JPS58172537A - Apparatus for measuring light scattering - Google Patents
Apparatus for measuring light scatteringInfo
- Publication number
- JPS58172537A JPS58172537A JP5586282A JP5586282A JPS58172537A JP S58172537 A JPS58172537 A JP S58172537A JP 5586282 A JP5586282 A JP 5586282A JP 5586282 A JP5586282 A JP 5586282A JP S58172537 A JPS58172537 A JP S58172537A
- Authority
- JP
- Japan
- Prior art keywords
- light scattering
- antigen
- measurement
- reaction
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/272—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は、光散乱測定装置に関するものである。[Detailed description of the invention] The present invention relates to a light scattering measuring device.
さらに詳しくは、本発明は、血液凝固反応と抗原抗体反
応とを1つのレーザー光源と1つ以上の光検出器を用い
て被検液の散乱光として測定する光散乱の測定装置に関
するものである。More specifically, the present invention relates to a light scattering measurement device that measures blood coagulation reactions and antigen-antibody reactions as scattered light of a test liquid using one laser light source and one or more photodetectors. .
血液凝固検査は、出血傾向が認められる患者の治療、あ
るいは、坑凝固剤治療を行なう患者の追跡管理に極めて
重要な検査であり、又、手術に先立つ検査として必須の
ものである。A blood coagulation test is an extremely important test for the treatment of patients with bleeding tendencies or for the follow-up management of patients undergoing anticoagulant treatment, and is also essential as a test prior to surgery.
かかる凝固検査として、プロトロンビン時間(以下、P
Tと略称する。)及び活性化部分トロンボプラスチン時
間(以下、APTTと略称する。As such a coagulation test, prothrombin time (hereinafter referred to as P
It is abbreviated as T. ) and activated partial thromboplastin time (hereinafter abbreviated as APTT).
)を測定する検査が良く知られており、各々、外因系凝
結機序及び内因系凝結機序の総合的な検査として実施さ
れている。) are well known, and each is performed as a comprehensive test of extrinsic and intrinsic coagulation mechanisms.
又、現在では、PT、APTTを測定することができる
各種の自動装置も多数市販されている。Furthermore, there are currently many types of automatic devices on the market that can measure PT and APTT.
血液凝固反応は、凝固第I〜第XIII因子による複雑
な連鎖反応とされており、PTあるいはAPTTに異常
が見られた場合、どの因子がどの程度不足しているかを
測定する因子定量検査を行なう必要がある。The blood coagulation reaction is considered to be a complex chain reaction involving coagulation factors I to XIII, and if an abnormality is found in PT or APTT, a quantitative factor test is performed to determine which factor is deficient and to what extent. There is a need.
従来、因子定量のためには、補正試薬を用いて、PTあ
るいはAPTT検査を行ない、どの因子が欠乏している
かを定性的に調べた後、適当な因子欠乏血漿を用いてP
TあるいはAPTT検査による検量関係を測定しなけれ
ばならず、非常に煩雑な手続きと多大の労力が必要であ
った。Conventionally, for factor quantification, a PT or APTT test is performed using a correction reagent to qualitatively determine which factor is deficient, and then P is performed using appropriate factor-deficient plasma.
The calibration relationship had to be measured by T or APTT test, which required very complicated procedures and a great deal of effort.
又、測定法が間接的であるため得られる定量結果はそれ
程精度の高いものではなかった。Furthermore, since the measurement method is indirect, the quantitative results obtained are not very accurate.
近年、PTあるいはAPTTのような凝固反応の総合的
な検査ではなく、抗原抗体反応を利用した免疫活性値の
測定あるいは合成気質による酵素反応を利用した生物活
性値の測定によって、直接各凝固因子を定量する方法が
提供されている。In recent years, instead of comprehensive testing of coagulation reactions such as PT or APTT, various coagulation factors have been directly tested by measuring immune activity values using antigen-antibody reactions or biological activity values using enzyme reactions with synthetic temperament. A method for quantifying is provided.
