JPH0311423B2 - - Google Patents

Info

Publication number
JPH0311423B2
JPH0311423B2 JP57055862A JP5586282A JPH0311423B2 JP H0311423 B2 JPH0311423 B2 JP H0311423B2 JP 57055862 A JP57055862 A JP 57055862A JP 5586282 A JP5586282 A JP 5586282A JP H0311423 B2 JPH0311423 B2 JP H0311423B2
Authority
JP
Japan
Prior art keywords
light scattering
measurement
photodetector
reaction
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57055862A
Other languages
Japanese (ja)
Other versions
JPS58172537A (en
Inventor
Yoshinobu Myashita
Haruki Ooishi
Taido Ueno
Hiroki Shiraishi
Kazuyuki Tsubaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP5586282A priority Critical patent/JPS58172537A/en
Priority to US06/481,961 priority patent/US4766083A/en
Priority to DE8383103297T priority patent/DE3381979D1/en
Priority to EP83103297A priority patent/EP0091636B1/en
Priority to AT83103297T priority patent/ATE58245T1/en
Publication of JPS58172537A publication Critical patent/JPS58172537A/en
Publication of JPH0311423B2 publication Critical patent/JPH0311423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、血液凝固反応、抗原抗体反応及び免
疫凝集反応を利用した測定を全て実施し得る光散
乱測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a light scattering measuring device that can perform all measurements using blood coagulation reactions, antigen-antibody reactions, and immunoagglutination reactions.

[発明の背景] 血液凝固検査は、出血傾向が認められる患者の
治療、或は抗凝固治療を行う患者の追跡管理に極
めて重要な検査であり、また、手術に先立つ検査
として必須のものである。
[Background of the Invention] Blood coagulation tests are extremely important tests for the treatment of patients with bleeding tendencies or for the follow-up management of patients undergoing anticoagulant therapy, and are also essential as tests prior to surgery. .

かかる凝固検査として、プロトロンビン時間
(以下、PTと略記する。)及び活性化部分トロン
ボプラスチン時間(以下、APTTと略記する。)
を測定する検査がよく知られており、各々、外因
系凝固機序及び内因系凝固機序の総合的な検査と
して実施されている。
Such coagulation tests include prothrombin time (hereinafter abbreviated as PT) and activated partial thromboplastin time (hereinafter abbreviated as APTT).
There are well-known tests that measure the coagulation mechanism, and each is performed as a comprehensive test of the extrinsic and intrinsic coagulation mechanisms.

また、現在では、PTやAPTTを測定すること
ができる各種の測定装置も多数市販されている。
Furthermore, many types of measurement devices capable of measuring PT and APTT are now commercially available.

血液凝固反応は、凝固第〜第因子による
複雑な連鎖反応とされており、PT或はAPTTに
異常が認められた場合、どの因子がこの程度不足
しているかを測定する因子定量検査を行う必要が
ある。
The blood coagulation reaction is considered to be a complex chain reaction involving coagulation factors, and if an abnormality is found in PT or APTT, it is necessary to perform a quantitative factor test to determine which factor is lacking to this extent. There is.

従来、因子定量検査のためには、補正試薬を用
いて、PT或はAPTTの測定を行い、どの因子が
不足しているかを定性的に調べた後、適当な因子
欠乏血漿を用いてPT或はAPTT検査による検量
関係を測定しなければ、どの因子がどの程度不足
しているかは特定できず、非常に繁雑な手続きと
多大の労力が必要であつた。また、この測定法は
間接的なものであるため、得られた結果はそれほ
ど精度の高いものとは言えなかつた。
Conventionally, for factor quantitative testing, PT or APTT is measured using a correction reagent, qualitatively examining which factor is deficient, and then PT or APTT is measured using appropriate factor-deficient plasma. Without measuring the calibration relationship using the APTT test, it was not possible to determine which factors were deficient and to what extent, which required extremely complicated procedures and a great deal of effort. Furthermore, since this measurement method is indirect, the obtained results could not be said to be very accurate.

近年、血液凝固検査は、PT或はAPTTの様な
凝固反応の総合的な検査ではなく、抗原抗体反応
を利用した免疫活性値の測定或は合成基質による
酵素反応を利用した生物活性値の測定によつて、
直接各凝固因子を定量する方法が提案されてい
る。
In recent years, blood coagulation tests are not comprehensive tests of coagulation reactions such as PT or APTT, but rather measurement of immune activity values using antigen-antibody reactions or biological activity values using enzyme reactions with synthetic substrates. According to
A method for directly quantifying each coagulation factor has been proposed.

