JPS6058555A - Blood coagulation measuring method and apparatus therefor - Google Patents

Blood coagulation measuring method and apparatus therefor

Info

Publication number
JPS6058555A
JPS6058555A JP16735183A JP16735183A JPS6058555A JP S6058555 A JPS6058555 A JP S6058555A JP 16735183 A JP16735183 A JP 16735183A JP 16735183 A JP16735183 A JP 16735183A JP S6058555 A JPS6058555 A JP S6058555A
Authority
JP
Japan
Prior art keywords
signal
time
light
reagent
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16735183A
Other languages
Japanese (ja)
Other versions
JPH043505B2 (en
Inventor
Toshihiro Horiuchi
堀内 利宏
Masayoshi Hayashi
正好 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Tao Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp, Tao Medical Electronics Co Ltd filed Critical Sysmex Corp
Priority to JP16735183A priority Critical patent/JPS6058555A/en
Publication of JPS6058555A publication Critical patent/JPS6058555A/en
Publication of JPH043505B2 publication Critical patent/JPH043505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the titled apparatus capable of performing two kinds of measurements by one operation and the predetermined blood coagulation measurement rapidly and accurately, by a method wherein a liquid mixture of serum and a coagulating reagent is irradiated with light to collect scattered light or transmitted light which is, in turn, converted to an electric signal and the change amounts of a time and the signal when said signal reaches a predetemined level are calculated. CONSTITUTION:In measuring a prothrombin time and a fibrinogen concn., a calcium added tissure thromboplastin reagent is warmed at first and serum is added to said reagent while the resulting mixture is introduced into a thermostatic reaction cell (a). At this time, a controller 5 receives a start signal. Monochromatic light is incident to the cell (a) from LED of a light emitter (e) and the scattered light thereof is received by the photodiode of a photoelectric converter (d) and converted to an electric signal having intensity corresponding to the degree of blood coagulation. This analogue signal is amplified and converted to a digital signal by an A/D converter (e) to be inputted to a microcomputer MiC. This MiC receives the start signal from the switch 4 of a pipet 2 and transmits an output signal to a motor 11 to rotor 10 at a high speed and the serum in the cell (a) is mixed with the coagulating reagent.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は血液凝固の測定方法および血液凝固の測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a blood coagulation measuring method and a blood coagulation measuring apparatus.

従来例の構成とその問題点 従来、出血性疾患の検査として、出血時間、全血凝固時
間検査などが′行われて@たが、最近は血液凝固の反応
過程別の検査として、プロトロンビン1lfrlli(
FT)、部分トロンボプラスチン時間(PTT )、活
性化部分トロンボ7°フスチン時間(APTT)および
フィブリノーゲン濃度(Fbg +の測定が外因、注凝
固、内因性凝固、ブイプリン形成の各過程機能検査とし
てルーチン化されている。
Structure of conventional examples and their problems Conventionally, bleeding time and whole blood coagulation time tests have been performed as tests for bleeding disorders, but recently prothrombin 1lfrlli (
FT), partial thromboplastin time (PTT), activated partial thromboplastin time (APTT), and fibrinogen concentration (Fbg ing.

検査コストも高い。Inspection costs are also high.

上記した各項目の測定方法は概路次の通りである。The method for measuring each of the above items is outlined below.

PT:カルシウム加51mトロンボプラスチン試薬を3
7℃で予加濡しておき、これに血漿を加えて凝固するま
での時間全測定する。
PT: 3 ml of calcium-added 51m thromboplastin reagent
Pre-wet the tube at 7°C, add plasma to it, and measure the total time until it coagulates.

P′rT t APTT ) :部分トロンボプラスチ
ン試薬(活性化部分トロンボプラスチン試薬)と血漿と
の混合液をある一定時間37℃で加温しておき、これに
予加湛しておいた塩化カルシウム溶液を加えて凝固する
までの時間を測定する。
P′rT t APTT ): A mixture of partial thromboplastin reagent (activated partial thromboplastin reagent) and plasma is heated at 37°C for a certain period of time, and a pre-filled calcium chloride solution is added to it. Measure the time until solidification.

Fbg :フィブリノーゲン標準液(フィブリノーゲン
濃度既知)をオーノンペロナール緩衝液でい(つかの段
階に希釈したもの全準備する。各希釈フィブリノーゲン
標準液にトロンビン試薬を加え、凝固するまでの時間を
測定する0両対数グラフにフィブリノーゲン濃度と得ら
れた凝固時間全プロ・ソトし検量線を引く、濃度未知の
被検血漿の10倍希釈液についてトロンビン試薬金部え
、同様に凝固1i/l!lを測定し、検を線よフィブリ
ノーゲン濃度を導ひき出す。
Fbg: Fibrinogen standard solution (fibrinogen concentration known) diluted in Oronperonal buffer solution (diluted in several steps) Prepare all. Add thrombin reagent to each diluted fibrinogen standard solution and measure the time until coagulation. Draw a calibration curve for the fibrinogen concentration and the obtained coagulation time on a logarithmic graph. For a 10-fold dilution of the test plasma with an unknown concentration, add the thrombin reagent and similarly calculate the coagulation 1i/l!l. The fibrinogen concentration is determined by measuring the fibrinogen concentration.

