JPS58173465A - Optical measuring method of antigen and antibody reaction - Google Patents
Optical measuring method of antigen and antibody reactionInfo
- Publication number
- JPS58173465A JPS58173465A JP5643382A JP5643382A JPS58173465A JP S58173465 A JPS58173465 A JP S58173465A JP 5643382 A JP5643382 A JP 5643382A JP 5643382 A JP5643382 A JP 5643382A JP S58173465 A JPS58173465 A JP S58173465A
- Authority
- JP
- Japan
- Prior art keywords
- antigen
- antibody
- reaction
- intensity
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、抗原抗体反応の光学的測定方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for optically measuring antigen-antibody reactions.
さらに詳しくは、レーザーを光源とするネフェロメトリ
ックイムノアッセイに関するものである。More specifically, the present invention relates to a nephelometric immunoassay using a laser as a light source.
抗原あるいは抗体を正確に定量することは、医療分野だ
けでなく広く生命科学の諸分野で重要な課題とされ、近
年、抗原あるいは抗体の定量測定の需要が増大するにつ
れ、高精度かつ迅速な測定の実現が強く望まれている。Accurately quantifying antigens or antibodies is an important issue not only in the medical field but also in a wide range of life science fields.In recent years, as the demand for quantitative measurement of antigens or antibodies has increased, high-precision and rapid measurement is becoming more and more important. The realization of this is strongly desired.
従来より広く普及している平板免疫拡散法にょる定量法
は、測定に1日〜数日を要し、また結果の判読が繁雑で
熟練を要し個人差も大きいという欠点を有している。The quantitative method using the plate immunodiffusion method, which has been widely used in the past, has the drawbacks that it takes one to several days for measurement, and that the interpretation of the results is complicated and requires skill, and there are large individual differences. .
近年、抗原抗体複合物の形成反応を光散乱を用いて捉え
ようとするネフェロメトリックイムノアッセイが提案さ
れ、操作性、定量精度の向上が図られたが、この場合で
も測定に数十分〜数時間を必要としているのが実情で、
緊急検査あるいは多数検体の高速処理の実現には、測定
法として未だ不十分なものである。In recent years, a nephelometric immunoassay has been proposed that attempts to capture the formation reaction of antigen-antibody complexes using light scattering, and attempts have been made to improve operability and quantitative accuracy. The reality is that we need time,
This measurement method is still insufficient for emergency testing or high-speed processing of multiple samples.
本発明者らは、上記欠点に鑑み、レーザーを光源とする
ネフェロメトリックイムノアッセイに於て、被検液中で
抗原抗体複合物が形成される反応の初期に、抗原抗体複
合物による散乱光が極めて鋭敏に変化する選択的な検出
角度が存在することを見出し、これを抗原あるいは抗体
の定量法に適用することにより、本発明を完成するに至
った。In view of the above drawbacks, the present inventors have discovered that in nephelometric immunoassay using a laser as a light source, light scattered by antigen-antibody complexes is detected in the early stage of the reaction in which antigen-antibody complexes are formed in the test liquid. The present invention was completed by discovering the existence of a selective detection angle that changes extremely sharply and applying this to a method for quantifying antigens or antibodies.
本発明によれば、簡便な操作で定量性良く抗原抗体反応
を測定することができ、更に、従来のネフェロメトリッ
クイムノアッセイに比べ大幅に短い時間内で精度の高い
測定が可能となる。According to the present invention, it is possible to measure an antigen-antibody reaction with good quantitative accuracy using a simple operation, and furthermore, it is possible to perform highly accurate measurements in a significantly shorter time than conventional nephelometric immunoassays.
本発明は、測定すべき抗原あるいは抗体の溶液を対応す
る抗体あるいは抗原と混合反応せしめ、この反応混合物
にレーザー光線を照射し、該反応混合物の散乱光の強度
を散乱角θ=30℃〜60℃で選択的に検出することを
特徴とする抗原抗体反応の光学的測定方法である。In the present invention, a solution of an antigen or antibody to be measured is mixed and reacted with a corresponding antibody or antigen, this reaction mixture is irradiated with a laser beam, and the intensity of scattered light of the reaction mixture is measured at a scattering angle θ=30°C to 60°C. This is an optical measurement method for antigen-antibody reactions, which is characterized by selective detection of antigen-antibody reactions.
第1図に、本発明に係るレーザー光源と光散乱源である
被検試料及び光検出器の配置を1つの実施例として示す
。FIG. 1 shows one embodiment of the arrangement of a laser light source, a test sample serving as a light scattering source, and a photodetector according to the present invention.
反応キュベット2.内の被検試料4.はレーザー光源1
.より発せられた一定光量のレーザー光束によって照射
され、被検試料の状態に応じて該入射光束を散乱する。Reaction cuvette 2. Test sample within 4. is laser light source 1
.. The specimen is irradiated with a constant amount of laser beam emitted from the specimen, and the incident beam is scattered depending on the state of the sample to be tested.