該方法によれば、簡便で特異性が高く、且つ精
度の良い測定が可能となるが、従来のPT或は
APTT用の測定装置では該方法による測定実施
が不可能であるため、新たに高価な測定装置を準
備する必要があり、非常に不経済であつた。
According to this method, it is possible to perform simple, highly specific, and accurate measurements;
Since it is not possible to carry out measurements using this method using a measuring device for APTT, it is necessary to prepare a new expensive measuring device, which is extremely uneconomical.

また、逆に、該方法による測定を行うための装
置は、PT或はAPTT等の所謂スクリーニング的
な血液凝固検査を実施することが不可能であると
いう欠点があつた。
In addition, on the contrary, the apparatus for performing measurements by this method has the disadvantage that it is impossible to perform so-called screening blood coagulation tests such as PT or APTT.

[発明の目的] 本発明は、上記した如き状況に鑑みなされたも
ので、PT或はAPTTの如き血液凝固検査と抗原
抗体反応を利用した免疫学的測定を、共に実施し
得る光散乱測定装置を提供することを目的とす
る。
[Object of the Invention] The present invention was made in view of the above-mentioned circumstances, and provides a light scattering measuring device that can perform both blood coagulation tests such as PT or APTT and immunological measurements using antigen-antibody reactions. The purpose is to provide

[発明の構成] 本発明は、1つのレーザー光源と、該光源
から照射された光が、被検液に入射した結果生じ
る前方及び後方散乱光を各々独自に測定し得る1
以上の光検出器と、該光検出器から得られる電
気信号を微分処理し得る手段と、該微分処理で
得られる信号の最大値と、反応の開始から該最大
値が出現するまでの時間とを検出する手段と、を
有することを特徴とする光散乱測定装置の発明で
ある。
[Structure of the Invention] The present invention provides a single laser light source and a system capable of independently measuring forward and backward scattered light generated as a result of the light irradiated from the light source entering a test liquid.
The above-mentioned photodetector, a means for differentially processing the electrical signal obtained from the photodetector, the maximum value of the signal obtained by the differential processing, and the time from the start of the reaction until the maximum value appears. This is an invention of a light scattering measuring device characterized by having a means for detecting.

即ち、本発明は、(1)レーザー光が被検体に入射
した結果生じる前方及び後方散乱光を各々独自に
測定し得る1以上の光検出器を設置し、(2)これに
更に該光検出器から得られる電気信号を微分処理
し得る手段と、該微分処理で得られる信号の最大
値と、反応の開始から該最大値が出現するまでの
時間とを検出する手段とを組み合わせることによ
り、従来の測定装置では不可能であつた、PT或
はAPTTの如き血液凝固検査と、抗原抗体反応
を利用した検体中の抗原や抗体の測定を、共に実
施し得る光散乱測定装置を提供することを可能に
した点に特徴を有する。
That is, the present invention provides (1) installing one or more photodetectors capable of independently measuring forward and backward scattered light generated as a result of laser light incident on a subject, and (2) further installing the photodetector. By combining a means capable of differentially processing the electrical signal obtained from the device, a means for detecting the maximum value of the signal obtained by the differential processing, and the time from the start of the reaction until the maximum value appears, To provide a light scattering measurement device that can perform both blood coagulation tests such as PT or APTT and measurement of antigens and antibodies in a specimen using antigen-antibody reactions, which were impossible with conventional measurement devices. It is characterized by the fact that it makes it possible.

[実施例] 以下、本発明の好ましい実施態様を図面を用い
て説明する。
[Example] Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る光散乱測定装置の概略図
の一例であり、レーザー光源1、被検液4を保持
するための反応キユベツト2、後方散乱光を測定
するための光検出器3、前方散乱光を測定するた
めの光検出器5、信号切替器6、信号前処理器7
A/D変換器8、コンピユーター9、コンピユー
ターで処理したデータの表示印字部10、試薬分
注機構並びに自動検体準備機構11、反応過程を
連続的に観測する記録計12等が装備されてい
る。
FIG. 1 is an example of a schematic diagram of a light scattering measuring device according to the present invention, in which a laser light source 1, a reaction cuvette 2 for holding a test liquid 4, a photodetector 3 for measuring backscattered light, Photodetector 5, signal switch 6, signal preprocessor 7 for measuring forward scattered light
It is equipped with an A/D converter 8, a computer 9, a display/print unit 10 for displaying data processed by the computer, a reagent dispensing mechanism and an automatic sample preparation mechanism 11, a recorder 12 for continuously observing the reaction process, and the like.