上記のようにフィブリノーゲン濃度(Fbg )の測定
では、血漿の希釈:検量線の作成等操作が煩雑であり、
測定に時間を要する。また使用する試薬も高価なもので
あり、全体として検査コストが相当に高くついていた、 血液凝固検査は出血が予測される医療全行う場合に検査
することが多く、できる限り迅速な検査が必要であるが
、特にフィブリノーゲン濃度の測定に従来、多くの時間
を要していたため上記迅速な検査の要求に応えられてい
ないのが実情である。
As mentioned above, in the measurement of fibrinogen concentration (Fbg), operations such as plasma dilution and preparation of a calibration curve are complicated;
Measurement takes time. In addition, the reagents used are expensive, and the overall cost of the test is quite high.Blood coagulation tests are often performed in all medical cases where bleeding is expected, and tests must be performed as quickly as possible. However, the current situation is that it has not been possible to meet the above-mentioned demand for a rapid test because it has conventionally taken a long time to measure the fibrinogen concentration.

発明の目的 以上の実情に鑑み、第1の発明は血液凝固測定を迅速に
行える方法を提供すること金、筐た第2の発明は血液凝
固測定を迅速かつ正確に行うことができる装置を提供す
ること全目的とする、発明のa成 第1の発明の血液凝固測定方法は、■血硯と凝固試薬と
全混合する過程と、■その混合液に元金照射して散乱光
または透過光を捕捉しこれを電気信号に変換する過程と
、■その電気信号が所定のレベルに運したときの時間お
よび電気信号の変化量からプロトロンビン時間(PT)
または部分トロンボプラスチン時間(PTT )または
活性化部分トロンボプラスチン時間(APTT)および
フィブリノーゲン濃度(Fbg )をめる過程とを含む
ものである。
In view of the actual circumstances beyond the purpose of the invention, the first invention is to provide a method for quickly performing blood coagulation measurements, and the second invention is to provide an apparatus that can quickly and accurately perform blood coagulation measurements. The blood coagulation measuring method of the first invention, which has the overall purpose of achieving the following, consists of: (1) a process of completely mixing a blood inkstone and a coagulation reagent, and (2) irradiating the mixed liquid with a source to detect scattered light or transmitted light. The prothrombin time (PT) is calculated from the process of capturing the electrical signal and converting it into an electrical signal, and the time taken for the electrical signal to reach a predetermined level and the amount of change in the electrical signal.
or a process of determining partial thromboplastin time (PTT) or activated partial thromboplastin time (APTT) and fibrinogen concentration (Fbg).

FTとFbgとを1操作で測定する場合の試薬は前記し
たPT測定用の試薬であり、PTTとFbgとを1操作
で測定する場合の試薬は前記したPTT潰11定用の試
薬であり、またAPTTとFbgとを1操作で測定する
場合についても同様である。 Fbgは、F T 、 
PTT 、 APTTの何れと一諸に測定しても実質上
同じ値が得られることが実験によってr4認されている
The reagent for measuring FT and Fbg in one operation is the reagent for PT measurement described above, and the reagent for measuring PTT and Fbg in one operation is the reagent for PTT measurement 11 described above, The same applies to the case where APTT and Fbg are measured in one operation. Fbg is F T ,
It has been experimentally confirmed that substantially the same value is obtained when measuring both PTT and APTT.

この第1の発明の方法によれば、光と電気信号を利用し
、電気信号の変化から即PTまたはPTTまたはAPT
TとFbgをめることができるとともに、二種の測定が
1操作で行えることから、従来方法に比べて大幅な時間
短縮が可能となる。
According to the method of the first invention, light and electrical signals are used to immediately convert PT, PTT, or APT from a change in the electrical signal.
Since T and Fbg can be measured and two types of measurements can be performed in one operation, it is possible to significantly shorten the time compared to conventional methods.

