

Mo、W:これらの元素はCrとの共存によって特に耐
孔食性を向上させる。この効果は例えばMo 2.5%
以上の添加で顕著となるがCr同様多量添加することに
よってTCP相が生成し易(なることからMo5.5%
以下の添加が望ましい。WはMoと同様な作用を示すが
、同じ効果を得るにはMo量の2倍量の添加を要する。
Mo, W: These elements particularly improve pitting corrosion resistance when coexisting with Cr. This effect is, for example, Mo 2.5%
This becomes noticeable with the above additions, but as with Cr, adding a large amount tends to generate a TCP phase (because Mo5.5%
The following additions are desirable. Although W exhibits the same effect as Mo, it is necessary to add twice the amount of Mo to obtain the same effect.

したがって、その割合で所要Mo量を少なくとも一部W
で置換しても良い。Wは11%を越えて添加するとMo
と同様に上述のような金属間化合物が生成し易くなるこ
とから、11%以下に制限する。よって、本発明にあっ
ては、Mo : 2.5〜5.5%およびW 711%
以下の少なくとも1ai(ただし、2.5%≦?lo+
1/2W≦5.5%)を添加する。
Therefore, at least part of the required Mo amount is W
You can also replace it with When W is added in excess of 11%, Mo
Similarly, since intermetallic compounds as described above are likely to be generated, the content is limited to 11% or less. Therefore, in the present invention, Mo: 2.5 to 5.5% and W 711%
At least 1ai below (however, 2.5%≦?lo+
1/2W≦5.5%).

これらの範囲を外れると耐食性改善が十分でなく、また
延性、靭性が劣化する。
Outside these ranges, corrosion resistance will not be improved sufficiently and ductility and toughness will deteriorate.

鮫、Nb、 Ta : Alは有効な脱酸剤であり、通
常0.3%以下含有される。しかし、本発明の場合のよ
うに合金元素として加えることにより、Ti、Wbの場
合と同様にNi3M  (MはTi、 Al、 Nb)
を形成して強度上昇にも寄与する。そのためには0.3
%超の添加を必要とする。しかしながらAlの多量添加
はTCP相生成を助長するためM≦1.5%とした。な
お、本発明において0.3%以下のAlは脱酸剤として
混入してくる量であって積極的に添加する合金元素では
ない、いわば1種の付随不純物である。
Shark, Nb, Ta: Al is an effective deoxidizing agent and is usually contained in an amount of 0.3% or less. However, by adding it as an alloying element as in the case of the present invention, Ni3M (M is Ti, Al, Nb) as in the case of Ti and Wb.
This also contributes to increased strength. For that, 0.3
Requires addition of more than %. However, since addition of a large amount of Al promotes TCP phase formation, M≦1.5% was set. In the present invention, Al of 0.3% or less is mixed in as a deoxidizing agent, and is not an alloying element to be actively added, but is a type of incidental impurity.

NbはTis鮫の場合と同様にNi3M  (MはTi
、A(2゜Nb)を形成して強度上昇に寄与する。Ti
、 Alの添加量との相対的割合に応じてT″、T゛相
の析出強化挙動または析出量を変化させ得るが、Nb含
有量が6.2%を越えるとTCP相生成に伴う靭性低下
が著しくなる。TaはNbと同様な作用を示すためNb
の一部をTaで置換しても良いが、その添加効果はNb
のほぼAとなる。よって本発明にあってはNbS2.2
%およびTaS2.0%でNb+1/2Ta≦6.2%
の範囲内で添加する。
Nb is Ni3M (M is Ti
, A (2°Nb), which contributes to an increase in strength. Ti
The precipitation strengthening behavior or amount of precipitation of the T'' and T'' phases can be changed depending on the relative proportion to the amount of added Al, but if the Nb content exceeds 6.2%, the toughness decreases due to the formation of the TCP phase. Ta has a similar effect to Nb, so Nb
Although a part of Nb may be replaced with Ta, the effect of the addition is
It is almost A. Therefore, in the present invention, NbS2.2
% and TaS2.0%, Nb+1/2Ta≦6.2%
Add within the range.

Al.NbおよびTaはそれぞれ上記範囲内において少
なくともt +i添加し、その場合、すでに述べたよう
に、2 Kl +Ti + V2Nb≦3.5%とする
Al. Nb and Ta are each added at least t +i within the above range, in which case, as already mentioned, 2 Kl + Ti + V2Nb≦3.5%.