本発明の光散乱測定装置に於いて用いられるレ
ーザー光源としては、例えば発振波長700〜800n
mの可視近赤外半導体レーザーが挙げられ、反応
キユベツトとしては、例えば内径5mmの試験管キ
ユベツトが挙げられ、光検出器としては通常のシ
リコンフオトセルが挙げられる。
For example, the laser light source used in the light scattering measuring device of the present invention has an oscillation wavelength of 700 to 800 nm.
Examples of the reaction cuvette include a test tube cuvette with an inner diameter of 5 mm, and examples of the photodetector include a common silicon photocell.

次に、本発明の測定装置を用いて、血液凝固検
査或は抗原抗体反応を利用した抗原或は抗体の測
定を行う場合の、作用の概要を以下に示す。
Next, an outline of the operation when performing a blood coagulation test or an antigen or antibody measurement using an antigen-antibody reaction using the measuring device of the present invention will be described below.

試薬分注機構並びに自動検体準備機構11によ
り分注された、検体と測定用試薬とを混合した被
検液を保持した反応キユベツト2に、レーザー光
源1よりレーザー光を照射する。この結果生じる
後方散乱光或は前方散乱光の強度Sを光検出器3
又は5で検出し、これを電気信号に変換する(以
下、光散乱強度信号と呼ぶ。)。光検出器3又は5
により得られた光散乱強度信号の何れを用いるか
は、測定の種類により適宜選択すればよく、何れ
の信号を信号前処理器7に送るかは、信号切替器
6により行う。また、信号前処理器7に送られた
光散乱強度信号は、電気増幅又は/及び微分処理
される。この結果得られたデータをA/D変換器
8に入力してデジタル量に変換し、これをコンピ
ユーター9に入力し、これを適宜演算処理して、
血液凝固検査を行う場合には凝固時点を判定し、
抗原抗体反応による測定の場合には抗原或は抗体
の濃度を算出する。
A laser light source 1 irradiates a reaction cuvette 2 holding a test liquid, which is a mixture of a sample and a measurement reagent, dispensed by a reagent dispensing mechanism and an automatic sample preparation mechanism 11. The intensity S of the resulting backscattered light or forward scattered light is detected by a photodetector 3.
or 5, and converts this into an electrical signal (hereinafter referred to as a light scattering intensity signal). Photodetector 3 or 5
Which of the light scattering intensity signals obtained by the above is used may be appropriately selected depending on the type of measurement, and which signal is to be sent to the signal preprocessor 7 is determined by the signal switch 6. Further, the light scattering intensity signal sent to the signal preprocessor 7 is electrically amplified and/or differentially processed. The data obtained as a result is input to the A/D converter 8 to be converted into a digital quantity, and this is input to the computer 9, which is subjected to appropriate arithmetic processing.
When performing a blood coagulation test, determine the point of coagulation;
In the case of measurement by antigen-antibody reaction, the concentration of antigen or antibody is calculated.

尚、コンピユーター9で処理したデータは、表
示印字部10に表示される。また、コンピユータ
ー9は、試薬分注機構並びに自動検体準備機構1
1の制御、試薬分注機構並びに自動検体準備機構
11により検体と試薬とを混合した時点を反応開
始時点として認識すること等を含めた本発明に係
る装置全体の制御を行つていることは言うまでも
ない。
Note that the data processed by the computer 9 is displayed on the display/print section 10. The computer 9 also includes a reagent dispensing mechanism and an automatic sample preparation mechanism 1.
It goes without saying that the entire apparatus according to the present invention is controlled, including the control of 1, the reagent dispensing mechanism, and the automatic sample preparation mechanism 11, which recognizes the time when the sample and reagent are mixed as the reaction start time. stomach.

また、光検出器3又は5の何れかにより得られ
た光散乱強度信号は、反応過程を連続的に観測す
る記録計12にも出力することができる。この記
録計12に出力されたデータを示すと、例えば第
2図及び第3図の如くになる。
Further, the light scattering intensity signal obtained by either the photodetector 3 or 5 can also be output to the recorder 12 that continuously observes the reaction process. The data outputted to this recorder 12 is shown in FIGS. 2 and 3, for example.