また、第2の発明の血液凝固測定装置は、第1図に示す
ように■血漿と凝固試薬とを注入するセ1vaと、■こ
のセfVaの内容液k ???、拌する手段りと、■前
記七ルaに光を照射する発光器Cと、■前記セルaから
の散乱光または透過つ’f:を受光して電気信号に変換
する光電変換器dと、■ritl記電気信号をディジタ
ル信号に変換するΔ/1)変換器Cと、例えばマイクロ
コンピュータMiCなどを利用するものとして、■1前
記A/D変換器eからのディジタル信号の値を経過時間
とともに記憶する手段f1と、■2前記ディジタル信号
の変化の停止を判定する手段f2と、■3前記ディジタ
ル信号入力開始時点からディジタル信号変化領域の所定
レベルに達するまでの時間(すなわちFTまたi−j:
 PTTまたはAPTTJを演算する手段f3およ可4
前記ディジタル信号の全変化量を演算してフィブリノー
ゲン濃度(Fbg )に相当する値に換算する手段f4
と全もち、さらに0前記各演算手段f3. f、にょっ
て得られた値を表示する手段gとを備えたものである。
Further, as shown in FIG. 1, the blood coagulation measuring device of the second invention has: (1) a cell for injecting plasma and a coagulation reagent, and (2) a content liquid k? ? ? , means for stirring; ■ a light emitter C that irradiates light to the cell a; and ■ a photoelectric converter d that receives scattered light or transmitted light from the cell a and converts it into an electrical signal. , ■ Δ/1) converter C that converts the electrical signal into a digital signal, and a microcomputer MiC, for example, is used. ■1 The value of the digital signal from the A/D converter e is expressed as (2) a means f2 for determining whether the change in the digital signal has stopped; and (3) the time from the start of inputting the digital signal until reaching a predetermined level in the digital signal change area (i.e., FT or i- j:
Means f3 and possible 4 for calculating PTT or APTTJ
means f4 for calculating the total amount of change in the digital signal and converting it into a value corresponding to fibrinogen concentration (Fbg);
and all of them, and further 0 each of the arithmetic means f3. f, and means g for displaying the values obtained.

実施例の説明 血漿と凝固試薬とを注入する恒温反応セfvaは第2図
のように恒温槽1円にセヴトされるものであるが、セ・
ソトされる前にピペヴト2の押ボタン3を押すことによ
l)R固試薬が添加され、恒温槽l外に設けられた攪拌
手段hlCより血漿と凝固試薬とが瞬時に混合される。
Description of Examples The constant temperature reaction SEFVA in which plasma and coagulation reagents are injected is placed in a constant temperature bath of 1 yen as shown in Figure 2.
1) R solid reagent is added by pressing the push button 3 of the pipette 2 before sorting, and the plasma and coagulation reagent are instantly mixed by stirring means HLC provided outside the thermostatic chamber 1.

前記ビベヴl−211cは押ボタン3を押す際VC乍勧
するスイッチ4が設けられている。一方、攪拌手段すは
、ゴム等の弾性材でつくられた回転体10とこれ全偏心
状態で固定する軸をもったモータ11とから構成されて
いるしたがって、セルaを回転体10に押付はモータ1
1を高速回転させると、セルaの下部が高速で回転し、
振盪を行ったのと同様の攪拌効果が得られる。
The Bibev l-211c is provided with a switch 4 that recommends VC when the push button 3 is pressed. On the other hand, the stirring means is composed of a rotating body 10 made of an elastic material such as rubber and a motor 11 having a shaft that fixes the rotary body in a completely eccentric state. Motor 1
When 1 is rotated at high speed, the lower part of cell a rotates at high speed,
A stirring effect similar to that obtained by shaking can be obtained.

発光器Cとしては、例えば発光ダイオード、白熱ワンプ
。レーザなどが用いられる。光電変換器dとしては、例
えばフォトダイオード、フォトトフンジスタ、 CdS
累子などが用いられる。光電変換器dは、セ/l/aか
らの透過光は入らすセ/L/aからの散乱光のみが入る
位置に設けられている。
Examples of the light emitter C include a light emitting diode and an incandescent lamp. A laser or the like is used. As the photoelectric converter d, for example, a photodiode, a photofungistor, a CdS
Yuko etc. are used. The photoelectric converter d is provided at a position where only the scattered light from S/L/a enters, while the transmitted light from S/L/a enters.

・ A/D変換器efもつインターフェース12ノ後1
9に接続されるマイクロコンピータMiCは制御器5、
演算器6.記憶器7やりa 、、り発生手段iなどを存
している0表示手段gとして数字表示器8と印字器9と
が用いられている。マイクロコンピータMiCは恒温槽
1のヒータ13の愚度制副回路14VC設定編度を送る
。またモータ制副回路にオン信号と、タイマ時間経過後
にオフ信号′(il−送る。
・1 after 12 interfaces with A/D converter ef
The microcomputer MiC connected to the controller 5,
Arithmetic unit 6. A numeric display 8 and a printer 9 are used as a 0 display means g which includes a memory 7, a, and a generation means i. The microcomputer MiC sends the VC setting of the temperature control sub-circuit 14 of the heater 13 of the thermostatic chamber 1. It also sends an on signal to the motor control sub-circuit and an off signal '(il-) after the timer time has elapsed.

プロトロンビン時間(FT)とフィブリノーゲ・ ン濃
度(Fbg )のallJ定の場合の動1乍金説明する
We will explain the dynamics of prothrombin time (FT) and fibrinogen concentration (Fbg) when all J is constant.