P、S:P、Sは不可避的に混入してくる不純物であり
、合金中に多量に存在すると粒界偏析により熱間加工性
を低下させ、また、耐食性も劣化するため、本発明にあ
ってはP≦0.025%、S≦0.0050%、好まし
くは、熱間加工性をさらに向上させるためS≦0.00
10%とする。
P, S: P and S are impurities that are inevitably mixed in, and if they exist in large quantities in the alloy, they reduce hot workability due to grain boundary segregation and also deteriorate corrosion resistance, so they are not compatible with the present invention. P≦0.025%, S≦0.0050%, preferably S≦0.00 to further improve hot workability.
10%.

NUNは介在物量を増加させ材料特性の異方性の要因と
なるため、N≦0.050%とするが、延性、靭性をさ
らに飛躍的に向上させるためには好ましくはN≦0.0
10%とする。
Since NUN increases the amount of inclusions and causes anisotropy in material properties, it is set to N≦0.050%, but in order to further dramatically improve ductility and toughness, it is preferably N≦0.0.
10%.

Fe:Nii加とのバランスにより析出強化を促進する
ため適当量必要であり、合金組成の残部は付随不純物を
除いてFeである。好ましくは、3.0%≦Fe≦25
%とする。
Fe: An appropriate amount is required to promote precipitation strengthening by balancing with the addition of Ni, and the remainder of the alloy composition is Fe, excluding incidental impurities. Preferably 3.0%≦Fe≦25
%.

Cu:耐食性の向上に有効であるが、その効果は2.0
%を越えると飽和するためCu≦2.0%とする。
Cu: Effective in improving corrosion resistance, but the effect is 2.0
If Cu exceeds 2.0%, saturation occurs, so Cu≦2.0%.

Co : CoもCuと同様に耐食性を向上する効果を
有するが1.さらにCoの場合、特に耐水素割れ性を向
上させる。さらにNi%Feとのバランスによりγ゛、
T”相の析出を促進し強度上昇にも寄与するため、Go
≦15%の範囲で添加するが、これ以上添加するとTC
P相が生成し易くなる。
Co: Co also has the effect of improving corrosion resistance like Cu, but 1. Furthermore, in the case of Co, it particularly improves hydrogen cracking resistance. Furthermore, due to the balance with Ni%Fe, γ゛,
Go
It should be added within the range of ≦15%, but if it is added more than this, TC
P phase becomes easier to generate.

REM 、Mg、 Ca、 Y  二これらの元素はす
くなくとも1種の微量添加により熱間加工性を向上させ
るがそれぞれ0.10%、0.10%、0.10%およ
び0.20%の各上限を越えると逆に低融点化合物を生
成し易くなり加工性が低下する。
REM, Mg, Ca, Y2 These elements improve hot workability by adding at least one kind of trace amount, but each upper limit of 0.10%, 0.10%, 0.10% and 0.20%, respectively. On the contrary, if it exceeds this value, low melting point compounds tend to be produced and processability deteriorates.

その他: B 、Sn、Zns Pb等は微量では本発
明により得られる合金の特性に何ら影響を与えないので
不純物としてそれぞれ0.10%まで許容されるがこの
上限を越えると加工性あるいは耐食性が劣化する。
Others: B, Sn, Zns, Pb, etc. do not affect the properties of the alloy obtained by the present invention in trace amounts, so up to 0.10% of each is allowed as impurities, but if this upper limit is exceeded, workability or corrosion resistance deteriorates. do.

なお、前述のように脱酸剤としてのAlは0.3%まで
含有される場合があるが、その程度のAlも不純物とし
て許容される。
Note that, as described above, Al as a deoxidizing agent may be contained up to 0.3%, but that amount of Al is also allowed as an impurity.