該方法によれば、簡便で特異性が高く精度の良い測定が
可能となるが、従来のPT、APTT測定装置では該方
法による測定実施が不可能であるため、新たに高価な装
置を準備する必要がああり、非常に不経済であった。According to this method, it is possible to perform simple, highly specific, and accurate measurements; however, since it is impossible to carry out measurements using this method with conventional PT and APTT measuring devices, a new expensive device must be prepared. It was necessary and extremely uneconomical.
逆に、該方法による測定を行なう装置は、PT、APT
Tという血液凝固検査における極めて有効なスクリーニ
ング検査が実施不可能であるという欠点を有していた。Conversely, the equipment that performs measurements using this method is PT, APT
This method had the disadvantage that it was impossible to carry out a very effective screening test for blood coagulation called T.
本発明の目的は、上記現状に鑑み、従来のPT、APT
T測定等の血液凝固測定と抗原抗体反応を利用した血液
凝固因子等の免疫学的測定を双方とも実施可能とする測
定装置を提供することにある。In view of the above-mentioned current situation, an object of the present invention is to
The object of the present invention is to provide a measuring device that can perform both blood coagulation measurements such as T measurement and immunological measurements such as blood coagulation factors using antigen-antibody reactions.
本発明によれば、一台の装置で効率よく、スクリーニン
グ検査から定量検査迄を簡便に高精度で行なうことが可
能になる。According to the present invention, it is possible to efficiently perform everything from screening tests to quantitative tests simply and with high precision using one device.
本発明は、1つのレーザー光源と、該光源によって照射
される被検液と、該被検液の散乱光を検出する1つ以上
の光検出器から構成される。The present invention includes one laser light source, a test liquid irradiated by the light source, and one or more photodetectors that detect scattered light of the test liquid.
第1図に、本発明に係るレーザー光源と光散乱源である
被検液及び光検出器の配置を、1つの実施例として示す
。FIG. 1 shows one embodiment of the arrangement of a laser light source, a test liquid serving as a light scattering source, and a photodetector according to the present invention.
反応キュベット2.内の被検液4.はレーザー光源1.
より発せられた一定光量のレーザー光束によって照射さ
れ、被検液の状態に応じて該入射光束を散乱する。Reaction cuvette 2. Test liquid in 4. is the laser light source 1.
The sample liquid is irradiated with a constant amount of laser beam emitted from the test liquid, and the incident light beam is scattered depending on the state of the test liquid.
この光散乱強度を測定して電気信号に変換する1つ以上
の光検出器、例えば2つの光検出器3.及び光検出器5
.が反応キュベットに対して特定の位置に配置される。3. One or more photodetectors, for example two photodetectors, that measure this light scattering intensity and convert it into an electrical signal. and photodetector 5
.. is placed in a specific position relative to the reaction cuvette.
レーザー光源1.は例えば発振波長700〜800mm
の可視近赤外半導体レーザーでよく、反応キュベット2
.は例えば内径5mmの試験官キュベット、又、光検出
器3.及び5.は通常のシリコンフォトロルでよい。Laser light source 1. For example, the oscillation wavelength is 700 to 800 mm
A visible and near-infrared semiconductor laser is sufficient, and the reaction cuvette 2
.. For example, a tester cuvette with an inner diameter of 5 mm, and a photodetector 3. and 5. can be an ordinary silicon photo roll.
反応キュベット2.の中心を通るレーザー光軸と光検出
器のなす角度をθとし、光検出器の位置を表すとすれば
、例えば、θ=50°の位置に配置した光検出器3.を
使用して血液凝固反応による光散乱強度Sの経時変化を
記録すると第2図が得られる。Reaction cuvette 2. Let θ be the angle between the laser optical axis passing through the center of the photodetector and the photodetector, and let θ represent the position of the photodetector. When the time-dependent change in the light scattering intensity S due to the blood coagulation reaction is recorded using the following, Figure 2 is obtained.
又、例えば、θ=155°の位置に配置された光検出器
5.を使用して抗原抗体に反応による光散乱強度Sの経
事変化を記録すると第3図が得られる。Also, for example, a photodetector 5 placed at a position of θ=155°. When the change in the light scattering intensity S caused by the reaction with the antigen and antibody is recorded over time using the method, Fig. 3 is obtained.
