JP2019183181A - HIGH CORROSION RESISTANT Fe OR Ni-BASED ALLOY AND MANUFACTURING METHOD THEREFOR - Google Patents

HIGH CORROSION RESISTANT Fe OR Ni-BASED ALLOY AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2019183181A
JP2019183181A JP2018070738A JP2018070738A JP2019183181A JP 2019183181 A JP2019183181 A JP 2019183181A JP 2018070738 A JP2018070738 A JP 2018070738A JP 2018070738 A JP2018070738 A JP 2018070738A JP 2019183181 A JP2019183181 A JP 2019183181A
Authority
JP
Japan
Prior art keywords
temperature
aging treatment
alloy
based alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018070738A
Other languages
Japanese (ja)
Other versions
JP7125663B2 (en
Inventor
元嗣 大▲崎▼
Mototsugu Osaki
元嗣 大▲崎▼
禎彦 小柳
Yoshihiko Koyanagi
禎彦 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018070738A priority Critical patent/JP7125663B2/en
Publication of JP2019183181A publication Critical patent/JP2019183181A/en
Application granted granted Critical
Publication of JP7125663B2 publication Critical patent/JP7125663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Earth Drilling (AREA)

Abstract

To provide a manufacturing method of a high corrosion resistant Fe or Ni-based alloy suppressing SCC and especially securing impact resistance of boring under low temperature environment.SOLUTION: A manufacturing method includes a two-step aging treatment with an aging treatment at a first temperature and an aging treatment at a second temperature to which the first temperature is lowered, after a solid solution treatment applied on an alloy having a component composition containing, by mass%, C:<0.020, Nb:0.1 to 0.4, Mo:3.0 to 3.5, Cr:19.5 to 22.5, Ni:42.5 to 46.0, Al:0.10 to 0.40, Ti:2.0 to 2.3, Mn:0.6 to 1.0, and Cu:1.5 to 2.0, and the balance impurities and Fe, with a Mn/Cu ratio of 0.3 or more, cooling rate from the first temperature to the second temperature in the two-step aging treatment is 5 to 60°C/h and contraction at a room temperature in a test method according to ASTM A370 is 45% or less.SELECTED DRAWING: None

Description

本発明は、主としてFeにNiとCrを与えた成分組成を有し高い耐食性を示すFe又はNi基合金及びその製造方法に関し、特に、石油掘削用途に用いられて耐低温衝撃性に優れる高耐食性Fe又はNi基合金及びその製造方法に関する。   The present invention relates to a Fe or Ni-based alloy having a composition mainly comprising Ni and Cr added to Fe and exhibiting high corrosion resistance, and a method for producing the same, and in particular, high corrosion resistance that is excellent in low-temperature impact resistance used in oil drilling applications. The present invention relates to an Fe or Ni-based alloy and a method for producing the same.

耐食性を向上させ得る合金元素であるFeにNiやCrを多く与えた成分組成の合金が腐食性環境下で使用される配管や機械部品などに用いられる。ここで、UNS規格でN09925として示される合金は、商品名:INCOLOY925や商品名:Alloy925相当材として上市されている。その代表的な成分組成範囲としては、質量%で、C:<0.03、Si:<0.50、Mn:<1.00、S:<0.03、P:<0.03、Cr:19.5〜22.5、Ni:42.0〜46.0、Mo:2.5〜3.50、Nb:<0.50、Cu:1.50〜3.00、Ti:1.90〜2.40、Al:0.10〜0.50、Fe:bal.である。   An alloy having a component composition in which a large amount of Ni or Cr is added to Fe, which is an alloying element that can improve corrosion resistance, is used for piping and machine parts used in a corrosive environment. Here, the alloy shown as N09925 in the UNS standard is put on the market as a trade name: INCLOY 925 or a trade name: Alloy 925 equivalent material. The typical component composition range is mass%, C: <0.03, Si: <0.50, Mn: <1.00, S: <0.03, P: <0.03, Cr. : 19.5 to 22.5, Ni: 42.0 to 46.0, Mo: 2.5 to 3.50, Nb: <0.50, Cu: 1.50 to 3.00, Ti: 1. 90-2.40, Al: 0.10-0.50, Fe: bal. It is.