2)熱間加工 本発明におけるようにNbを添加した場合、凝固時に粒
界部に低融点化合物が生成し易くなる傾向があり、熱間
加工時の加熱温度および加工温度範囲を制限する必要が
ある。熱間加工の開始温度が1200℃を越えると粒界
の脆弱化がみられる。一方、仕上げ温度が800°C未
満では加工が困難になる。本発明では、したがって、1
200〜800℃の温度範囲、好ましくは、1150〜
850℃で熱間加工を行う。
2) Hot processing When Nb is added as in the present invention, low melting point compounds tend to be generated at grain boundaries during solidification, and it is necessary to limit the heating temperature and processing temperature range during hot processing. be. When the starting temperature of hot working exceeds 1200°C, weakening of grain boundaries is observed. On the other hand, if the finishing temperature is less than 800°C, processing becomes difficult. In the present invention, therefore, 1
Temperature range from 200 to 800°C, preferably from 1150 to
Hot working is carried out at 850°C.

さらにNb、、Mo等は凝固時におけるマクロ偏析の原
因になり易く、このような偏析が製品においても残存す
ると厚肉材等では靭性および耐食性劣化の要因となる。
Furthermore, Nb, Mo, etc. tend to cause macro segregation during solidification, and if such segregation remains in products, it becomes a factor in deterioration of toughness and corrosion resistance in thick-walled materials.

このためインゴットから製品までの熱間加工度を断面減
少率で50%以上としてNbs Mo等のマクロ偏析を
防止する。
For this reason, the degree of hot working from the ingot to the product is set to 50% or more in area reduction rate to prevent macro segregation of Nbs Mo and the like.

3)熱処理 時効によるγ°相あるいはT”相の析出を有効に行わせ
るためには適切な溶体化処理が必要であり、そのため本
発明にあっては時効に先だって900〜12oo℃、好
ましくは950−1150℃で3分間〜5.0時間保持
後空冷以上の冷却速度で冷却する。冷却に際しては特に
900〜500℃の間は脆化相が析出し易いのでその間
の温度領域はlO℃/分以上の冷却速度で冷却してその
ような脆化相の析出を抑制するのが望ましい。
3) Appropriate solution treatment is necessary to effectively precipitate the γ° phase or T'' phase due to heat treatment aging. Therefore, in the present invention, prior to aging, the heating temperature is 900 to 12 ooC, preferably 950 °C. After holding at -1150℃ for 3 minutes to 5.0 hours, cool at a cooling rate faster than air cooling.Especially during cooling, the brittle phase tends to precipitate between 900 and 500℃, so the temperature range in between is 10℃/min. It is desirable to suppress the precipitation of such brittle phases by cooling at a cooling rate above.

4)時効処理 本合金は時効によりγ°相および/またはγ“相が母相
のオーステナイト基地に均一に分散析出するため高強度
と良好な延性、靭性および耐食性が得られる。時効によ
る析出強化挙動は溶体化処理条件およびTi、 Al、
 Nbの添加量、さらにはNi、 Co、 Pe等の添
加量に依存して種々変化するが、600℃以上の時効温
度で析出は顕著となる。750℃を越える高温時効では
過時効となりrl相あるいはT”相の凝集粗大化あるい
はTCP相生成のため強度・靭性が低下する。時効時間
の選択は時効温度によっても種々異なるが有効な析出強
化は1時間〜200時間で得られる。しかしながら5〜
20時間でも十分強度が得られる。また時効処理は2回
以上施すことも可能で、その場合2段目以降の時効処理
は、その前段の時効処理後室温付近まで冷却後再加熱に
よって時効処理を施しても良いし、前段の時効処理温度
から次段の時効処理温度までそのまま加熱あるいは冷却
(炉冷以す 上の速度)によって時効処理を施しても良い。いずれの
場合にも強度、靭性あるいは耐食性に顕著な差は認めら
れない。
4) Aging treatment This alloy has high strength, good ductility, toughness, and corrosion resistance because the γ° phase and/or γ“ phase are uniformly dispersed and precipitated in the austenite base matrix by aging. Precipitation strengthening behavior due to aging are solution treatment conditions and Ti, Al,
Precipitation becomes noticeable at an aging temperature of 600° C. or higher, although it varies depending on the amount of Nb added, as well as the amounts of Ni, Co, Pe, etc. added. High-temperature aging exceeding 750°C results in overaging, resulting in a decrease in strength and toughness due to agglomeration and coarsening of the RL phase or T'' phase, or the formation of the TCP phase.The selection of aging time varies depending on the aging temperature, but effective precipitation strengthening is Obtained in 1 to 200 hours. However, 5 to 200 hours.
Sufficient strength can be obtained even after 20 hours. It is also possible to perform the aging treatment two or more times, in which case the second and subsequent aging treatments may be performed by cooling to around room temperature after the previous aging treatment and then reheating, or The aging treatment may be performed by heating or cooling (at a faster rate than furnace cooling) from the treatment temperature to the next aging treatment temperature. No significant difference in strength, toughness or corrosion resistance was observed in either case.