血液凝固反応による光散乱強度Sの経時変化を記録した
第2図に於て、aの部分は、被検試料と試薬の混合によ
って凝固反応は進行しているが、未だフィブリンの析出
は認められない状態、bの部分は、フィブリンの析出が
盛んに進行している状態、cの部分は、フィブリノーゲ
ン(以下、FIBと略称する。)のフィブリンへの転換
析出が終了した状態と解されており、aからbへ移行す
る時点Tcがフィブリン析出の開始時点であることが経
験的に知られている。In Figure 2, which records the temporal change in the light scattering intensity S due to the blood coagulation reaction, in part a, the coagulation reaction has progressed due to the mixing of the test sample and reagent, but no fibrin precipitation has yet been observed. Part b is understood to be a state in which fibrin precipitation is actively progressing, and part c is a state in which conversion and precipitation of fibrinogen (hereinafter abbreviated as FIB) to fibrin has been completed. , it is empirically known that the time point Tc when transitioning from a to b is the time point at which fibrin precipitation begins.
上記実施例の装置を用いて、PT測定に於ける正常ヒト
血漿の生食水による希釈率とTcの関係(以下、活性度
曲線と略称する。)を求めた結果が第5図である。FIG. 5 shows the relationship between the dilution rate of normal human plasma with saline and Tc (hereinafter abbreviated as activity curve) in PT measurement using the apparatus of the above embodiment.
即ち、クエン酸加正常ヒト血漿の生食水希釈試料100
μ■トロンボプラスチン試液(ウサギ脳由来)100μ
■及び0.02M塩化カルシウム水溶液100μ■を混
合後の光散乱強度の変化の様子からTCを求め、前記正
常ヒト血漿試料希釈率との関係をプロッとした。That is, 100 saline diluted samples of citrated normal human plasma.
μ■Thromboplastin test solution (derived from rabbit brain) 100μ
TC was determined from the change in light scattering intensity after mixing 1 and 100 μι of a 0.02M calcium chloride aqueous solution, and the relationship with the normal human plasma sample dilution rate was plotted.
10倍希釈という凝固活性の低い試料迄安定した活性度
曲線が得られた。A stable activity curve was obtained even for samples with low coagulation activity, such as 10-fold dilution.
凝固反応に伴う散乱光の変化からTCを求めることは公
知であるが、光源として強度、単色性に優れたレーザー
を用いることで、底活性凝固反応迄感度よく安定した測
定が可能となる。It is known to determine TC from changes in scattered light accompanying the coagulation reaction, but by using a laser with excellent intensity and monochromaticity as a light source, stable measurement with high sensitivity is possible up to the active coagulation reaction.
又、凝固反応検出をレーザー光源とする散乱光測定方式
とすることによて、同一の装置で抗原抗体反応の測定も
可能となる。Furthermore, by using a scattered light measurement method using a laser light source for coagulation reaction detection, it is also possible to measure antigen-antibody reactions with the same device.
抗原抗体反応による光散乱強度Sの経時変化は第3図に
示すようになる。The time course of the light scattering intensity S due to the antigen-antibody reaction is shown in FIG.
即ち、測定すべき光源あるいは抗体を含む溶液と対応す
る抗体あるいは抗原を含む試薬を混合した時点から光散
乱強度Sは増加を開始し、時間TA経過後は一定のレベ
ル△Sを維持する。That is, the light scattering intensity S starts to increase from the time when the solution containing the light source or antibody to be measured and the reagent containing the corresponding antibody or antigen are mixed, and after time TA has elapsed, the light scattering intensity S is maintained at a constant level ΔS.
上記実施例の装置を用いて、血漿凝固第I因子であるフ
ィブリノーゲンの検量線を求めた結果が第6図である。FIG. 6 shows the results of a calibration curve for fibrinogen, which is plasma coagulation factor I, obtained using the apparatus of the above embodiment.