例えば、特許文献1では、サワーガス環境よりも更に過酷なS(硫黄)がFeSやNiS等の硫化物ではなく単体として混入する環境下においても、良好な耐応力腐食割れ性及び耐水素割れ性を有する油井管用Ni基合金が開示されている。かかるNi基合金は、Crとともに、Mo及び/又はWを所定範囲で添加し、且つ、Cuを添加した成分組成を有し、より強硬で修復性の優れる保護皮膜を形成させ得るとしている。具体的な成分組成範囲としては、質量%で、C:<0.10、Si:0.05〜0.30、Mn:<2.0、S:<0.0050、P:<0.030、Cr:15〜30、Ni:45〜60、Mo:<16、W<5.0、Nb:0.30〜3.0、Cu:0.30〜3.0、Ti:<2.0、Al:<1.0、N:<0.050、Fe:bal.であって、Mo及びWを所定の範囲内に規定するとしている。   For example, in Patent Document 1, good stress corrosion cracking resistance and hydrogen cracking resistance are obtained even in an environment where S (sulfur), which is more severe than the sour gas environment, is mixed as a single substance rather than sulfides such as FeS and NiS. A nickel-base alloy for oil country tubular goods is disclosed. Such a Ni-based alloy has a component composition in which Mo and / or W are added in a predetermined range together with Cr, and Cu is added, so that a protective film having higher hardness and excellent repairability can be formed. Specific component composition ranges are mass%, C: <0.10, Si: 0.05 to 0.30, Mn: <2.0, S: <0.0050, P: <0.030. Cr: 15-30, Ni: 45-60, Mo: <16, W <5.0, Nb: 0.30-3.0, Cu: 0.30-3.0, Ti: <2.0 , Al: <1.0, N: <0.050, Fe: bal. In this case, Mo and W are defined within a predetermined range.

ところで、米国石油協会(American Petroleum Institute)のAPI規格では、石油掘削用ドリルやシャフト、油井管などの石油掘削用途に用いられる合金部材の成分組成やその製造過程における熱処理などの詳細な規格が定められている。また、米国腐食工業会(National Association of Corrosion Engineers)のNACE規格では、耐腐食性の評価についての規格が設けられている。例えば、応力腐食割れ(SCC:Stress Corrosion Cracking)の評価方法の1つであるSSRT(Slow Strain Rate Test)の試験方法や評価基準について定めている。   By the way, the American Petroleum Institute API standard stipulates detailed standards such as the component composition of alloy members used in oil drilling applications such as oil drilling drills, shafts, and oil well pipes, and heat treatment in the manufacturing process. It has been. In addition, the NACE standard of the National Association of Corrosion Engineers has a standard for evaluating corrosion resistance. For example, a test method and evaluation criteria of SSRT (Slow Strain Rate Test) which is one of evaluation methods of stress corrosion cracking (SCC) are defined.

特開昭62−158844号公報Japanese Patent Laid-Open No. 62-158844

石油掘削用途に用いられる合金として、耐食性の観点からFeにNiやCrを多く与えた成分組成のFe又はNi基合金の利用が考慮される。一方、かかる合金のAPI規格による製造方法では、NACE規格でのSSRTについての基準を満たさず、特に、掘削の低温環境下における耐衝撃性を十分に得られないことがわかった。   From the viewpoint of corrosion resistance, the use of Fe or Ni-based alloys having a component composition in which a large amount of Ni or Cr is added to Fe is considered as an alloy used for oil drilling applications. On the other hand, it has been found that the manufacturing method according to the API standard of such an alloy does not satisfy the SSRT standard in the NACE standard, and in particular, the impact resistance in the low temperature environment of excavation cannot be obtained sufficiently.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、SCCを抑制し、特に、掘削の低温環境下における耐衝撃性を確保した高耐食性Fe又はNi基合金及びその製造方法を提供することにある。   The present invention has been made in view of the situation as described above, and the object thereof is to suppress SCC, and in particular, highly corrosion-resistant Fe or Ni that secures impact resistance in a low temperature environment for excavation. It is to provide a base alloy and a method for manufacturing the same.

本発明は、UNS規格でN09925として示される合金の耐食性を向上させてSCCを抑制し、掘削の低温環境下における耐衝撃性を確保しようとするものである。また、本発明は、Moの量を制御するだけでは不十分だったSCCの抑制をCu及びMn量を制御するとともに、時効熱処理でのγ’相の析出を制御することで達成しようとするものである。   The present invention intends to improve the corrosion resistance of an alloy indicated as N09925 in the UNS standard to suppress SCC and to secure impact resistance in a low temperature environment for excavation. In addition, the present invention aims to achieve SCC suppression, which was insufficient only by controlling the amount of Mo, by controlling the amount of Cu and Mn and by controlling the precipitation of the γ 'phase in the aging heat treatment. It is.

すなわち、本発明による高耐食性Fe又はNi基合金は、質量%で、C:<0.020、Nb:0.1〜0.4、Mo:3.0〜3.5、Cr:19.5〜22.5、Ni:42.5〜46.0、Al:0.10〜0.40、Ti:2.0〜2.3、Mn:0.6〜1.0、及び、Cu:1.5〜2.0を含み、残部不純物及びFeとし、Mn/Cu比を0.3以上とした成分組成を有し、ASTM A370準拠試験法で室温での絞りが45%以下であることを特徴とする。   That is, the highly corrosion-resistant Fe or Ni-based alloy according to the present invention is, in mass%, C: <0.020, Nb: 0.1 to 0.4, Mo: 3.0 to 3.5, Cr: 19.5. To 22.5, Ni: 42.5 to 46.0, Al: 0.10 to 0.40, Ti: 2.0 to 2.3, Mn: 0.6 to 1.0, and Cu: 1 .5 to 2.0, with the remaining impurities and Fe, and having a Mn / Cu ratio of 0.3 or more, and having a drawing at room temperature of 45% or less according to ASTM A370 compliant test method. Features.