かくして、本発明方法によれば、機械的性質として、0
.2%耐力≧63 kgf/晶(好ましくは≧77 k
gf/mホ)、伸び≧20%、絞り≧30%および衝撃
値≧5kgf−a+/cd (好ましくは≧10 kg
f−m/ai)を有し、かつ耐食性、つまり、耐応力腐
食割れ性および耐水素割れ性が非常に優れた製品を4名
ことができる。
Thus, according to the method of the present invention, the mechanical properties are 0.
.. 2% proof stress ≧63 kgf/crystal (preferably ≧77 k
gf/m e), elongation≧20%, aperture≧30% and impact value≧5kgf-a+/cd (preferably ≧10 kg
f-m/ai) and excellent corrosion resistance, that is, stress corrosion cracking resistance and hydrogen cracking resistance.

本発明により得られる合金は、T°相あるいはT”相の
析出強化により、高い強度を得ることができるので、冷
間加工等による強化法が通用できない油井管用バルブf
ディのような特殊形状品であっても、良好な強度、靭性
および耐食性を備えたものを製造することができる。
The alloy obtained by the present invention can obtain high strength by precipitation strengthening of the T° phase or T'' phase, so it is possible to obtain high strength by precipitation strengthening of the T° phase or T'' phase.
Even special-shaped products such as D-shaped products can be manufactured with good strength, toughness, and corrosion resistance.

次に、実施例によって本発明をさらに説明する。Next, the present invention will be further explained by examples.

去五週 第1表に示す化学組成を有する各合金を調製し、第2表
に示す各熱間加工条件、熱処理条件そして時効処理条件
で析出強化型ニッケル基合金を製造した。
Last five weeks, alloys having the chemical compositions shown in Table 1 were prepared, and precipitation-strengthened nickel-based alloys were manufactured under the hot working conditions, heat treatment conditions, and aging treatment conditions shown in Table 2.

得られた合金の機械的性質および耐食性試験の結果を同
じく第2表にまとめて示す。
The mechanical properties and corrosion resistance test results of the obtained alloy are also summarized in Table 2.

なお、各試験条件は下記の通りであった。In addition, each test condition was as follows.

・引張試験: 試験温度 :室温 試験片形状:直径3.5mn+ 、標点間距離20n+
m・シャルピー試験: 試験温度 二〇℃ 試験片形状: 5 X10X55a++i、 2vo 
’V パッチ付・耐応力腐食割れ試験: 腐食溶液 :25%Na C1−0,5%CH3C00
II −15ati H2S −10atm Co 2
溶液のpH1 〃  温度 :250℃ 浸漬時間 830日 ・耐水素割れ試験: NACE条件 ; (5%Na C1−0,5%CH3
C0OHlatm H2S、 25℃) 試験片形状:炭素鋼カップリング、RO,25Uノツチ
付 比較例としては本発明方法において使用する合金校則に
あってはいずれも強度、延性、靭性あるいは耐食性のう
ち1つまたは2つ以上が良好でなかった。
・Tensile test: Test temperature: room temperature Test piece shape: diameter 3.5mm+, gauge distance 20n+
Charpy test: Test temperature: 20℃ Test piece shape: 5 x 10 x 55a++i, 2vo
'V with patch/stress corrosion cracking test: Corrosion solution: 25%Na C1-0,5%CH3C00
II-15ati H2S-10atm Co2
Solution pH 1 Temperature: 250℃ Immersion time 830 days Hydrogen cracking resistance test: NACE conditions; (5%Na C1-0,5%CH3
(C0OHlatm H2S, 25℃) Test piece shape: carbon steel coupling, RO, 25U notched As a comparative example, the alloy standard used in the method of the present invention has one or more of strength, ductility, toughness, or corrosion resistance. Two or more were not good.