第2図は、反応キユベツト2の中心を通るレー
ザー光軸と光検出器3のなす角度θが50゜の場合
の血液凝固反応による光散乱強度Sの経時変化を
測定した結果を示したものであり、第3図はレー
ザー光軸と光検出器5のなす角度θが155゜の場合
の抗原抗体反応による光散乱強度Sの経時変化を
測定した結果を示したものである。尚、θの意味
する角度については第4図に図示した。
Figure 2 shows the results of measuring the change over time in the light scattering intensity S due to the blood coagulation reaction when the angle θ between the laser optical axis passing through the center of the reaction cube 2 and the photodetector 3 is 50°. FIG. 3 shows the results of measuring changes over time in light scattering intensity S due to antigen-antibody reaction when the angle θ between the laser optical axis and the photodetector 5 is 155°. Incidentally, the angle meant by θ is illustrated in FIG.

第2図に於いて、aの部分は検体と試薬との混
合により凝固反応は進行しているが、未だフイブ
リンの析出は認められない状態、bの部分はフイ
ブリンの析出が盛んに進行している状態、cの部
分はフイブリノーゲン(以下、FIBと略記する。)
のフイブリンへの転換析出が終了した状態と解さ
れており、aからbへ移行する時点Tcがフイブ
リン析出の開始時点であることが経験的に知られ
ている。従つて、Tcを求めることにより凝固活
性を測定することが可能となる。尚、血液凝固点
Tcの検出は、散乱光を利用した他の公知の方法
を用いても実施が可能である。
In Figure 2, in part a, the coagulation reaction is progressing due to mixing of the sample and reagent, but no fibrin precipitation is observed yet, and in part b, fibrin precipitation is actively progressing. In this state, part c is fibrinogen (hereinafter abbreviated as FIB).
It is understood that this is the state in which the conversion and precipitation of fibrin has been completed, and it is empirically known that the time point Tc when transitioning from a to b is the start point of fibrin precipitation. Therefore, it is possible to measure coagulation activity by determining Tc. Furthermore, blood clotting point
Detection of Tc can also be performed using other known methods that utilize scattered light.

また、第3図に於いて、反応開始から時間TA
までは検体と試薬との混合により抗原抗体反応が
進行して抗原抗体複合物が生成している状態、時
間TA以降はS値が一定となる状態、言い換えれ
ば抗原抗体複合物の生成が終了した状態であるこ
とは良く知られている。従つて、このS値を測定
し、この値から検体と試薬とを混合した直後のS
値を引いた値(ΔS)を用いれば、検体中の目的
とする抗原或は抗体濃度を測定することが可能と
なる。
Also, in Figure 3, the time T A from the start of the reaction
Until then, the antigen-antibody reaction progresses due to the mixing of the sample and reagent, and an antigen-antibody complex is generated.After time T A , the S value remains constant; in other words, the generation of the antigen-antibody complex is completed. It is well known that the situation is Therefore, measure this S value and use this value to calculate the S value immediately after mixing the sample and reagent.
By using the subtracted value (ΔS), it is possible to measure the concentration of the target antigen or antibody in the sample.

尚、抗原抗体反応を利用して検体中の抗原或は
抗体の濃度を測定する方法としては、第5図に示
すような、光検出器3を用いて検出した光散乱強
度Sの変化の速度(dS/dT)の経時変化を利用
して行つてもよい。更に具体的には、例えば
dS/dTの最大値Pを用いて検体中の抗原或は抗
体濃度の測定を行つてもよい。
In addition, as a method of measuring the concentration of an antigen or antibody in a specimen using an antigen-antibody reaction, as shown in FIG. This may be performed using the change in (dS/dT) over time. More specifically, for example
The antigen or antibody concentration in the sample may be measured using the maximum value P of dS/dT.