かかる発明によれば、SSRTでの二次クラックの発生を抑制できて、掘削の低温環境下における耐衝撃性を確保できるのである。   According to this invention, generation of secondary cracks in SSRT can be suppressed, and impact resistance in a low temperature environment for excavation can be ensured.

上記した発明において、前記絞りとともに、伸びが18〜35%であることを特徴としても良い。かかる発明によれば、SSRTでの二次クラックの発生を抑制できて、掘削の低温環境下における耐衝撃性を確保できるのである。   In the above-described invention, the elongation may be 18 to 35% together with the aperture. According to this invention, generation of secondary cracks in SSRT can be suppressed, and impact resistance in a low temperature environment for excavation can be ensured.

また、本発明による高耐食性Fe又はNi基合金の製造方法は、質量%で、C:<0.020、Nb:0.1〜0.4、Mo:3.0〜3.5、Cr:19.5〜22.5、Ni:42.5〜46.0、Al:0.10〜0.40、Ti:2.0〜2.3、 Mn:0.6〜1.0、及び、Cu:1.5〜2.0を含み、残部不純物及びFeとし、Mn/Cu比を0.3以上とした成分組成を有する合金を固溶化処理後、第1の温度で時効処理し、第2の温度に降温して時効処理する二段時効処理を含み、前記二段時効処理における前記第1の温度から前記第2の温度への冷却速度を5〜60℃/hとすることで、ASTM A370準拠試験法で室温での絞りを45%以下としたことを特徴とする。   Moreover, the manufacturing method of highly corrosion-resistant Fe or Ni base alloy by this invention is the mass%, C: <0.020, Nb: 0.1-0.4, Mo: 3.0-3.5, Cr: 19.5 to 22.5, Ni: 42.5 to 46.0, Al: 0.10 to 0.40, Ti: 2.0 to 2.3, Mn: 0.6 to 1.0, and An alloy having a component composition including Cu: 1.5 to 2.0, the remaining impurities and Fe, and a Mn / Cu ratio of 0.3 or more is subjected to aging treatment at a first temperature after solution treatment, Including a two-stage aging treatment in which the temperature is lowered to a temperature of 2 and an aging treatment is performed, and the cooling rate from the first temperature to the second temperature in the two-stage aging treatment is 5 to 60 ° C./h, It is characterized in that the aperture at room temperature is 45% or less by the ASTM A370 compliant test method.

かかる発明によれば、SSRTでの二次クラックの発生を抑制するよう、二段階時効でγ’相の析出を制御し、結果として、掘削の低温環境下における耐衝撃性を確保した合金を得られるのである。   According to this invention, in order to suppress the occurrence of secondary cracks in SSRT, the precipitation of the γ 'phase is controlled by two-stage aging, and as a result, an alloy that ensures impact resistance in the low temperature environment of excavation is obtained. It is done.

上記した発明において、前記絞りとともに、伸びが18〜35%であることを特徴としてもよい。かかる発明によれば、SSRTでの二次クラックの発生を抑制できて、結果として、掘削の低温環境下における耐衝撃性を確保した合金を得られるのである。   In the above-described invention, the elongation may be 18 to 35% together with the aperture. According to this invention, it is possible to suppress the occurrence of secondary cracks in SSRT, and as a result, it is possible to obtain an alloy that ensures impact resistance in a low temperature environment for excavation.

実施例及び比較例の合金の成分組成の表である。It is a table | surface of the component composition of the alloy of an Example and a comparative example. 実施例及び比較例の熱処理条件を示す表である。It is a table | surface which shows the heat processing conditions of an Example and a comparative example. 実施例及び比較例の引張試験及び衝撃試験の結果を示す表である。It is a table | surface which shows the result of the tension test and impact test of an Example and a comparative example. 実施例及び比較例の低歪速度法による応力腐食割れ試験結果を示す表である。It is a table | surface which shows the stress corrosion cracking test result by the low strain rate method of an Example and a comparative example. 比較例1の試験片に発生した二次クラックの写真である。4 is a photograph of secondary cracks that occurred in the test piece of Comparative Example 1.

本発明による1つの実施例としての高耐食性Fe又はNi基合金の製造方法について、図1及び図2を用いて説明する。   A method for producing a highly corrosion-resistant Fe or Ni-based alloy as one embodiment according to the present invention will be described with reference to FIGS.

図1を参照すると、実施例1、2及び比較例1、2は、UNS規格でN09925として示される合金の規格値内の成分組成を有する合金である。ここで、実施例1、2を含む本実施例については、得られる合金の耐食性を向上させて応力腐食割れ(SCC)を抑制するため、同規格値内で成分組成の範囲を新たに定めるとともに熱処理条件を変更したものである。   Referring to FIG. 1, Examples 1 and 2 and Comparative Examples 1 and 2 are alloys having a component composition within the standard value of an alloy indicated as N09925 in the UNS standard. Here, with respect to the present example including Examples 1 and 2, in order to improve the corrosion resistance of the obtained alloy and suppress the stress corrosion cracking (SCC), the range of the component composition is newly defined within the standard value. The heat treatment conditions are changed.