隘37〜43はTi添加系の従来合金について本発明方
法により製造された合金との比較をするため示したもの
である。これらの従来合金では強度的に良好なものも多
いが耐食性が不良であり、そのような耐食性を改善しよ
うとすれば強度を犠牲にしなければならず、両者ともに
良好なものは得られない。
Dimensions 37 to 43 are shown for comparison with Ti-added conventional alloys produced by the method of the present invention. Although many of these conventional alloys have good strength, they have poor corrosion resistance, and if such corrosion resistance is to be improved, strength must be sacrificed, and it is not possible to obtain good both.

このようにして本発明におけるごとく合金の成分範囲な
らびに熱間加工、熱処理、時効処理の各条件を選定する
ことによって、耐食性、すなわち、耐応力腐食割れ性お
よび耐水素割れ性の抜群に優れた高強度・高靭性材料が
得られる。
In this way, by selecting the composition range of the alloy and the conditions of hot working, heat treatment, and aging treatment as in the present invention, it is possible to achieve high corrosion resistance, that is, excellent stress corrosion cracking resistance and hydrogen cracking resistance. A material with high strength and high toughness can be obtained.

Claims (8)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、P:
0.025%以下、S:0.0050%以下、N:0.
050%以下、 残部Feおよび付随不純物 から成る組成を有する耐応力腐食割れ性および耐水素割
れ性にすぐれた高耐食性Ni基合金。
(1) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, P:
0.025% or less, S: 0.0050% or less, N: 0.
A highly corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance and hydrogen cracking resistance, having a composition of 0.050% or less and the balance consisting of Fe and incidental impurities.
(2)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、Cu
:2.0%以下およびCo:15%以下の少なくとも1
種、 P:0.025%以下、S:0.0050%以下、N:
0.050%以下、 残部Feおよび付随不純物 から成る組成を有する耐応力腐食割れ性および耐水素割
れ性にすぐれた高耐食性Ni基合金。
(2) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, Cu
: 2.0% or less and Co: 15% or less
Seed, P: 0.025% or less, S: 0.0050% or less, N:
A highly corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance and hydrogen cracking resistance, having a composition of 0.050% or less and the balance consisting of Fe and incidental impurities.
(3)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、P:
0.025%以下、S:0.0050%以下、N:0.
050%以下、 REM:0.10%以下、Mg:0.10%以下、Ca
:0.10%以下およびY:0.20%以下の少なくと
も1種、残部Feおよび付随不純物 から成る組成を有する耐応力腐食割れ性および耐水素割
れ性にすぐれた高耐食性Ni基合金。
(3) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, P:
0.025% or less, S: 0.0050% or less, N: 0.
050% or less, REM: 0.10% or less, Mg: 0.10% or less, Ca
A highly corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance and hydrogen cracking resistance, having a composition consisting of at least one of Y: 0.10% or less and Y: 0.20% or less, the balance being Fe and incidental impurities.
(4)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、Cu
:2.0%以下およびCo:15%以下の少なくとも1
種、 P:0.025%以下、S:0.0050%以下、N:
0.050%以下、 REM:0.10%以下、Mg:0.10%以下、Ca
:0.10%以下およびY:0.20%以下の少なくと
も1種、残部Feおよび付随不純物 から成る組成を有する耐応力腐食割れ性および耐水素割
れ性にすぐれた高耐食性Ni基合金。
(4) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, Cu
: 2.0% or less and Co: 15% or less
Seed, P: 0.025% or less, S: 0.0050% or less, N:
0.050% or less, REM: 0.10% or less, Mg: 0.10% or less, Ca
A highly corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance and hydrogen cracking resistance, having a composition consisting of at least one of Y: 0.10% or less and Y: 0.20% or less, the balance being Fe and incidental impurities.
(5)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、P:
0.025%以下、S:0.0050%以下、N:0.
050%以下、 残部Feおよび付随不純物 から成る組成を有する合金に1200〜800℃で断面
減少率50%以上の熱間加工を施した後、900〜12
00℃で3分ないし5時間保持してから空冷以上の冷却
速度で冷却し、次いで600〜750℃で1時間〜20
0時間の時効処理を1回もしくは2回以上施すことから
成る、耐応力腐食割れ性および耐水素割れ性にすぐれた
高耐食性Ni基合金の製造法。
(5) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, P:
0.025% or less, S: 0.0050% or less, N: 0.
After hot working at 1200 to 800°C with a cross-section reduction rate of 50% or more to an alloy having a composition of 0.050% or less, the balance consisting of Fe and incidental impurities,
After holding at 00℃ for 3 minutes to 5 hours, cooling at a cooling rate higher than air cooling, then at 600 to 750℃ for 1 hour to 20 hours.
A method for producing a highly corrosion-resistant Ni-based alloy having excellent stress corrosion cracking resistance and hydrogen cracking resistance, which comprises performing a 0-hour aging treatment once or twice or more.