また、本発明の光散乱測定装置を用いて、所謂
凝集反応を利用した測定も同様に行える。即ち、
抗原或は抗体を固定化したラテツクス粒子を検体
と反応させその凝集の程度を、光検出器3を用い
て後方光散乱強度により測定し、第5図に示すよ
うな光散乱強度Sの変化の速度(dS/dT)の経
時変化を利用して、検体中に含まれる目的の抗原
或は抗体を測定することも可能である。
Further, using the light scattering measuring device of the present invention, measurements using so-called agglutination reactions can be similarly performed. That is,
Latex particles immobilized with antigens or antibodies are reacted with the specimen, and the degree of aggregation is measured by backscattering intensity using a photodetector 3, and changes in light scattering intensity S as shown in Fig. 5 are measured. It is also possible to measure the target antigen or antibody contained in the sample by using the change in velocity (dS/dT) over time.

以下に、本発明の光散乱測定装置を用いて種々
の測定を行つた例を示す。
Examples of various measurements performed using the light scattering measuring device of the present invention are shown below.

[測定例] 測定例 1 PTの測定 (検体) クエン酸加正常ヒト血漿を生理食塩水で適宜希
釈したものを検体とした。
[Measurement Example] Measurement Example 1 Measurement of PT (Sample) Citrated normal human plasma was appropriately diluted with physiological saline and used as a specimen.

(測定試薬) ウサギ脳由来のトロンボプラスチン試液を用い
た。
(Measurement reagent) A thromboplastin reagent solution derived from rabbit brain was used.

(操作法) 第1図に示す構成から成る光散乱測定装置を用
いて以下の操作を行つた。尚、光検出器はθ=
50゜の位置に固定した光検出器3を用いた。
(Operating Method) The following operations were performed using a light scattering measuring device having the configuration shown in FIG. In addition, the photodetector is θ=
A photodetector 3 fixed at a 50° position was used.

検体100μ、測定試薬100μ及び0.02M塩化カ
ルシウム水溶液100μを、内径5mmの試験管型
反応キユベツトに取り、良く混合した後、上記の
光散乱測定装置を用いて、光散乱強度Sが増加し
始める時間Tcを求めた。
After placing 100μ of the sample, 100μ of the measurement reagent, and 100μ of the 0.02M calcium chloride aqueous solution in a test tube type reaction cuvette with an inner diameter of 5mm and mixing them well, use the above light scattering measuring device to measure the time at which the light scattering intensity S starts to increase. I asked for Tc.

(結果) 得られた結果を第6図に示す。尚、第6図は、
横軸のクエン酸加正常ヒト血漿の各希釈率に対し
て得られたTc値(秒)を縦軸に沿つてプロツト
した点を結んだものである。
(Results) The results obtained are shown in Figure 6. Furthermore, Figure 6 shows
The Tc value (seconds) obtained for each dilution rate of citrated normal human plasma on the horizontal axis is plotted along the vertical axis, and the points are connected.

この結果から明らかな如く、良好な検量関係が
得られることが判る。
As is clear from this result, it can be seen that a good calibration relationship can be obtained.

測定例 2 血液凝固第因子(FIB)の測定 (検体) 所定濃度のFIBを含む標準血漿を生理食塩水で
61倍に希釈したものを検体とした。
Measurement example 2 Measurement of blood coagulation factor (FIB) (sample) Standard plasma containing a specified concentration of FIB is dissolved in physiological saline.
The sample was diluted 61 times.

(測定試薬) ウサギ由来の抗FIB血清の12.5倍希釈液を用い
た。
(Measurement reagent) A 12.5-fold dilution of rabbit-derived anti-FIB serum was used.

(操作法) 第1図に示す構成から成る光散乱測定装置を用
いて以下の操作を行つた。尚、光検出器はθ=
15゜の位置に固定した光検出器5を用いた。
(Operating Method) The following operations were performed using a light scattering measuring device having the configuration shown in FIG. In addition, the photodetector is θ=
A photodetector 5 fixed at a position of 15° was used.

検体60μ及び測定試薬300μを、内径5mmの
試験管型反応キユベツトに取り、良く混合し、混
合直後の光散乱強度S1と室温で15分間放置した
後の光散乱強度S2とを、上記の光散乱測定装置
を用いて求めた。
60 μ of the sample and 300 μ of the measurement reagent are placed in a test tube type reaction cuvette with an inner diameter of 5 mm, mixed well, and the light scattering intensity S1 immediately after mixing and the light scattering intensity S2 after being left at room temperature for 15 minutes are determined by the light scattering intensity described above. It was determined using a measuring device.