先ず力/L/ 77ム加ffi織1−ロンボブラスチン
試薬上37℃で予め加温しておき、これに血漿2加え恒
崗反応セMaに入ルる。この時制却藷5は0点を知らせ
るスタート信号を受ける。
First, a sample of 77 μm of force/L/1-romboblastin was prewarmed at 37° C., and plasma 2 was added to it and placed in a thermoplastic reaction chamber. This time control unit 5 receives a start signal indicating 0 points.

発光器Cすなわち発光ダイオード(LED Jよりセル
alc単色光が投入され、その散乱光が″#、電変換器
dすなわちフォトダイオードVC受容され、散乱光の強
さひいては血、V凝固(懸濁)の程度に応じた強さの1
差信号に変換される。この′1H,気1言号はアナログ
信号であり、増幅器りによって増幅されたのち、A/D
変換器eVcjリディジタル信号に愛換され、マイクロ
コンピュータMiCへ入力される。
Cell alc monochromatic light is input from the light emitter C, that is, the light emitting diode (LED J, and the scattered light is received by the electric converter d, that is, the photodiode VC, and the intensity of the scattered light is determined by blood and V coagulation (suspension). 1 of strength according to the degree of
converted into a difference signal. This '1H, 1 word is an analog signal, and after being amplified by an amplifier, it is
The signal is converted into a digital signal by the converter eVcj and inputted to the microcomputer MiC.

マイクロコンピュータMiCはビベーJ+−2のスイ・
フチ4からのスタート信号を受信し、装置内のタイマを
スタートさせると同時にモータIIK出力信号を一定の
短時間にわたって発信し回転体1゜を高速回転させるの
で、この間セルaを回転体1゜に押しつけることにより
瞬時にしてセ/L/a内の血漿と凝固試薬とが混合され
る。
The microcomputer MiC is the swiss of Vibe J+-2.
Upon receiving the start signal from the edge 4, the timer in the device is started, and at the same time, the motor IIK output signal is transmitted for a certain short period of time to rotate the rotating body 1° at high speed. By pressing, the plasma in the cell/L/a and the coagulation reagent are mixed instantly.

制御器5は上記スタート信号によってスタートするクロ
9り発生手段i(クロヴクジェネレータ]を持ち、起憶
器7.演算器6と協働して、血漿と凝固試薬とが混合さ
れた時からの光電変換器dの出力に応じ印字器9′(i
l−駆動してプロヮト印字を行わせる。その10ット印
字の一例’t−i3図に示す。
The controller 5 has a clog generating means i (clovk generator) which is started by the start signal, and works in cooperation with the memory device 7 and the computing device 6 to generate the clotting generator from the time when the plasma and the coagulation reagent are mixed. Printer 9' (i
1- drive to print the prototype. An example of 10-bit printing is shown in Figure 'ti3.

反応が進んでフィブリンが形成されかけるA点までは出
力はある一定レベルで変化しない、その後急に散乱光が
増加しB点を経て、増加が停止するC点に至る。この変
化は、実際にはかなり急峻なものである。
The output does not change at a certain level until point A, where the reaction progresses and fibrin is about to be formed, and then the scattered light suddenly increases, passes through point B, and reaches point C, where the increase stops. This change is actually quite drastic.

はぼ中間高さくA点0%、6点100%とすると40%
のB点)[至るまでの時間Tをプロトロンビン時間(P
T)とする。
The middle height of the waist is 40% if point A is 0% and point 6 is 100%.
point B)
T).

A、C点の電圧出力差HThディジタル量で表したもの
に一定の係数を掛けるなどして較正した値をフィブリノ
ーゲン濃度(Fbg )として数字表示器8で、前記の
7” a l−ロンビン時間(PT)Tとともに表示さ
せる。
A value calibrated by multiplying the voltage output difference HTh between points A and C in digital quantity by a certain coefficient is used as the fibrinogen concentration (Fbg), and on the numerical display 8, the above 7'' al-thrombin time ( PT) Displayed together with T.

上記のマイクロコンピュータMiCについての機能フロ
ーチャートラ第4図に示す、第5図に実行プログラムの
フローチャートラ示す、以下、これにつ−て説明する。
The functional flowchart for the microcomputer MiC described above is shown in FIG. 4, and the execution program flowchart is shown in FIG. 5, which will be explained below.