(6)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、Cu
:2.0%以下およびCo:15%以下の少なくとも1
種、 P:0.025%以下、S:0.0050%以下、N:
0.050%以下、 残部Feおよび付随不純物 から成る組成を有する合金に1200〜800℃で断面
減少率50%以上の熱間加工を施した後、900〜12
00℃で3分ないし5時間保持してから空冷以上の冷却
速度で冷却し、次いで600〜750℃で1時間〜20
0時間の時効処理を1回もしくは2回以上施すことから
成る、耐応力腐食割れ性および耐水素割れ性にすぐれた
高耐食性Ni基合金の製造法。
(6) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, Cu
: 2.0% or less and Co: 15% or less
Seed, P: 0.025% or less, S: 0.0050% or less, N:
After hot working at 1200 to 800°C with a cross-section reduction rate of 50% or more to an alloy having a composition of 0.050% or less, the balance consisting of Fe and incidental impurities, 900 to 12%
After holding at 00℃ for 3 minutes to 5 hours, cooling at a cooling rate higher than air cooling, then at 600 to 750℃ for 1 hour to 20 hours.
A method for producing a highly corrosion-resistant Ni-based alloy having excellent stress corrosion cracking resistance and hydrogen cracking resistance, which comprises performing a 0-hour aging treatment once or twice or more.
(7)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、P:
0.025%以下、S:0.005%以下、N:0.0
50%以下、 REM:0.10%以下、Mg:0.10%以下、Ca
:0.10%以下およびY:0.20%以下の少なくと
も1種、残部Feおよび付随不純物 から成る組成を有する合金に1200〜800℃で断面
減少率50%以上の熱間加工を施した後、900〜12
00℃で3分ないし5時間保持してから空冷以上の冷却
速度で冷却し、次いで600〜750℃で1時間〜20
0時間の時効処理を1回もしくは2回以上施すことから
成る、耐応力腐食割れ性および耐水素割れ性にすぐれた
高耐食性Ni基合金の製造法。
(7) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, P:
0.025% or less, S: 0.005% or less, N: 0.0
50% or less, REM: 0.10% or less, Mg: 0.10% or less, Ca
After hot working at 1200 to 800°C with a reduction in area of 50% or more to an alloy having a composition consisting of at least one of: 0.10% or less and Y: 0.20% or less, the balance being Fe and incidental impurities. , 900-12
After holding at 00℃ for 3 minutes to 5 hours, cooling at a cooling rate higher than air cooling, then at 600 to 750℃ for 1 hour to 20 hours.
A method for producing a highly corrosion-resistant Ni-based alloy having excellent stress corrosion cracking resistance and hydrogen cracking resistance, which comprises performing a 0-hour aging treatment once or twice or more.
(8)重量%で、 C:0.050%以下、Si:0.15%以下、Mn:
0.30〜2.0%、Ni:45〜60%、Cr:18
〜27%、Ti:0.40%超、3.5%以下、Mo:
2.5〜5.5%およびW:11%以下の少なくとも1
種ただし、2.5%≦Mo+1/2W≦5.5%、Al
:1.5%以下、Nb:6.2%以下およびTa:2.
0%以下の少なくとも1種ただし、Nb+1/2Ta≦
6.2%、2Al+Ti+1/2Nb≦3.5%、Cu
:2.0%以下およびCo:15%以下の少なくとも1
種、 P:0.025%以下、S:0.0050%以下、N:
0.050%以下、 REM:0.10%以下、Mg:0.10%以下、Ca
:0.10%以下およびY:0.20%以下の少なくと
も1種、残部Feおよび付随不純物 から成る組成を有する合金に1200〜800℃で断面
減少率50%以上の熱間加工を施した後、900〜12
00℃で3分ないし5時間保持してから空冷以上の冷却
速度で冷却し、次いで600〜750℃で1時間〜20
0時間の時効処理を1回もしくは2回以上施すことから
成る、耐応力腐食割れ性および耐水素割れ性にすぐれた
高耐食性Ni基合金の製造法。
(8) In weight%, C: 0.050% or less, Si: 0.15% or less, Mn:
0.30-2.0%, Ni: 45-60%, Cr: 18
~27%, Ti: more than 0.40%, 3.5% or less, Mo:
2.5-5.5% and W: at least 11% or less
Seeds: 2.5%≦Mo+1/2W≦5.5%, Al
: 1.5% or less, Nb: 6.2% or less, and Ta: 2.
At least one type of 0% or less However, Nb+1/2Ta≦
6.2%, 2Al+Ti+1/2Nb≦3.5%, Cu
: 2.0% or less and Co: 15% or less
Seed, P: 0.025% or less, S: 0.0050% or less, N:
0.050% or less, REM: 0.10% or less, Mg: 0.10% or less, Ca
After hot working at 1200 to 800°C with a reduction in area of 50% or more to an alloy having a composition consisting of at least one of: 0.10% or less and Y: 0.20% or less, the balance being Fe and incidental impurities. , 900-12
After holding at 00℃ for 3 minutes to 5 hours, cooling at a cooling rate higher than air cooling, then at 600 to 750℃ for 1 hour to 20 hours.
A method for producing a highly corrosion-resistant Ni-based alloy having excellent stress corrosion cracking resistance and hydrogen cracking resistance, which comprises performing a 0-hour aging treatment once or twice or more.
JP24178584A 1984-11-16 1984-11-16 Highly corrosion-resistant ni-base alloy and its production Pending JPS61119641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24178584A JPS61119641A (en) 1984-11-16 1984-11-16 Highly corrosion-resistant ni-base alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24178584A JPS61119641A (en) 1984-11-16 1984-11-16 Highly corrosion-resistant ni-base alloy and its production