(結果) 得られた結果を第7図に示す。尚、第7図は、
横軸の各FIB濃度(mg/dl)に対して得られた光
散乱強度の変化量(S2−S1)を縦軸に沿つてプ
ロツトした点を結んだものである。
(Results) The results obtained are shown in FIG. Furthermore, Figure 7 shows
It is a graph that connects the points obtained by plotting the amount of change in light scattering intensity (S2-S1) obtained for each FIB concentration (mg/dl) on the horizontal axis along the vertical axis.

この結果から明らかな如く、良好な検量関係が
得られることが判る。
As is clear from this result, it can be seen that a good calibration relationship can be obtained.

測定例 3 血液凝固第因子(FIB)の測定(その2) (検体) 測定例2と同じものを用いた。Measurement example 3 Measurement of blood coagulation factor (FIB) (Part 2) (sample) The same one as in Measurement Example 2 was used.

(測定試薬) 測定例2と同じものを用いた。(Measurement reagent) The same one as in Measurement Example 2 was used.

(操作法) 第1図に示す構成から成る光散乱測定装置を用
いて以下の操作を行つた。尚、光検出器はθ=
50゜の位置のものを用いて測定を行つた。
(Operating Method) The following operations were performed using a light scattering measuring device having the configuration shown in FIG. In addition, the photodetector is θ=
Measurements were made using the 50° position.

検体60μ及び測定試薬300μを、内径5mmの
試験管型反応キユベツトに取り、良く混合後、上
記の光散乱測定装置を用いて光散乱強度Sを求め
た後、これを微分してdS/dT値の最大値Pを求
めた。
Place 60 μ of the sample and 300 μ of the measurement reagent in a test tube type reaction cuvette with an inner diameter of 5 mm, mix well, use the light scattering measurement device described above to determine the light scattering intensity S, and then differentiate this to obtain the dS/dT value. The maximum value P was determined.

(結果) 得られた結果を第8図に示す。尚、第8図は、
横軸の各FIB濃度(mg/dl)に対して得られたP
値を縦軸に沿つてプロツトした点を結んだもので
ある。
(Results) The results obtained are shown in FIG. In addition, Figure 8 shows
P obtained for each FIB concentration (mg/dl) on the horizontal axis
It connects the points whose values are plotted along the vertical axis.

この結果から明らかな如く、良好な検量関係が
得られることが判る。
As is clear from this result, it can be seen that a good calibration relationship can be obtained.