具体的には、この新たに定めた成分組成の範囲は、質量%で、C:<0.020、Nb:0.1〜0.4、Mo:3.0〜3.5、Cr:19.5〜22.5、Ni:42.5〜46.0、Al:0.10〜0.40、Ti:2.0〜2.3、Mn:0.6〜1.0、及び、Cu:1.5〜2.0を含み、残部不純物及びFeとするものであり、さらに、Mn/Cu比を0.3以上とするものである。特に、UNS規格においては、Mn:≦1.0質量%、Cu:1.50〜3.00質量%とされているのに対し、本実施例ではMnについての下限値を高く設定し、Cuについての上限値を小さく設定している。   Specifically, the newly determined component composition ranges in mass% are C: <0.020, Nb: 0.1 to 0.4, Mo: 3.0 to 3.5, Cr: 19. .5 to 22.5, Ni: 42.5 to 46.0, Al: 0.10 to 0.40, Ti: 2.0 to 2.3, Mn: 0.6 to 1.0, and Cu : 1.5-2.0, the remaining impurities and Fe, and the Mn / Cu ratio is 0.3 or more. In particular, in the UNS standard, Mn: ≦ 1.0 mass% and Cu: 1.50 to 3.00 mass%, whereas in this example, the lower limit value for Mn is set high, and Cu The upper limit value for is set small.

そして、高耐食性Fe又はNi基合金の製造方法としては、まず、この範囲内の成分組成を有する合金塊を得て、鍛造等の熱間加工によって得ようとする部材の形状に合わせて合金塊を成形する。   And as a manufacturing method of high corrosion resistance Fe or Ni base alloy, first, an alloy lump having a component composition within this range is obtained, and the alloy lump is adapted to the shape of the member to be obtained by hot working such as forging. Is molded.

図2に示すように、鍛造後の合金塊の熱処理においては、固溶化処理の後、二段時効処理とする。固溶化処理は、例えば、1025℃で2h保持し、水冷する処理とできる。二段時効処理では、第1の温度で時効処理し、第2の温度に降温して時効処理する。例えば、第1の温度を740℃として8h保持後、所定の冷却速度で降温させて、第2の温度を620℃として8h保持し、空冷する処理とできる。特に、第1の温度から第2の温度までの冷却速度は、5〜60℃/hとする。この冷却速度によって、得られる合金のASTM A370に準拠した室温での引張試験での絞りを45%以下とするようにしている。   As shown in FIG. 2, in the heat treatment of the alloy ingot after forging, a two-stage aging treatment is performed after the solution treatment. The solution treatment can be, for example, a process of holding at 1025 ° C. for 2 hours and cooling with water. In the two-stage aging treatment, the aging treatment is performed at the first temperature, and the temperature is lowered to the second temperature and the aging treatment is performed. For example, after the first temperature is maintained at 740 ° C. for 8 hours, the temperature is decreased at a predetermined cooling rate, the second temperature is maintained at 620 ° C. for 8 hours, and air cooling is performed. In particular, the cooling rate from the first temperature to the second temperature is 5 to 60 ° C./h. With this cooling rate, the resulting alloy is made to have a drawing of 45% or less in a tensile test at room temperature in accordance with ASTM A370.

ところで、上記したUNS規格におけるN09925合金では、NACE規格でのSSRT(Slow Strain Rate Test)についての基準、特に掘削の低温環境下における耐衝撃性を満たさないことがある。他方、耐衝撃性を考慮して延性を高くした場合に、SSRTでの二次クラックの発生を助長してしまい、結果として低温環境下における耐衝撃性を満たさないことがある。これについては、同合金において絞りを大きくすると、歪みによって表面にネッキングを生じやすく、生じたネッキング部におけるすべりによって不働態被膜の分断された新生面を生成し、この新生面を起点として粒内進展型の腐食割れ現象を進行させてしまうものと考えられる。   By the way, the N09925 alloy in the UNS standard described above may not satisfy the standard for SSRT (Slow Strain Rate Test) in the NACE standard, particularly the impact resistance in the low temperature environment of excavation. On the other hand, when ductility is increased in consideration of impact resistance, the occurrence of secondary cracks in SSRT is promoted, and as a result, impact resistance in a low temperature environment may not be satisfied. In this regard, when the aperture is enlarged in the same alloy, necking is likely to occur on the surface due to strain, and a new surface is formed by the slip of the generated necking part and a passive film is divided. It is thought that the corrosion cracking phenomenon is advanced.

そこで、本発明者らは上記した成分組成について、特に、Mn及びCuの含有量に着目した。すなわち、Mnは積層欠陥エネルギーを上昇させるため、その含有量を多く設定することで加工硬化を促進させて延性を適度に低下させてネッキングを減じ、不働態被膜の破壊による新生面の生成を抑制し得る。他方、Cuは、積層欠陥エネルギーを低下させるため、その含有量を少なく設定することで加工硬化の低下を抑制し、延性の適度な低下を阻害しないようにし得る。そのため、Mnの含有量のCuの含有量に対する比(Mn/Cu)を0.3以上とする。   Therefore, the present inventors have focused particularly on the contents of Mn and Cu in the above component composition. In other words, Mn increases stacking fault energy, so by setting its content high, work hardening is promoted, ductility is moderately reduced, necking is reduced, and generation of new surfaces due to destruction of the passive film is suppressed. obtain. On the other hand, since Cu reduces the stacking fault energy, the content can be set to a low level to suppress a decrease in work hardening and not prevent a moderate decrease in ductility. Therefore, the ratio of Mn content to Cu content (Mn / Cu) is set to 0.3 or more.