Publications (1)

Publication Number Publication Date
JPS61119641A true JPS61119641A (en) 1986-06-06

Family

ID=17079479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24178584A Pending JPS61119641A (en) 1984-11-16 1984-11-16 Highly corrosion-resistant ni-base alloy and its production

Country Status (1)

Country Link
JP (1) JPS61119641A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185943A (en) * 1989-01-11 1990-07-20 Nippon Steel Corp Highly corrosion resistant ti-containing alloy for oil well tube and line pipe excellent in hot workability
JPH03120342A (en) * 1989-09-30 1991-05-22 Kubota Corp Method for heat treating cast material
JP2015042770A (en) * 2013-08-26 2015-03-05 日立金属株式会社 HIGH-STRENGTH Ni-BASED ALLOY
CN104878249A (en) * 2015-05-15 2015-09-02 新奥科技发展有限公司 Nickel-based alloy and preparation method and application thereof
JP2015525299A (en) * 2012-06-11 2015-09-03 ハンチントン、アロイス、コーポレーションHuntington Alloys Corporation High-strength corrosion-resistant tubing for oil well and gas well finishing and drilling applications, and method for producing the same
JP2017503085A (en) * 2013-12-05 2017-01-26 フォロニ・ソチエタ・ペル・アツィオーニ Nickel-based alloys, methods and uses
JP2017190493A (en) * 2016-04-13 2017-10-19 株式会社日本製鋼所 Ni-BASED SUPER ALLOY AND MANUFACTURING METHOD OF Ni-BASED SUPER ALLOY
JP2019183181A (en) * 2018-04-02 2019-10-24 大同特殊鋼株式会社 HIGH CORROSION RESISTANT Fe OR Ni-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
CN113646458A (en) * 2019-03-18 2021-11-12 Vdm金属国际有限公司 Nickel alloy with good corrosion resistance and high tensile strength and method for producing semi-finished product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101634A (en) * 1980-12-12 1982-06-24 Hitachi Ltd Ni base alloy with superior stress corrosion resisting property and manufacture thereof
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS602653A (en) * 1983-06-20 1985-01-08 Sumitomo Metal Ind Ltd Production of precipitation hardening type nickel-base alloy
JPS60110856A (en) * 1983-11-21 1985-06-17 Sumitomo Metal Ind Ltd Production of precipitation hardening nickel-base alloy
JPS60131958A (en) * 1983-12-20 1985-07-13 Sumitomo Metal Ind Ltd Production of precipitation strengthening type ni-base alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101634A (en) * 1980-12-12 1982-06-24 Hitachi Ltd Ni base alloy with superior stress corrosion resisting property and manufacture thereof
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS602653A (en) * 1983-06-20 1985-01-08 Sumitomo Metal Ind Ltd Production of precipitation hardening type nickel-base alloy
JPS60110856A (en) * 1983-11-21 1985-06-17 Sumitomo Metal Ind Ltd Production of precipitation hardening nickel-base alloy
JPS60131958A (en) * 1983-12-20 1985-07-13 Sumitomo Metal Ind Ltd Production of precipitation strengthening type ni-base alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185943A (en) * 1989-01-11 1990-07-20 Nippon Steel Corp Highly corrosion resistant ti-containing alloy for oil well tube and line pipe excellent in hot workability