ステー77”(11で初期化し、ステ、t 7−(21
でビベ、フト2のスイッチ4からのスタート信号を入方
待ちとし、入力があればステップ(31でクロフグをス
タートさせる。ついで、ステップ(41でサンプルクロ
ックを入力する。ステップ(5)でクロ・ツクカウント
を+1fる。ステップ(61でA/D変換器eがらデー
タVIIIを読み込む、 VIIIはクローJクヵウン
トIKおける入力電圧値である。ステップ+71でデー
タV tI+およびグロ・ソゲカウントItメモリに転
送する。
Initialize with stay 77'' (11, stay, t 7-(21
Wait for the start signal from the switch 4 of the float 2, and if there is an input, start the black puffer at step (31). Then, input the sample clock at step (41).・Increase the count by +1f.Step (61 reads data VIII from the A/D converter e, VIII is the input voltage value in the clock count IK.In step +71, transfer the data to VtI+ and the gross count It memory. do.

ステーノブ(8)で表示手段gへ駆動信号全発信する。All drive signals are transmitted to the display means g using the stainless steel knob (8).

ステ・ノブ(91において、入力電圧値の偏差V tl
+ −V(I−1)=Δ■の演算を行い、ステ・リプ(
10)で偏差ΔVが0であるか否かを判断する。つ1り
第3図+Alにおいて0点に至ったか否かを判断する。
In the Ste knob (91), the deviation of the input voltage value V tl
+ -V (I-1) = Δ■ is calculated, and step-lip (
10), it is determined whether the deviation ΔV is 0 or not. Then, it is determined whether the 0 point has been reached in Figure 3+Al.

この判断においてNoならばステップ(4)へ戻り再び
、データ読み込み、表示、記憶khう、 YESならば
ステリプ(111に移vv山が規定値70以上か否か、
つまり第3図囚でA点以前なのか0点に至ったのかの弁
別全行う、NOならばステーノブ(4)へ戻り、YES
ならば、つまり0点に達したならばステーノブ(12)
へ移る。
If NO in this judgment, return to step (4) and read, display, and store the data again. If YES, proceed to step (111) and check whether the vv mountain is equal to or greater than the specified value 70.
In other words, in the prisoner in Figure 3, perform all discrimination as to whether it is before point A or reached point 0. If NO, return to Stennob (4) and select YES.
If so, that is, if it reaches 0 points, stay knob (12)
Move to.

ステー77” (121VCオイテ、最終f[VIN+
ト初期値V(11との偏差Hを演算し、ステップ(13
)で偏差HIC較正金行9.つまV一定の係数を掛は算
して請求める。この値Hsがフィブリノーゲンme (
Fbg )である、ステップ(14)においてフィブリ
ノーゲン濃[1−1sk数字表示器8に出方して表示さ
せる0次いで偏差Hの4096相当時刻tmをめるに当
fcり。
Stay 77” (121VC oil, final f[VIN+
The deviation H from the initial value V(11) is calculated, and step (13
) with deviation HIC calibration gold line 9. You can calculate the value by multiplying it by a certain coefficient. This value Hs is fibrinogen me (
In step (14), the fibrinogen concentration [1-1sk is 0, which is displayed on the numerical display 8, and then the time tm corresponding to 4096 of the deviation H is calculated.

まずステ9ブ(151T演算Vlll + (40/1
001 X H= Vm’e行い、次いでステーJ]”
(16)でVm’i挾むV+nlC最も近い2つの値V
(K1. v (K−) 1 )をメモリのテーブルか
ら読み出す、ステウブ(17)で第3 [1911B+
のΔを比例配分の演算(Vm −V[KI ) / (
V (KI1 )−VIKI]=Δによ請求め、スT 
、t 7” (18) ICオイてプロトロンビン時間
Tを演K(K+Δ)Xto=Tによってめる。ここでt
oはクロリフの周期である。ステーノブ(19)におい
てプロトロンビン時間Tを数字表示器81C出方し表示
させる。そして、最後のステ・リプ(2o)で得られた
データを印字する。
First, step 9 (151T operation Vllll + (40/1
001 X H= Vm'e, then stay J]"
(16), the two closest values V between Vm'i and nlC
Read (K1. v (K-) 1 ) from the table in memory, the third [1911B+
Calculation of proportional allocation of Δ of (Vm - V[KI) / (
V (KI1) - VIKI] = Δ, S T
, t 7'' (18) IC O, prothrombin time T is calculated by K(K+Δ)Xto=T.Here, t
o is the period of the clorif. At the stainless knob (19), the prothrombin time T is displayed on the numerical display 81C. Then, the data obtained in the last step (2o) is printed.

なお、10トロンビン時間(P”l”)’tHの40%
相当時間としたのは経験に基いてのものである。
In addition, 40% of 10 thrombin time (P"l")'tH
The time taken is based on experience.

しかし、第3(2)tAucおいて点A〜、操cへの立
上が9は実際はかなり急峻であり、現実問題としては1
0%〜90%の相当時間としてもあまり誤差は生じない
However, in the third (2) tAuc, the rise from point A to point c is actually quite steep, and as a practical matter, 1
Even if the time is equivalent to 0% to 90%, there is not much error.