[発明の効果] 以上述べた如く、本発明は、従来の装置1台で
は実施し得なかつた2つの測定、即ち血液凝固反
応を利用した測定と抗原抗体反応を利用した測定
とを、高精度に且つ併せて実施し得る光散乱測定
装置を提供するものであり、しかもこの光散乱測
定装置は免疫凝集反応を利用した測定にも適用し
得る能力を有しており、臨床検査室に於ける検査
の効率化、費用の合理化等にに大なる貢献を成す
発明である。
[Effects of the Invention] As described above, the present invention allows two measurements that could not be performed with a single conventional device, namely, a measurement using a blood coagulation reaction and a measurement using an antigen-antibody reaction, to be performed with high precision. Moreover, this light scattering measuring device has the ability to be applied to measurements using immunoagglutination reactions, making it suitable for use in clinical laboratories. This invention greatly contributes to improving the efficiency of testing and rationalizing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の光散乱測定装置の概略図を
示すものである。 1……レーザー光源、2……被検液4を保持す
るための反応キユベツト、3……後方散乱光を測
定するための光検出器、4……被検液、5……前
方散乱光を測定するための光検出器、6……信号
切替器、7……信号前処理器、8……A/D変換
器、9……コンピユーター、10……コンピユー
ター9で処理したデータの表示印字部、11……
試薬分注機構並びに自動検体準備機構、12……
反応過程を連続的に観測する記録計。 第2図は、血液凝固反応に於ける被検液の光散
乱強度Sの時間の経過による変化を示すものであ
り、横軸の各時間に対して得られたS値を縦軸に
沿つてプロツトした点を結んだものである。第3
図は、抗原抗体反応に於ける被検液の光散乱強度
Sの時間の経過による変化を示すものであり、横
軸の各時間に対して得られたS値を縦軸に沿つて
プロツトした点を結んだものである。第4図は、
本発明の光散乱測定装置の光学系の原理図であ
る。尚、図中の各部に付された番号は第1図のそ
れと同じである。第5図は、抗原抗体反応に於け
る被検液の光散乱強度Sの変化率dS/dTの時間
による経過を示すものであり、横軸の各時間に対
して得られたdS/dT値を縦軸に沿つてプロツト
した点を結んだものである。第6図は、測定例1
に於いて得られた、クエン酸加正常ヒト血漿の希
釈率とプロトロンビン時間(Tc)との関係を表
わす検量線である。第7図は、測定例2に於いて
得られた、フイブリノーゲン濃度(mg/dl)と、
光散乱強度の変化量(S2−S1)との関係を表わ
す検量線である。尚、S1は検体及び試液とを混
合した直後の光散乱強度を、また、S2はそれを
室温で15分間放置した後の光散乱強度を夫々示
す。 第8図は、測定例3に於いて得られた、フイブ
リノーゲン濃度(mg/dl)と、光散乱強度Sを微
分して得られるdS/dT値の最大値Pとの関係を
表わす検量線である。
FIG. 1 shows a schematic diagram of a light scattering measuring device of the present invention. 1...Laser light source, 2...Reaction cuvette for holding test liquid 4, 3...Photodetector for measuring backscattered light, 4...Test liquid, 5...Forward scattering light Photodetector for measurement, 6...Signal switcher, 7...Signal preprocessor, 8...A/D converter, 9...Computer, 10...Display printing section for data processed by computer 9 , 11...
Reagent dispensing mechanism and automatic sample preparation mechanism, 12...
A recorder that continuously observes the reaction process. Figure 2 shows the change over time in the light scattering intensity S of the test liquid during the blood coagulation reaction, and the S value obtained for each time on the horizontal axis is plotted along the vertical axis. The plotted points are connected. Third
The figure shows the change over time in the light scattering intensity S of the test liquid during the antigen-antibody reaction, and the S value obtained for each time on the horizontal axis is plotted along the vertical axis. It connects the dots. Figure 4 shows
FIG. 2 is a principle diagram of the optical system of the light scattering measuring device of the present invention. Note that the numbers assigned to each part in the figure are the same as those in FIG. 1. Figure 5 shows the time course of the rate of change dS/dT of the light scattering intensity S of the test liquid in the antigen-antibody reaction, and the horizontal axis shows the dS/dT values obtained for each time. It connects the points plotted along the vertical axis. Figure 6 shows measurement example 1.
This is a calibration curve showing the relationship between the dilution rate of citrated normal human plasma and prothrombin time (Tc) obtained in . Figure 7 shows the fibrinogen concentration (mg/dl) obtained in Measurement Example 2;
This is a calibration curve showing the relationship with the amount of change in light scattering intensity (S2−S1). Note that S1 indicates the light scattering intensity immediately after mixing the specimen and the reagent, and S2 indicates the light scattering intensity after leaving it at room temperature for 15 minutes. Figure 8 is a calibration curve showing the relationship between the fibrinogen concentration (mg/dl) and the maximum value P of the dS/dT value obtained by differentiating the light scattering intensity S, obtained in Measurement Example 3. be.

Claims (1)

【特許請求の範囲】 1 1つのレーザー光源と、 該光源から照射された光が、被検液に入射し
た結果生じる前方及び後方散乱光を各々独自に
測定し得る1以上の光検出器と、 該光検出器から得られる電気信号を微分処理
し得る手段と、 該微分処理で得られる信号の最大値と、反応
の開始から該最大値が出現するまでの時間とを
検出する手段と、 を有することを特徴とする光散乱測定装置。
[Scope of Claims] 1. One laser light source; One or more photodetectors each capable of independently measuring forward and backward scattered light generated as a result of the light irradiated from the light source entering a test liquid; means for differentially processing the electrical signal obtained from the photodetector; means for detecting the maximum value of the signal obtained by the differential processing; and the time from the start of the reaction until the maximum value appears. A light scattering measuring device comprising:
JP5586282A 1982-04-04 1982-04-04 Apparatus for measuring light scattering Granted JPS58172537A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5586282A JPS58172537A (en) 1982-04-04 1982-04-04 Apparatus for measuring light scattering
US06/481,961 US4766083A (en) 1982-04-04 1983-04-04 Method for the photometric determination of biological agglutination
DE8383103297T DE3381979D1 (en) 1982-04-04 1983-04-05 METHOD FOR PHOTOMETRICALLY DETERMINING BIOLOGICAL AGGLUTINATES.
EP83103297A EP0091636B1 (en) 1982-04-04 1983-04-05 Method for the photometric determination of biological agglutination
AT83103297T ATE58245T1 (en) 1982-04-04 1983-04-05 PROCEDURE FOR THE PHOTOMETRIC DETERMINATION OF BIOLOGICAL AGGLUTINATES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5586282A JPS58172537A (en) 1982-04-04 1982-04-04 Apparatus for measuring light scattering