その上で、二段時効処理の第1の温度から第2の温度までの冷却速度を上記したように定めて、低温での靭性を維持しつつもSSRTでの二次クラックの発生を抑制するようγ’相の析出を制御して室温での絞りを45%以下にする。そして、掘削の低温環境下における耐衝撃性を確保した合金を得るのである。   In addition, the cooling rate from the first temperature to the second temperature of the two-stage aging treatment is determined as described above, and the occurrence of secondary cracks in the SSRT is suppressed while maintaining the toughness at a low temperature. Thus, the precipitation at the γ 'phase is controlled to reduce the drawing at room temperature to 45% or less. And the alloy which ensured the impact resistance in the low temperature environment of excavation is obtained.

このように、本実施例においては、特にMn及びCuの含有量と二段時効処理の間の冷却速度を制御することで、SSRTでの二次クラックの発生を抑制し、その結果として掘削の低温環境下において高い耐衝撃性を得られるのである。   Thus, in this example, by controlling the cooling rate between the Mn and Cu contents and the two-stage aging treatment in particular, the occurrence of secondary cracks in SSRT is suppressed, and as a result, excavation High impact resistance can be obtained in a low temperature environment.

[機械試験]
上記した製造方法によって製造された実施例1及び2の合金について、室温での引張試験、低温でのシャルピー衝撃試験、及び、SSRTを行ったのでその結果について図1〜図5を用いて説明する。
[Mechanical test]
The alloys of Examples 1 and 2 manufactured by the above-described manufacturing method were subjected to a tensile test at room temperature, a Charpy impact test at low temperature, and an SSRT, and the results will be described with reference to FIGS. .

図1の実施例1及び2に示す成分組成の合金を用意し、鍛造後に図2に示すよう熱処理し、上記した試験のそれぞれに用いる試験片を切り出した。なお、比較例1及び2として、実施例1及び2に比べてMnの含有量を少なくし、Cuの含有量を多くした合金でも同様に試験片を得た。なお、熱処理においては、上記した2段時効の第1及び第2の温度の間の冷却速度を実施例1及び比較例1で34℃/h、実施例2及び比較例2で10℃/hとし、他は同じ条件とした。   Alloys having the component compositions shown in Examples 1 and 2 of FIG. 1 were prepared, heat-treated as shown in FIG. 2 after forging, and test pieces used for each of the above tests were cut out. In Comparative Examples 1 and 2, test pieces were also obtained in the same manner as in the alloys in which the Mn content was reduced and the Cu content was increased as compared with Examples 1 and 2. In the heat treatment, the cooling rate between the first and second temperatures of the two-stage aging described above was 34 ° C./h in Example 1 and Comparative Example 1, and 10 ° C./h in Example 2 and Comparative Example 2. Other conditions were the same.

引張試験は室温で行い、シャルピー衝撃試験は2mmVノッチ試験片を用いて−60℃において行った。また、SSRTについては、NACEのStandard TMD198−2004に規定されるテストレベル7にて行った。すなわち、試験温度を205℃、Co分圧及びHS分圧をともに508psiaとし、NaClの濃度を25%とした。また、ひずみ速度は4×10−6(s−1)であり、破断するまで連続してひずみを与え、破断後に目視観察によって二次クラックの有無を確認し、クラスを評価した。 The tensile test was performed at room temperature, and the Charpy impact test was performed at −60 ° C. using a 2 mmV notch test piece. SSRT was performed at test level 7 as defined in NACE Standard TMD 198-2004. That is, the test temperature was 205 ° C., the Co 2 partial pressure and the H 2 S partial pressure were both 508 psia, and the NaCl concentration was 25%. Further, the strain rate was 4 × 10 −6 (s −1 ), and strain was continuously applied until rupture. After rupture, the presence or absence of secondary cracks was confirmed by visual observation, and the class was evaluated.

図3に示すように、室温での引張試験において、実施例1及び2と比較例1及び2とでは0.2%耐力及び引張強度においては同等であったが、伸び及び絞りにおいて比較例1及び2に比べて実施例1及び2の方が小さかった。また、−60℃でのシャルピー衝撃試験において、実施例1及び2は、比較例1及び2に比べて低い衝撃値であった。つまり、実施例1及び2は、石油掘削用ドリルなどの掘削の低温環境下で用いられる部材として必要とされる引張強度や靭性は確保しつつも、比較例1及び2に比べて低い延性を有していると言える。   As shown in FIG. 3, in the tensile test at room temperature, Examples 1 and 2 and Comparative Examples 1 and 2 were equivalent in 0.2% proof stress and tensile strength, but in Comparative Example 1 in elongation and drawing. Examples 1 and 2 were smaller than No. 2 and No. 2. Moreover, in the Charpy impact test at −60 ° C., Examples 1 and 2 had lower impact values than Comparative Examples 1 and 2. That is, Examples 1 and 2 have lower ductility than Comparative Examples 1 and 2 while ensuring the tensile strength and toughness required as members used in a low temperature environment for drilling such as oil drilling drills. It can be said that it has.