即ち、坑FIB血清(ウサギ由来)12.5倍希釈液3
00μ■に各濃度のFIB抗原を含む標準血漿61倍希
釈液60μ■を添加し、室温で15分間インキュベーシ
ョンして、上記装置の光検出器の出力を読み、△S=(
15分後の光散乱強度S)−(反応開始前の光散乱強度
S)と濃度との関係を求めた。That is, anti-FIB serum (from rabbit) 12.5 times diluted solution 3
Add 60μ■ of a 61-fold dilution of standard plasma containing FIB antigen at each concentration to 00μ■, incubate at room temperature for 15 minutes, read the output of the photodetector of the above device, and calculate △S=(
The relationship between light scattering intensity S) after 15 minutes - (light scattering intensity S before the start of the reaction) and concentration was determined.
定量測定に十分な検量関係が得られた。A calibration relationship sufficient for quantitative measurements was obtained.
又、上記実施例における光検出器3を用いても抗原抗体
反応の測定が可能である。Further, the antigen-antibody reaction can also be measured using the photodetector 3 in the above embodiment.
この場合も、被検液内の抗原抗体反応の進行に伴う光散
乱強度Sの経時変化の様子は、感度の低下はあるものの
、第3図と類似のパターンを示す。In this case as well, the temporal change in the light scattering intensity S as the antigen-antibody reaction in the test liquid progresses shows a pattern similar to that in FIG. 3, although there is a decrease in sensitivity.
前述の実施例と同様にして、抗原あるいは抗体を定量す
ることができるが、第4図に示すように、光散乱強度S
の変化の速度(dS/dT)の経時変化から抗原あるい
は抗体を定量することもできる。The antigen or antibody can be quantified in the same manner as in the previous example, but as shown in Figure 4, the light scattering intensity S
The antigen or antibody can also be quantified from the time-dependent change in the rate of change (dS/dT).
例えば、光散乱強度Sの変化の最大値Pとフィブリノー
ゲン濃度の検量線を上記実施例の装置で求めた結果が第
7図である。For example, FIG. 7 shows the results of a calibration curve of the maximum value P of change in light scattering intensity S and fibrinogen concentration obtained using the apparatus of the above embodiment.
即ち、坑FIB血清(ウサギ)2.5倍希釈液300μ
■に、各濃度のFIB抗原を含む標準血漿21倍希釈5
0μ■を添加し、上記装置の光検出器3.の出力を公知
の微分電気回路で処理し、微分の最大値Pと濃度との関
係を求めた。That is, 300μ of anti-FIB serum (rabbit) 2.5 times diluted solution
■ 21-fold dilution of standard plasma containing each concentration of FIB antigen 5
Add 0 μ■ to the photodetector of the above device 3. The output was processed by a known differential electric circuit, and the relationship between the maximum differential value P and the concentration was determined.
定量測定に十分な安定した検量関係が得られた。A stable calibration relationship sufficient for quantitative measurements was obtained.
本実施例によれば、凝固反応の測定と抗原抗体反応の測
定が同一の光検出器で可能であり、光学系が簡素化され
るメリットがある。According to this embodiment, the coagulation reaction and the antigen-antibody reaction can be measured using the same photodetector, which has the advantage of simplifying the optical system.
このように、レーザーを光源とする散乱光測定方式によ
って血液凝固反応と抗原抗体反応を同一の装置で測定で
きるという点に関して、本発明に係る技術開示以前に言
及した例は無い。As described above, there has been no mention of the ability to measure blood coagulation reactions and antigen-antibody reactions with the same device using a scattered light measurement method using a laser as a light source prior to the disclosure of the technology according to the present invention.
本発明によれば、スクリーニング検査と定量検査とに従
来必要であった2種類の装置の機能を1台で実現でき、
その効果が顕著なものであることは明らかである。According to the present invention, the functions of two types of devices that were conventionally required for screening tests and quantitative tests can be realized with one device.
It is clear that the effect is significant.
又、本装置によって、抗原抗体反応による凝集反応を測
定することができる。Furthermore, this device can measure agglutination reactions caused by antigen-antibody reactions.