JPH0579740B2 (en) * 1989-01-11 1993-11-04 Nippon Steel Corp
JPH03120342A (en) * 1989-09-30 1991-05-22 Kubota Corp Method for heat treating cast material
JP2015525299A (en) * 2012-06-11 2015-09-03 ハンチントン、アロイス、コーポレーションHuntington Alloys Corporation High-strength corrosion-resistant tubing for oil well and gas well finishing and drilling applications, and method for producing the same
US10253382B2 (en) 2012-06-11 2019-04-09 Huntington Alloys Corporation High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof
JP2015042770A (en) * 2013-08-26 2015-03-05 日立金属株式会社 HIGH-STRENGTH Ni-BASED ALLOY
JP2017503085A (en) * 2013-12-05 2017-01-26 フォロニ・ソチエタ・ペル・アツィオーニ Nickel-based alloys, methods and uses
CN104878249A (en) * 2015-05-15 2015-09-02 新奥科技发展有限公司 Nickel-based alloy and preparation method and application thereof
JP2017190493A (en) * 2016-04-13 2017-10-19 株式会社日本製鋼所 Ni-BASED SUPER ALLOY AND MANUFACTURING METHOD OF Ni-BASED SUPER ALLOY
JP2019183181A (en) * 2018-04-02 2019-10-24 大同特殊鋼株式会社 HIGH CORROSION RESISTANT Fe OR Ni-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
CN113646458A (en) * 2019-03-18 2021-11-12 Vdm金属国际有限公司 Nickel alloy with good corrosion resistance and high tensile strength and method for producing semi-finished product

Similar Documents

Publication Publication Date Title
US4652315A (en) Precipitation-hardening nickel-base alloy and method of producing same
AU627965B2 (en) Oxidation resistant low expansion superalloys
JP6336367B2 (en) Ultra-high strength alloy for harsh oil and gas environments and manufacturing method
JP5225855B2 (en) High-strength corrosion-resistant alloy for oil patch application and method for producing the same
WO2016032604A2 (en) Nickel-chromium-iron-molybdenum corrosion resistant alloy and article of manufacture and method of manufacturing thereof
TW201413011A (en) Precipitation strengthening type martensite steel and method for fabricating the same
US20040184946A1 (en) High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPS61119641A (en) Highly corrosion-resistant ni-base alloy and its production
JP6160787B2 (en) Thin plate and manufacturing method thereof
US20160215373A1 (en) Wear resistant alloy
JP6733211B2 (en) Ni-based superalloy for hot forging
JP2016132824A (en) HIGH STRENGTH Ni-BASED SUPER ALLOY
JPH0114992B2 (en)
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP3198807B2 (en) Age-hardened nickel-base alloy material excellent in strength and corrosion resistance and method for producing the same
JPS602653A (en) Production of precipitation hardening type nickel-base alloy
JPS61223155A (en) Highly corrosion resistant ni-base alloy and its manufacture
JPH0414182B2 (en)
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JPH03243743A (en) Wear-resistant steel for ordinary and medium temperature use having high hardness in medium and ordinary temperature range
JPS6199659A (en) Steam turbine moving blade
JPS63140055A (en) Highly corrosion resistant precipitation hardening-type ni-base alloy
JP3068868B2 (en) Heat resistant steel for engine valves
JP3068867B2 (en) Heat resistant steel for engine valves