図4に示すようにSSRTでは、実施例1及び2のそれぞれ3つの試験片では二次クラックは観察されず、クラス3と評価された。つまりSCCの発生は確認されなかった。他方、比較例1及び2においては多くの試験片でSCCの証拠となる二次クラックが観察され、SCCの発生と判断されるクラス4と評価された。   As shown in FIG. 4, in SSRT, secondary cracks were not observed in each of the three test pieces of Examples 1 and 2, and it was evaluated as class 3. That is, the occurrence of SCC was not confirmed. On the other hand, in Comparative Examples 1 and 2, secondary cracks as evidence of SCC were observed in many test pieces, and it was evaluated as Class 4 judged to be SCC.

図5に示すように、例えば、比較例1では、破面1の近傍に二次クラック(「crack」と表示した部分)を生じていることがわかる。   As shown in FIG. 5, for example, in Comparative Example 1, it can be seen that a secondary crack (portion indicated as “crack”) is generated in the vicinity of the fracture surface 1.

すなわち、比較例1及び2は、実施例1及び2に比べて高い延性を有し、低温での高い靭性を有するものの、腐食環境下にけるSCCを発生しやすく、結果として掘削の低温環境下において耐衝撃性を低くしてしまっている。換言すれば、実施例1及び2は、比較例1及び2に比べて素材としての延性及び靭性を若干低くしながらも、掘削の低温環境下において部材として高い耐衝撃性を有しているのである。   That is, Comparative Examples 1 and 2 have higher ductility than Examples 1 and 2 and have high toughness at low temperatures, but easily generate SCC in a corrosive environment. The impact resistance has been lowered. In other words, Examples 1 and 2 have high impact resistance as a member in a low temperature environment of excavation, while slightly lowering the ductility and toughness as a material compared to Comparative Examples 1 and 2. is there.

ところで、上記した実施例を含む高耐食性Fe又はNi基合金とほぼ同等の掘削の低温環境下での耐衝撃性を与え得る合金の組成範囲は以下のように定められる。   By the way, the composition range of an alloy capable of giving impact resistance in a low temperature environment of excavation almost equivalent to the high corrosion resistance Fe or Ni-based alloy including the above-described embodiments is determined as follows.

Cは、Nbと結合して、MC型の炭化物を生成する。このMC型の炭化物は高温域で安定に存在して、結晶粒の過度の成長を抑制する。そこで、Cは、必要に応じて0.020質量%未満で添加し得る。   C combines with Nb to produce MC type carbides. This MC type carbide exists stably in a high temperature region and suppresses excessive growth of crystal grains. Therefore, C can be added at less than 0.020% by mass as necessary.

Nbは、Cと結合してMC型の炭化物を生成する。Cを固定するので熱処理によって生成されるCr系炭化物を減じて粒界部の耐食性を向上し得る。そこで、Nbは、質量%で、0.1〜0.4%の範囲内である。   Nb combines with C to produce MC type carbides. Since C is fixed, Cr-based carbides generated by the heat treatment can be reduced to improve the corrosion resistance of the grain boundary part. Therefore, Nb is in mass% and is in the range of 0.1 to 0.4%.

Moは、母相のオーステナイトに固溶して材料を固溶強化させるとともに耐食性を向上させる。一方、過剰に含有させると、α相の生成を促進させてしまう。これらを考慮して、Moは、質量%で、3.0〜3.5%の範囲内である。   Mo forms a solid solution in the austenite of the parent phase to enhance the solid solution and improve the corrosion resistance. On the other hand, when it contains excessively, the production | generation of (alpha) phase will be accelerated | stimulated. Considering these, Mo is mass% and is in the range of 3.0 to 3.5%.

Crは、酸素と結合して不働態被膜を生成することで耐食性を向上させる。一方、過剰に含有させると、α相の生成を促進させてしまう。これらを考慮して、Crは、質量%で、19.5〜22.5%の範囲内である。   Cr improves corrosion resistance by combining with oxygen to produce a passive film. On the other hand, when it contains excessively, the production | generation of (alpha) phase will be accelerated | stimulated. Considering these, Cr is in the range of 19.5 to 22.5% by mass.

Niは、母相のオーステナイトの安定化元素として必須であり、耐食性を確保するとともに、AlやTiと結合してNi(Al,Ti)に代表される析出物(γ’相)を生成して機械強度を向上させる。そこで、Niは、質量%で42.5〜46.0%の範囲内である。 Ni is essential as a stabilizing element for the austenite of the parent phase, and ensures corrosion resistance and combines with Al and Ti to generate precipitates (γ ′ phase) typified by Ni 3 (Al, Ti). Improve mechanical strength. Therefore, Ni is in the range of 42.5 to 46.0% by mass.