該測定では、ラテックス粒子に抗原あるいは抗体を結合
し、被検試料と平板上で混合撹拌し、抗原抗体反応によ
るラテックス粒子の凝集の有無から被検試料中の抗原あ
るいは抗体量を半定量的に測定する方法が従来から行な
われている。In this measurement, antigen or antibody is bound to latex particles, mixed and stirred with the test sample on a flat plate, and the amount of antigen or antibody in the test sample is determined semi-quantitatively from the presence or absence of aggregation of the latex particles due to antigen-antibody reaction. A method of measuring this has been conventionally used.
本発明による実施例の装置で、光検出器3.を用いて被
検液の光散乱強度を測定し、ラテックス粒子による散乱
光のバックグランド信号を電気的に除去すると、抗原抗
体反応による凝集の有無に応じて、光散乱強度Sの経時
変化の信号が第3図に類似した形で得られる。In an embodiment of the device according to the invention, a photodetector 3. When the light scattering intensity of the test liquid is measured using a 100% SEM, and the background signal of the light scattered by the latex particles is electrically removed, a signal of the change in the light scattering intensity S over time is obtained depending on the presence or absence of agglutination due to antigen-antibody reaction. is obtained in a form similar to FIG.
この場合も、該信号の変化速度dS/dTの経時変化と
して第4図に類似の信号が得られ、その最大値Pより、
被検液中の抗原あるいは抗体の濃度を定量できる。In this case as well, a signal similar to that shown in FIG. 4 is obtained as the time-dependent change in the rate of change dS/dT of the signal, and from its maximum value P,
The concentration of antigen or antibody in the test liquid can be quantified.
例えば、近年、血液凝固検査に関連して検査需要が増大
しているフィブリン分解産生物(以下、FDPと省略す
る。)の測定を、上記の方法によりラテックス凝集反応
として本発明による装置で容易に実施できる。For example, the device according to the present invention can easily measure fibrin degradation products (hereinafter abbreviated as FDP), which has been increasing in demand in connection with blood coagulation tests, using the method described above as a latex agglutination reaction. Can be implemented.
抗原抗体反応を凝集反応として捉える方法に対しても本
発明の装置を適用できることは、本発明の応用を拡げ、
その効果を一層顕著なものとする。The fact that the device of the present invention can also be applied to methods that treat antigen-antibody reactions as agglutination reactions expands the application of the present invention.
The effect is made even more remarkable.
第8図は、本発明を実際の光散乱測定装置として構成し
た装置のブロック図である。FIG. 8 is a block diagram of an apparatus in which the present invention is implemented as an actual light scattering measurement apparatus.
光検出器で電気信号に変換された光散乱強度信号は、信
号前処理器6.で処理される。The light scattering intensity signal converted into an electric signal by the photodetector is sent to a signal preprocessor 6. will be processed.
信号切換器12.は、光検出器3.と5.の出力信号の
うちいずれを信号前処理器に入力するかを切り替える。Signal switch 12. is photodetector 3. and 5. Switch which of the output signals is input to the signal preprocessor.
信号前処理器5.は、電気内増幅器、又、Pを利用する
抗原抗体反応の測定ではさらに微分処理を行ない、その
結果をA/D変換器7.に入力する。Signal preprocessor5. In the measurement of the antigen-antibody reaction using an electrical amplifier or P, further differential processing is performed, and the results are sent to the A/D converter 7. Enter.
コンピュータ8.は、該A/D変換器によってデジタル
量に変換された光散乱強度信号の情報を演算処理し、血
液凝固測定の場合は凝固時点を判定し、抗原抗体反応測
定の場合は抗原あるいは抗体の濃度を算出する。Computer 8. calculates the information of the light scattering intensity signal converted into a digital quantity by the A/D converter, determines the coagulation point in the case of blood coagulation measurement, and determines the concentration of antigen or antibody in the case of antigen-antibody reaction measurement. Calculate.
血液凝固時点の判定、又、抗原あるいは抗体の濃度の算
出方法として、上記実施例以外にも種々の手順が提案さ
れ各々に対応する様々なプログラムが作成できることは
周知であるが、それは本発明の実施態様を制限するもの
ではない。It is well known that various procedures other than the above-mentioned example have been proposed as a method for determining the blood coagulation point and calculating the concentration of antigen or antibody, and that various programs corresponding to each procedure can be created. This is not intended to limit the embodiments.