また、部分トロンボプラスチン時11J1 (P’FT
 )や活性化部分トロンボプヮスチ:’lJ??174
] (APTT ) +7)測定においても、フィブリ
ノーゲン濃度(Fbg )の@Hs(=K −H)はプ
ロトロンビン時間(PT)の測定での値とほぼ等しいこ
とが実験によって確認された。そして、点A〜点Cへの
立上がりも同様に急峻であった。
In addition, partial thromboplastin 11J1 (P'FT
) and activated partial thrombosis: 'lJ? ? 174
] (APTT) +7) It was experimentally confirmed that the fibrinogen concentration (Fbg) @Hs (=K-H) is almost equal to the value in the prothrombin time (PT) measurement. The rise from point A to point C was similarly steep.

第6図に従来法によるフィブリノーゲン濃度とプロトロ
ンビン時間(PTI測定における第3図^)の電圧偏差
Hとの相関の一例を、また、第7図に従来法によるフィ
ブリノーゲン濃度と活性化部分トロンボプラスチン時間
(APTT)測定における電圧偏差Hとの相関の一例金
示す、mの追試験からH値はフィブリノーゲン濃度値と
して十分有効性全もつことが確認された。第6図の回帰
直線の式は、 y=0.23・X+18.95 相関係数は r=0.855 であり、また第7図の回帰直線の式は 7=0.19・X+6.88 相関係数は r=0.901 である、 なお、第2図で想偉線で示すように光電変換器dはセル
aからの透過光を受光するようにしても工い、この場合
、第3図に対応するグラフは、一定の高いレベルをつづ
けたのち急激に立ち下がり、その後一定の低いレベルに
至るようなグラフとなる。
Fig. 6 shows an example of the correlation between fibrinogen concentration and voltage deviation H of prothrombin time (Fig. 3 in PTI measurement) by the conventional method, and Fig. 7 shows the correlation between fibrinogen concentration and activated partial thromboplastin time (Fig. 3 in PTI measurement) by the conventional method. As an example of the correlation with the voltage deviation H in the APTT) measurement, a follow-up test of m confirmed that the H value has sufficient validity as a fibrinogen concentration value. The equation of the regression line in Figure 6 is y = 0.23 x + 18.95 and the correlation coefficient is r = 0.855, and the equation of the regression line in Figure 7 is 7 = 0.19 x + 6.88. The correlation coefficient is r = 0.901. In addition, as shown by the line in Figure 2, the photoelectric converter d can also receive the transmitted light from the cell a; in this case, the The graph corresponding to Figure 3 is a graph that continues at a constant high level, then falls sharply, and then reaches a constant low level.

発明の効果 第1の発明の血液凝固測定方法によれば、光と電気信号
を利用し電気信号の変化から、直ちに、プロトロンビン
時間(PT)まtは部分トロンボプラスチン時間(PT
r )または活性化部分トロンボプラスチン時間(AP
TT)とフィブリノーゲン濃度(Fbg )と全測定で
きる、換言すると単1cI操作のみで二種の測定が素早
く行えるという効果がある。また、第2の発明の血液凝
固測定装置によれば、上記第1の発明による測定方法で
その測定値を極めて正確に割り出すことができるという
効果がある。
Effects of the Invention According to the blood coagulation measuring method of the first invention, prothrombin time (PT) or partial thromboplastin time (PT
r ) or activated partial thromboplastin time (AP
TT) and fibrinogen concentration (Fbg).In other words, it has the advantage of being able to quickly perform two types of measurements with just a single cI operation. Further, according to the blood coagulation measuring device of the second invention, there is an effect that the measurement value can be determined extremely accurately using the measurement method according to the first invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2の発明の構成を示すブロック図、第2図は
実施例の構成図、第3図+A+は時間・出力の相関グラ
フ、第3図[Blは第3図+AIのB点付近の拡大図、
第4図は機能フローチャート、第5図は実行プログラム
のフローチャート、第6図はプロトロンビン時間測定時
のHとフィブリノーゲン濃度との相関グラフ、第7図は
活性化部分トロンボプラスチン時間測定時のHとフィブ
リノーゲン濃度との相関グラフである。 a・・・セル、b・・・攪拌手段、C・・・発光器、d
・・・光電変換器、e・・・A/D変換器、fl・・・
記憶手段、f2・・・信号変化停止判定手段、f3.f
4・・・演算手段、g・・・表示手段 第 3 図 第4図 げ−Q−t−0,S′IJ4匹が耐WEにニー貌但欅換
会ヱO・\讐ト1う区十へ市吋佳C工−コ Z 丘
Fig. 1 is a block diagram showing the configuration of the second invention, Fig. 2 is a block diagram of the embodiment, Fig. 3 +A+ is a time/output correlation graph, Fig. 3 [Bl is Fig. 3 + point B of AI] Enlarged view of nearby area,
Figure 4 is a functional flowchart, Figure 5 is a flowchart of the execution program, Figure 6 is a correlation graph between H and fibrinogen concentration during prothrombin time measurement, and Figure 7 is H and fibrinogen concentration during activated partial thromboplastin time measurement. This is a correlation graph. a... Cell, b... Stirring means, C... Light emitter, d
...Photoelectric converter, e...A/D converter, fl...
Storage means, f2...Signal change stop determination means, f3. f
4...Arithmetic means, g...Display means No. 3 Figure 4 Figure 4 - Q-t-0, S'IJ4 animals are resistant to WE, but Keyaki exchange meeting ヱO\enemy To 1 section 10he Ichiinka C-Ko Z Hill