Alは、Niと結合してNi(Al,Ti)に代表される析出物(γ’相)を生成して機械強度を向上させる。そこで、Alは、質量%で、0.10〜0.40%の範囲内である。 Al combines with Ni to generate precipitates (γ ′ phase) typified by Ni 3 (Al, Ti) to improve mechanical strength. Therefore, Al is in mass% and is in the range of 0.10 to 0.40%.

Tiは、Niと結合してNi(Al,Ti)に代表される析出物(γ’相)を生成して機械強度を向上させる。そこで、Tiは、質量%で、2.0〜2.3%の範囲内である。 Ti combines with Ni to generate precipitates (γ ′ phase) typified by Ni 3 (Al, Ti) to improve mechanical strength. Therefore, Ti is in mass% and is in the range of 2.0 to 2.3%.

Mnは、積層欠陥エネルギーを上昇させることで加工硬化を促進させ、靭性及び延性に影響を与える。そこで、Mnは、質量%で、0.6〜1.0%の範囲内である。   Mn promotes work hardening by increasing the stacking fault energy and affects toughness and ductility. Therefore, Mn is in the range of 0.6 to 1.0% by mass.

Cuは、耐食性を向上させる効果を有する元素である。一方、過剰に含有させると、積層欠陥エネルギーを低下させることで加工硬化を抑制してしまい、靭性及び延性に影響を与える。これらを考慮して、Cuは、質量%で、1.5〜2.0%の範囲内である。   Cu is an element having an effect of improving the corrosion resistance. On the other hand, if excessively contained, work hardening is suppressed by reducing stacking fault energy, which affects toughness and ductility. Considering these, Cu is in the range of 1.5 to 2.0% by mass.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。

As mentioned above, although the typical Example of this invention was described, this invention is not necessarily limited to these, Those skilled in the art will not deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications may be found.

Claims (4)

質量%で、
C:<0.020、
Nb:0.1〜0.4、
Mo:3.0〜3.5、
Cr:19.5〜22.5、
Ni:42.5〜46.0、
Al:0.10〜0.40、
Ti:2.0〜2.3、
Mn:0.6〜1.0、及び、
Cu:1.5〜2.0を含み、残部不純物及びFeとし、Mn/Cu比を0.3以上とした成分組成を有し、
ASTM A370準拠試験法で室温での絞りが45%以下であることを特徴とする高耐食性Fe又はNi基合金。
% By mass
C: <0.020,
Nb: 0.1 to 0.4
Mo: 3.0-3.5,
Cr: 19.5 to 22.5,
Ni: 42.5-46.0,
Al: 0.10 to 0.40,
Ti: 2.0-2.3,
Mn: 0.6 to 1.0, and
Cu: 1.5 to 2.0, the remaining impurities and Fe, having a component composition with a Mn / Cu ratio of 0.3 or more,
A highly corrosion-resistant Fe or Ni-based alloy characterized in that the drawing at room temperature is 45% or less according to the ASTM A370 compliant test method.
前記絞りとともに、伸びが18〜35%であることを特徴とする請求項1記載の高耐食性Fe又はNi基合金。   2. The highly corrosion-resistant Fe or Ni-based alloy according to claim 1, wherein the elongation is 18 to 35% together with the drawing. 質量%で、
C:<0.020、
Nb:0.1〜0.4、
Mo:3.0〜3.5、
Cr:19.5〜22.5、
Ni:42.5〜46.0、
Al:0.10〜0.40、
Ti:2.0〜2.3、
Mn:0.6〜1.0、及び、
Cu:1.5〜2.0を含み、残部不純物及びFeとし、Mn/Cu比を0.3以上とした成分組成を有する合金を固溶化処理後、第1の温度で時効処理し、第2の温度に降温して時効処理する二段時効処理を含み、前記二段時効処理における前記第1の温度から前記第2の温度への冷却速度を5〜60℃/hとすることで、ASTM A370準拠試験法で室温での絞りを45%以下としたことを特徴とする高耐食性Fe又はNi基合金の製造方法。
% By mass
C: <0.020,
Nb: 0.1 to 0.4
Mo: 3.0-3.5,
Cr: 19.5 to 22.5,
Ni: 42.5-46.0,
Al: 0.10 to 0.40,
Ti: 2.0-2.3,
Mn: 0.6 to 1.0, and
An alloy having a component composition including Cu: 1.5 to 2.0, the remaining impurities and Fe, and a Mn / Cu ratio of 0.3 or more is subjected to aging treatment at a first temperature after solution treatment, Including a two-stage aging treatment in which the temperature is lowered to a temperature of 2 and an aging treatment is performed, and the cooling rate from the first temperature to the second temperature in the two-stage aging treatment is 5 to 60 ° C./h, A method for producing a highly corrosion-resistant Fe or Ni-based alloy characterized in that the drawing at room temperature is 45% or less by a test method conforming to ASTM A370.
前記絞りとともに、伸びが18〜35%であることを特徴とする請求項3記載の高耐食性Fe又はNi基合金の製造方法。

4. The method for producing a highly corrosion-resistant Fe or Ni-based alloy according to claim 3, wherein the elongation is 18 to 35% together with the drawing.