さらに、コンピューターで処理したデータの表示印字部
9.反応過程を連続的に観測する記録計11.及び試薬
分注機構自動検体準備機構10.によって装置は構成さ
れる。Furthermore, a display/print section 9 for displaying data processed by the computer. Recorder to continuously observe the reaction process 11. and reagent dispensing mechanism automatic specimen preparation mechanism 10. The device is configured by:
このように、本発明と既存技術の組み合わせによって、
自動化、省略化された光散乱測定装置が容易に実現でき
ることは明らかである。In this way, by combining the present invention and existing technology,
It is clear that an automated and simplified light scattering measuring device can be easily realized.
以上、本発明の実施例についても併せて述べたが、本発
明はこれらの実施例にのみ限定されるものではなく、本
発明の範囲内で各種の具体例に応用することができるも
のである。Although examples of the present invention have been described above, the present invention is not limited only to these examples, and can be applied to various specific examples within the scope of the present invention. .
本発明は、上述した如く、従来一台の装置では不可能で
あった血液凝固反応の測定と抗原抗体反応の測定を同一
の装置で高精度に実現できるものであり、当該測定の効
率化及び合理化に大きく貢献するものであるとともに、
本装置によれば、臨床検査の実施に当って詳細なる臨床
成績を得ることができ、医療分野における貢献は大なる
ものがある。As described above, the present invention enables the measurement of blood coagulation reactions and the measurement of antigen-antibody reactions, which were conventionally impossible with a single device, to be achieved with high precision in the same device, and improves the efficiency of the measurements. In addition to greatly contributing to rationalization,
According to this device, detailed clinical results can be obtained when conducting clinical tests, making a great contribution to the medical field.
第1図は本発明による側光系原理図、第2図は血液凝固
反応に於ける被検液の時間光散乱強度特性図、第3図は
抗原抗体反応に於ける被検液の時間光散乱強度特性図、
第4図は第3図の特性図についての時間微分特性図、第
5図はPT特定に於ける希釈率と凝固時間の特性図、第
6図はFIB測定に於ける抗原濃度の光散乱強度につい
ての検量特性図、第7図はFIB測定に於ける抗原濃度
と光散乱強度変化の最大速度についての検量特性図、第
8図は本発明を応用した光散乱測定装置のブロック図で
ある。
1. レーザー光源
2. 反応キュベット
3.及び5 光検出器
7. A/Dコンバーター
8.コンピューター
特許出願人 和光純薬工業株式会社Fig. 1 is a diagram of the principle of the side light system according to the present invention, Fig. 2 is a temporal light scattering intensity characteristic diagram of a test liquid in a blood coagulation reaction, and Fig. 3 is a temporal light scattering intensity characteristic diagram of a test liquid in an antigen-antibody reaction. Scattered intensity characteristic diagram,
Figure 4 is a time differential characteristic diagram for the characteristic diagram in Figure 3, Figure 5 is a characteristic diagram of dilution rate and coagulation time in PT identification, and Figure 6 is the light scattering intensity of antigen concentration in FIB measurement. FIG. 7 is a calibration characteristic diagram for antigen concentration and maximum rate of change in light scattering intensity in FIB measurement, and FIG. 8 is a block diagram of a light scattering measuring device to which the present invention is applied. 1. Laser light source 2. Reaction cuvette 3. and 5 photodetector7. A/D converter8. Computer patent applicant Wako Pure Chemical Industries, Ltd.
Claims (5)
開始後の被検液の光散乱強度の変化からi)被検液の血
液凝固反応の測定 ii)被検液の抗原抗体反応の測定 を1つの光源と1つ以上の被検出器で行うことを特徴と
する光散乱測定装置。(1) Irradiate the test liquid in the reaction container with a laser beam and measure the change in light scattering intensity of the test liquid after the reaction has started i) Measure the blood coagulation reaction of the test liquid ii) Measure the antigen-antibody reaction of the test liquid A light scattering measurement device characterized in that measurement is performed using one light source and one or more detected devices.