Claims (1)

【特許請求の範囲】 (11血漿と凝固試薬と全混合する過程と、その混合液
に光音照射して散乱光または透過光を捕捉しこれを電気
信号に変換する過程と、その電気信号が所定のレベルに
達したときの時間および電気信号の変化量からプロトロ
ンビン時間まtは部分トロンボプラスチン時間または活
性化部分トロンボプラスチン時間およびフィブリノーゲ
ン濃度をめる過程とを含む血液凝固測定方法。 (21血漿と凝固試薬とを注入するセルと、この七μの
内容液を攪拌する手段と、前記セ/I/VC光を照射す
る発光器と、前記セルからの散乱光または透過光全受光
して電気信号に変換する光電変換器と、前記電気信号を
ディジタル信号に変換するA/D変換器と、このA/D
変換器からのディジタル信号の値を経過時間とともVC
E3憶する手段と、前前記ディジタル信号入方開始時点
がらディジタル信号変化領域の所定レベルに達するまで
の時間全演算する手段と、前記ディジタル信号の全変化
層を演算してフィブリノーゲン濃度に相当する値に換算
する手段と、前記各演算手段によって得られた値を表示
する手段とを備えた血液凝固測定装置。
[Claims] (11) A process of completely mixing plasma and a coagulation reagent, a process of irradiating the mixed liquid with light and sound to capture scattered light or transmitted light, and converting it into an electrical signal, A method for measuring blood coagulation that includes the process of calculating the prothrombin time or partial thromboplastin time or activated partial thromboplastin time and fibrinogen concentration from the time when a predetermined level is reached and the amount of change in the electrical signal. (21 Plasma and Coagulation) A cell for injecting the reagent, a means for stirring the 7 μm content liquid, a light emitter for irradiating the SE/I/VC light, and a device for receiving all of the scattered or transmitted light from the cell and converting it into an electrical signal. a photoelectric converter for converting the electric signal, an A/D converter for converting the electric signal into a digital signal, and the A/D converter for converting the electric signal into a digital signal;
The value of the digital signal from the converter along with the elapsed time is
means for storing E3; means for calculating the entire time period from the start of input of the digital signal until reaching a predetermined level of the digital signal change region; and means for calculating the entire change layer of the digital signal to a value corresponding to the fibrinogen concentration. 1. A blood coagulation measuring device comprising means for converting into a value, and means for displaying the values obtained by each of the arithmetic means.
JP16735183A 1983-09-09 1983-09-09 Blood coagulation measuring method and apparatus therefor Granted JPS6058555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16735183A JPS6058555A (en) 1983-09-09 1983-09-09 Blood coagulation measuring method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16735183A JPS6058555A (en) 1983-09-09 1983-09-09 Blood coagulation measuring method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS6058555A true JPS6058555A (en) 1985-04-04
JPH043505B2 JPH043505B2 (en) 1992-01-23