JP2018070738A 2018-04-02 2018-04-02 Highly corrosion-resistant Fe- or Ni-based alloy and its production method Active JP7125663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018070738A JP7125663B2 (en) 2018-04-02 2018-04-02 Highly corrosion-resistant Fe- or Ni-based alloy and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070738A JP7125663B2 (en) 2018-04-02 2018-04-02 Highly corrosion-resistant Fe- or Ni-based alloy and its production method

Publications (2)

Publication Number Publication Date
JP2019183181A true JP2019183181A (en) 2019-10-24
JP7125663B2 JP7125663B2 (en) 2022-08-25

Family

ID=68339894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070738A Active JP7125663B2 (en) 2018-04-02 2018-04-02 Highly corrosion-resistant Fe- or Ni-based alloy and its production method

Country Status (1)

Country Link
JP (1) JP7125663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150207A (en) * 2021-10-26 2022-03-08 重庆材料研究院有限公司 High-strength Ni-Fe-based age-hardening corrosion-resistant alloy and preparation method thereof
CN115386695A (en) * 2022-08-30 2022-11-25 河钢股份有限公司 Rolling and heat treatment method of 30Ni15Cr2Ti2Al alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS61119641A (en) * 1984-11-16 1986-06-06 Sumitomo Metal Ind Ltd Highly corrosion-resistant ni-base alloy and its production
US6004408A (en) * 1997-11-21 1999-12-21 Aubert & Duval (societe anonyme) Nickel-chrome-iron based alloy composition
JP2014224310A (en) * 2013-04-19 2014-12-04 日立金属株式会社 Fe-Ni-BASED SUPERALLOY AND METHOD FOR PRODUCING THE SAME
JP2015052166A (en) * 2007-11-19 2015-03-19 ハンチントン、アロイス、コーポレーションHuntington Alloys Corporation Ultra high strength alloy for severe oil and gas environment and method of preparation
JP2017190493A (en) * 2016-04-13 2017-10-19 株式会社日本製鋼所 Ni-BASED SUPER ALLOY AND MANUFACTURING METHOD OF Ni-BASED SUPER ALLOY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS61119641A (en) * 1984-11-16 1986-06-06 Sumitomo Metal Ind Ltd Highly corrosion-resistant ni-base alloy and its production
US6004408A (en) * 1997-11-21 1999-12-21 Aubert & Duval (societe anonyme) Nickel-chrome-iron based alloy composition
JP2015052166A (en) * 2007-11-19 2015-03-19 ハンチントン、アロイス、コーポレーションHuntington Alloys Corporation Ultra high strength alloy for severe oil and gas environment and method of preparation
JP2014224310A (en) * 2013-04-19 2014-12-04 日立金属株式会社 Fe-Ni-BASED SUPERALLOY AND METHOD FOR PRODUCING THE SAME
JP2017190493A (en) * 2016-04-13 2017-10-19 株式会社日本製鋼所 Ni-BASED SUPER ALLOY AND MANUFACTURING METHOD OF Ni-BASED SUPER ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150207A (en) * 2021-10-26 2022-03-08 重庆材料研究院有限公司 High-strength Ni-Fe-based age-hardening corrosion-resistant alloy and preparation method thereof
CN115386695A (en) * 2022-08-30 2022-11-25 河钢股份有限公司 Rolling and heat treatment method of 30Ni15Cr2Ti2Al alloy

Also Published As

Publication number Publication date
JP7125663B2 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
JP6336367B2 (en) Ultra-high strength alloy for harsh oil and gas environments and manufacturing method
JP5225855B2 (en) High-strength corrosion-resistant alloy for oil patch application and method for producing the same
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
WO2019035329A1 (en) High strength stainless seamless steel pipe for oil wells, and method for producing same
JP2020510139A (en) High nitrogen, multi-element, high entropy corrosion resistant alloy
JP5657523B2 (en) Ultra-supercritical boiler header alloy and manufacturing method
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
KR20050044557A (en) Super-austenitic stainless steel
JP2017524830A (en) Nickel-chromium-iron-molybdenum corrosion resistant alloys, products and methods for their production
BRPI0416001B1 (en) seamless stainless steel pipe for conduction pipes
JP6842316B2 (en) Manufacturing method of Ni-based alloy, gas turbine material and Ni-based alloy with excellent creep characteristics
JP6733210B2 (en) Ni-based superalloy for hot forging
JPWO2013191208A1 (en) Duplex stainless steel
JP2010280950A (en) Heat resistant steel for exhaust valve and method for producing the same
JP2019183181A (en) HIGH CORROSION RESISTANT Fe OR Ni-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JPH0114992B2 (en)
JPS61119641A (en) Highly corrosion-resistant ni-base alloy and its production
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JPS631387B2 (en)
JP2019026911A (en) Austenitic heat resistant alloy member
JP2013209721A (en) Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2015108177A (en) Nickel-based alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220728

R150 Certificate of patent or registration of utility model

Ref document number: 7125663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150