強度を測定する特許請求の範囲第1項記載の光散乱測地
装置、。(2) The light scattering geodetic device according to claim 1, which measures a plurality of light scattering intensities at different angles with respect to the laser optical axis.
なうフイブインの析出による光散乱強度の変化に基く特
許請求の範囲第1項又は第2項記載の光散乱測定装置。(3) The light scattering measuring device according to claim 1 or 2, wherein the blood coagulation time is measured based on a change in light scattering intensity due to the precipitation of fibuin as the blood coagulation reaction progresses.
る光散乱強度の変化に基く特許請求の範囲第1項又は第
2項記載の光散乱測定装置。(4) The light scattering measuring device according to claim 1 or 2, wherein the measurement of the antigen-antibody reaction is based on a change in light scattering intensity due to the formation of an antigen-antibody complex.
溶性担体粒子の凝集による光散乱強度の変化に基く特許
請求の範囲第1項又は第2項記載の光散乱測定装置。(5) The light scattering measuring device according to claim 1 or 2, wherein the antigen-antibody reaction is measured based on changes in light scattering intensity due to aggregation of insoluble carrier particles supporting the antigen or antibody.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5586282A JPS58172537A (en) | 1982-04-04 | 1982-04-04 | Apparatus for measuring light scattering |
US06/481,961 US4766083A (en) | 1982-04-04 | 1983-04-04 | Method for the photometric determination of biological agglutination |
EP83103297A EP0091636B1 (en) | 1982-04-04 | 1983-04-05 | Method for the photometric determination of biological agglutination |
AT83103297T ATE58245T1 (en) | 1982-04-04 | 1983-04-05 | PROCEDURE FOR THE PHOTOMETRIC DETERMINATION OF BIOLOGICAL AGGLUTINATES. |
DE8383103297T DE3381979D1 (en) | 1982-04-04 | 1983-04-05 | METHOD FOR PHOTOMETRICALLY DETERMINING BIOLOGICAL AGGLUTINATES. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5586282A JPS58172537A (en) | 1982-04-04 | 1982-04-04 | Apparatus for measuring light scattering |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58172537A true JPS58172537A (en) | 1983-10-11 |
JPH0311423B2 JPH0311423B2 (en) | 1991-02-15 |
Family
ID=13010866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5586282A Granted JPS58172537A (en) | 1982-04-04 | 1982-04-04 | Apparatus for measuring light scattering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58172537A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01503566A (en) * | 1987-06-11 | 1989-11-30 | オリオン・コーポレィション・リミテッド | Cuvettes and equipment for performing bioassays |
US6251615B1 (en) | 1998-02-20 | 2001-06-26 | Cell Analytics, Inc. | Cell analysis methods |
WO2011068049A1 (en) | 2009-12-04 | 2011-06-09 | 株式会社日立ハイテクノロジーズ | Blood coagulation analyzer |
WO2012157206A1 (en) * | 2011-05-13 | 2012-11-22 | 株式会社日立ハイテクノロジーズ | Automatic analysis device |
JP2017537873A (en) * | 2014-08-19 | 2017-12-21 | リアプリックス エイピーエス | Centrifuge and method for centrifuging blood samples |
CN110006795A (en) * | 2019-04-30 | 2019-07-12 | 华北电力大学(保定) | Grain testing apparatus, method and FPGA |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5014466B2 (en) | 2010-06-04 | 2012-08-29 | 徹 小幡 | Gel particle measuring device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5193286A (en) * | 1975-02-13 | 1976-08-16 | ||
JPS54140240A (en) * | 1978-04-24 | 1979-10-31 | Mitsubishi Electric Corp | Sheath heater sealing method |
JPS576361A (en) * | 1980-06-12 | 1982-01-13 | Joko:Kk | Method for deciding peak in dynamic measurement of immune nephelometric device |
-
1982
- 1982-04-04 JP JP5586282A patent/JPS58172537A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5193286A (en) * | 1975-02-13 | 1976-08-16 | ||
JPS54140240A (en) * | 1978-04-24 | 1979-10-31 | Mitsubishi Electric Corp | Sheath heater sealing method |