Family

ID=15848113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16735183A Granted JPS6058555A (en) 1983-09-09 1983-09-09 Blood coagulation measuring method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS6058555A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305255A (en) * 1987-06-05 1988-12-13 Kyoto Daiichi Kagaku:Kk Method for measuring blood coagulation
EP0699909A2 (en) 1994-09-02 1996-03-06 Nippon Shoji Kaisha, Ltd. Method for determining fibrinogen and reagent for determination thereof
JP2009126340A (en) * 2007-11-22 2009-06-11 Aisin Seiki Co Ltd Step device for vehicle
WO2009122993A1 (en) 2008-03-31 2009-10-08 シスメックス株式会社 Blood coagulation analyzer, method of analyzing blood coagulation and computer program
JP2009244027A (en) * 2008-03-31 2009-10-22 Sysmex Corp Blood coagulation analyzer, analyzing method, and computer program
JP2009244029A (en) * 2008-03-31 2009-10-22 Sysmex Corp Blood coagulation analyzer, blood coagulation analyzing method, and computer program
US7934737B2 (en) 2006-11-07 2011-05-03 Aisin Seiki Kabushiki Kaisha Step device for vehicle
JP2020051824A (en) * 2018-09-26 2020-04-02 キヤノンメディカルシステムズ株式会社 Blood coagulation analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467496A (en) * 1977-11-09 1979-05-30 Itoman Kk Device for measuring solidification of blood plasma
JPS5469497A (en) * 1977-11-12 1979-06-04 Kyoto Daiichi Kagaku Kk Method and device for measuring blood solidification time
JPS56129843A (en) * 1980-02-16 1981-10-12 Compur Electronic Gmbh Photometric method of and apparatus for measuring progress of reaction
JPS56140240A (en) * 1980-04-04 1981-11-02 Hitachi Ltd Photometer for blood coagulation measurement
JPS5730954A (en) * 1980-08-01 1982-02-19 Hitachi Ltd Measuring device for blood coagulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467496A (en) * 1977-11-09 1979-05-30 Itoman Kk Device for measuring solidification of blood plasma
JPS5469497A (en) * 1977-11-12 1979-06-04 Kyoto Daiichi Kagaku Kk Method and device for measuring blood solidification time
JPS56129843A (en) * 1980-02-16 1981-10-12 Compur Electronic Gmbh Photometric method of and apparatus for measuring progress of reaction
JPS56140240A (en) * 1980-04-04 1981-11-02 Hitachi Ltd Photometer for blood coagulation measurement
JPS5730954A (en) * 1980-08-01 1982-02-19 Hitachi Ltd Measuring device for blood coagulation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305255A (en) * 1987-06-05 1988-12-13 Kyoto Daiichi Kagaku:Kk Method for measuring blood coagulation
EP0699909A2 (en) 1994-09-02 1996-03-06 Nippon Shoji Kaisha, Ltd. Method for determining fibrinogen and reagent for determination thereof
US5851836A (en) * 1994-09-02 1998-12-22 Nippon Shoji Kaisha Ltd. Method for determining fibrinogen and reagent for determination thereof
US7934737B2 (en) 2006-11-07 2011-05-03 Aisin Seiki Kabushiki Kaisha Step device for vehicle
JP2009126340A (en) * 2007-11-22 2009-06-11 Aisin Seiki Co Ltd Step device for vehicle
WO2009122993A1 (en) 2008-03-31 2009-10-08 シスメックス株式会社 Blood coagulation analyzer, method of analyzing blood coagulation and computer program
JP2009244027A (en) * 2008-03-31 2009-10-22 Sysmex Corp Blood coagulation analyzer, analyzing method, and computer program
JP2009244029A (en) * 2008-03-31 2009-10-22 Sysmex Corp Blood coagulation analyzer, blood coagulation analyzing method, and computer program
CN101983338A (en) * 2008-03-31 2011-03-02 希森美康株式会社 Blood coagulation analyzer, method of analyzing blood coagulation and computer program
US8936753B2 (en) 2008-03-31 2015-01-20 Sysmex Corporation Blood coagulation analyzer, blood coagulation analysis method, and computer program product
EP3432002A1 (en) 2008-03-31 2019-01-23 Sysmex Corporation Blood coagulation analyzer, blood coagulation analysis method, and computer program
JP2020051824A (en) * 2018-09-26 2020-04-02 キヤノンメディカルシステムズ株式会社 Blood coagulation analyzer

Also Published As

Publication number Publication date
JPH043505B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US4252536A (en) Method and system for measuring blood coagulation time
US3458287A (en) Method and means of determining endpoint times in blood clotting tests
US3672843A (en) Fluid analyzing apparatus
JPH0528786B2 (en)
JPS5910605Y2 (en) Circular sample tray for optical coagulation detector
JPH0776771B2 (en) Automatic chemical analyzer
US5156974A (en) Method for determining the fibrinogen level of a blood sample
CN104854459B (en) Automatic analysing apparatus
JPS6058555A (en) Blood coagulation measuring method and apparatus therefor
JP5029638B2 (en) Blood coagulation analyzer
US7817255B2 (en) Apparatus with a combination of a point light source and a single lens
JP4320324B2 (en) System and method for measuring clotting time without thermostat control
KR20080069572A (en) Bio-sensor measuring device, bio-sensor measuring system, and bio-sensor measuring method
KR101205098B1 (en) Apparatus and method for performing neutralization titration using led color sensor
JP2008076342A (en) Automatic analyzer
US3158445A (en) Apparatus for determining prothrombin time
JPH10123140A (en) Blood coagulation measuring device
JPS59203959A (en) Measuring device for blood clotting time
JP2610434B2 (en) Blood coagulation ability measurement method
EP0010526B1 (en) Method and apparatus for investigating haemocoagulation or aggregation of platelets
JPS58172537A (en) Apparatus for measuring light scattering
RU2434222C2 (en) Apparatus for investigating kinematic viscosity of melts
JPS6168539A (en) Biochemical measuring apparatus
JP7109965B2 (en) automatic analyzer
JP3335847B2 (en) Liquid sample measuring device