Publications (2)

Publication Number Publication Date
JPS58172537A JPS58172537A (en) 1983-10-11
JPH0311423B2 true JPH0311423B2 (en) 1991-02-15

Family

ID=13010866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5586282A Granted JPS58172537A (en) 1982-04-04 1982-04-04 Apparatus for measuring light scattering

Country Status (1)

Country Link
JP (1) JPS58172537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980180B2 (en) 2010-06-04 2015-03-17 Toru Obata Gel particle measurement device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8713649D0 (en) * 1987-06-11 1987-07-15 Pa Consulting Services Biological assay
US6251615B1 (en) 1998-02-20 2001-06-26 Cell Analytics, Inc. Cell analysis methods
CN102640004B (en) 2009-12-04 2015-04-15 株式会社日立高新技术 Blood coagulation analyzer
JP5822534B2 (en) * 2011-05-13 2015-11-24 株式会社日立ハイテクノロジーズ Automatic analyzer
EP2987515A1 (en) * 2014-08-19 2016-02-24 Reapplix APS Centrifuge and method of centrifuging a blood sample
CN110006795B (en) * 2019-04-30 2024-02-13 华北电力大学(保定) Particle detection device and method and FPGA

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193286A (en) * 1975-02-13 1976-08-16
JPS54140240A (en) * 1978-04-24 1979-10-31 Mitsubishi Electric Corp Sheath heater sealing method
JPS576361A (en) * 1980-06-12 1982-01-13 Joko:Kk Method for deciding peak in dynamic measurement of immune nephelometric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193286A (en) * 1975-02-13 1976-08-16
JPS54140240A (en) * 1978-04-24 1979-10-31 Mitsubishi Electric Corp Sheath heater sealing method
JPS576361A (en) * 1980-06-12 1982-01-13 Joko:Kk Method for deciding peak in dynamic measurement of immune nephelometric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980180B2 (en) 2010-06-04 2015-03-17 Toru Obata Gel particle measurement device

Also Published As

Publication number Publication date
JPS58172537A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
US4766083A (en) Method for the photometric determination of biological agglutination
EP3396384B1 (en) Method for analyzing blood specimen, and analyzer
EP0434377B1 (en) Method of determining levels of extrinsic and intrinsic clotting factors and protein C
US4252536A (en) Method and system for measuring blood coagulation time
CN109884289B (en) Low sample volume coagulation assay
US9442125B2 (en) Method and a device for characterizing the coagulation or sedimentation dynamics of a fluid such as blood or blood plasma
JP6300793B2 (en) Simultaneous measurement of thrombin production and clot strength in plasma and whole blood
US20080274565A1 (en) Method for the quantitative measurement of analytes in a liquid sample by immunochromatography
US20180031539A1 (en) Method for determining severity of hemophilia, blood specimen analyzer and computer readable medium
Kapiotis et al. Evaluation of the new method COAGUCHEK® for the determination of prothrombin time from capillary blood: comparison with THROMBOTEST® on KC-1
JP6444567B1 (en) How to determine fibrinogen
RU2343456C1 (en) Thrombocyte aggregation behavior and blood coagulability tester
JPH0311423B2 (en)
JP2018205284A (en) Blood specimen determination method, blood specimen analyzer and computer program
JP2610434B2 (en) Blood coagulation ability measurement method
JPH05180835A (en) Measurement of loops anti-coagulant
WO2021145461A1 (en) Blood-clotting measurement device, blood-clotting time measurement method, method for determining completion of blood-clotting reaction, and automated centrifugal blood separator
JPH03216199A (en) Method and product for measuring finctional activity of protein s in human liquid plasma
US20040219680A1 (en) Method and apparatus for determining anticoagulant therapy factors
Harpaz et al. Rapid point-of-care-tests for stroke monitoring
JPS58173455A (en) Measurement of light scattering
JPH0223825B2 (en)
JPH0421821B2 (en)
JPS6093353A (en) Immunological measurement method of fdp
JPH04318463A (en) Method for measuring blood coagulation time