JPS576361A (en) * | 1980-06-12 | 1982-01-13 | Joko:Kk | Method for deciding peak in dynamic measurement of immune nephelometric device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01503566A (en) * | 1987-06-11 | 1989-11-30 | オリオン・コーポレィション・リミテッド | Cuvettes and equipment for performing bioassays |
US6251615B1 (en) | 1998-02-20 | 2001-06-26 | Cell Analytics, Inc. | Cell analysis methods |
WO2011068049A1 (en) | 2009-12-04 | 2011-06-09 | 株式会社日立ハイテクノロジーズ | Blood coagulation analyzer |
JP5667989B2 (en) * | 2009-12-04 | 2015-02-12 | 株式会社日立ハイテクノロジーズ | Blood coagulation analyzer |
US9395298B2 (en) | 2009-12-04 | 2016-07-19 | Hitachi High-Technologies Corporation | Blood coagulation analyzer |
WO2012157206A1 (en) * | 2011-05-13 | 2012-11-22 | 株式会社日立ハイテクノロジーズ | Automatic analysis device |
US9645160B2 (en) | 2011-05-13 | 2017-05-09 | Hitachi High-Technologies Corporation | Automatic analysis device |
JP2017537873A (en) * | 2014-08-19 | 2017-12-21 | リアプリックス エイピーエス | Centrifuge and method for centrifuging blood samples |
CN110006795A (en) * | 2019-04-30 | 2019-07-12 | 华北电力大学(保定) | Grain testing apparatus, method and FPGA |
CN110006795B (en) * | 2019-04-30 | 2024-02-13 | 华北电力大学(保定) | Particle detection device and method and FPGA |
Also Published As
Publication number | Publication date |
---|---|
JPH0311423B2 (en) | 1991-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4766083A (en) | Method for the photometric determination of biological agglutination | |
US11022558B2 (en) | Coagulation analyzer and coagulation analysis method | |
US4252536A (en) | Method and system for measuring blood coagulation time | |
CA2032561C (en) | Method of determining levels of extrinsic and intrinsic clotting factors and protein c | |
JP2649608B2 (en) | Fibrinogen analysis method for accurately, quickly and easily performing fibrinogen analysis using a dry chemical reagent containing magnetic particles (ie measuring the concentration of coagulable fibrinogen in a sample) | |
EP3396384B1 (en) | Method for analyzing blood specimen, and analyzer | |
US9442125B2 (en) | Method and a device for characterizing the coagulation or sedimentation dynamics of a fluid such as blood or blood plasma | |
JP2019002939A (en) | Low volume coagulation assay | |
JPH0528786B2 (en) | ||
RU2343456C1 (en) | Thrombocyte aggregation behavior and blood coagulability tester | |
JP6444567B1 (en) | How to determine fibrinogen | |
JPS58172537A (en) | Apparatus for measuring light scattering | |
WO2020132926A1 (en) | Blood sample analysis method and blood coagulation analyzer | |
CN111272678A (en) | Sample detection method, blood coagulation analyzer and storage medium | |
WO2021145461A1 (en) | Blood-clotting measurement device, blood-clotting time measurement method, method for determining completion of blood-clotting reaction, and automated centrifugal blood separator | |
Luo et al. | Drop-of-blood acoustic tweezing technique for integrative turbidimetric and elastometric measurement of blood coagulation | |
JPS58173455A (en) | Measurement of light scattering | |
JPS63305255A (en) | Method for measuring blood coagulation | |
US20040219680A1 (en) | Method and apparatus for determining anticoagulant therapy factors | |
JPH0223825B2 (en) | ||
Harpaz et al. | Rapid point-of-care-tests for stroke monitoring | |
US20230213497A1 (en) | Method for measuring blood coagulation time | |
JPH04318463A (en) | Method for measuring blood coagulation time | |
JPS58173465A (en) | Optical measuring method of antigen and antibody reaction | |
JPH03180742A (en) | Automatic coagulation image deciding method |