この光散乱強度を測定して電気信号に変換する光検出器
3.が反応キュベットに対して特定の位置に配置される
。A photodetector 3 that measures this light scattering intensity and converts it into an electrical signal. is placed in a specific position relative to the reaction cuvette.
レーザー光源1.は例えば発振波長632.8mmのヘ
リウムネオンレーザーあるいは発振波長700〜800
mmの可視近赤外半導体レーザーでよく、反応キュベッ
ト2.は例えば内径5mmの試験官キュベット、又、光
検出器3.は通常の光電変換素子でよい。Laser light source 1. For example, a helium neon laser with an oscillation wavelength of 632.8 mm or an oscillation wavelength of 700 to 800 mm.
A visible and near-infrared semiconductor laser of 1.0 mm may be used, and a reaction cuvette 2. For example, a tester cuvette with an inner diameter of 5 mm, and a photodetector 3. may be a normal photoelectric conversion element.
反応キュベット2.の中心を通るレーザー光軸と光検出
器3.のなす角度をθとすると、抗原抗体複合物の形成
に伴う光散乱強度の時間的な変化の様子は、散乱光検出
角度θによって異る。Reaction cuvette 2. The laser optical axis passing through the center of the photodetector 3. Assuming that the angle formed by θ is θ, the temporal change in light scattering intensity accompanying the formation of an antigen-antibody complex differs depending on the scattered light detection angle θ.
第2図(a)のAは、上述の実施例の装置で、θ=50
°の場合の抗原抗体複合物の形成反応進行に伴う光散乱
強度Sの経時変化を記録したものである。A in FIG. 2(a) is the apparatus of the above-mentioned embodiment, and θ=50
This is a record of changes over time in the light scattering intensity S as the reaction progresses to form an antigen-antibody complex in the case of .
測定すべき抗原あるは抗体を含む溶液と対応する抗体あ
るいは抗原を含む試薬を混合した時点から光散乱強度S
は増加を開始し、時間TA経過後は一定のレベルを維持
する。The light scattering intensity S starts from the time when the solution containing the antigen or antibody to be measured is mixed with the reagent containing the corresponding antibody or antigen.
begins to increase and maintains a constant level after time TA has elapsed.
所謂エンドポイント法では、このTA経過後の最終レベ
ルの高さを抗原あるいは抗体の定量に利用する。In the so-called end point method, the final level after TA is used to quantify the antigen or antibody.
従って最終レベルに到達するまでの時間が短い程、換言
すれば、光散乱強度Sの立ち上がり速度が速いほど迅速
な測定が可能となる。Therefore, the shorter the time it takes to reach the final level, in other words, the faster the rise speed of the light scattering intensity S is, the faster the measurement becomes possible.
従来のネフェロメトリックイムノアッセイではθ≧90
°の前方散乱光を検出しているのに対し、本発明による
方法では後方散乱光の測定領域を利用する。In conventional nephelometric immunoassay, θ≧90
Whereas the forward scattered light of .degree. is detected, the method according to the invention makes use of the measurement area of the backward scattered light.
第2図(a)のBは、θ=150°の場合の光散乱強度
Sの経時変化を同様に記録したものである。B in FIG. 2(a) similarly records the temporal change in the light scattering intensity S when θ=150°.
θ=50°の場合との比較のために最終到達光量を10
0として縦軸を規格化している。For comparison with the case of θ = 50°, the final amount of light reached was set to 10
The vertical axis is normalized as 0.
θ=150°の場合、一定レベルへの到達に要する時間
TBはTAに比べ数倍長いことが見出された。It was found that when θ=150°, the time TB required to reach a certain level is several times longer than TA.
具体的にはTAが数分であるのに対し、TBは数十分程
度である。Specifically, while TA is several minutes, TB is approximately several tens of minutes.
これは、抗原抗体複合物形成の初期段階での検出感度が
、後方散乱の方が優れていることを示しており、抗原抗
体複合物粒子の大きさによる光散乱強度の空間分布状態
の差に起因すると考えられる。This indicates that backscattering has better detection sensitivity at the initial stage of antigen-antibody complex formation, and is sensitive to differences in the spatial distribution of light scattering intensity due to the size of antigen-antibody complex particles. This is thought to be due to this.
従来のネフェロメトリックイムノアッセイでは、光散乱
強度にのみ着目してきた結果、前方散乱光の利用が一般
的であったが、本発明者らは、抗原抗体反応の初期過程
に対する検出感度に着目し、後方散乱光が鋭敏に反応初
期の状態を反映することを見出だした。Conventional nephelometric immunoassays focused only on light scattering intensity, and as a result, forward scattered light was generally used. However, the present inventors focused on detection sensitivity for the initial process of antigen-antibody reaction. We found that backscattered light sensitively reflects the initial state of the reaction.
ただし、θ>30°の領域では散乱光信号自体が微弱と
なり、また反応容器による反射光の影響も強くなるため
速度精度が低下する。However, in the region of θ>30°, the scattered light signal itself becomes weak and the influence of light reflected by the reaction vessel becomes strong, resulting in a decrease in speed accuracy.
本発明によると検出角度θ=30℃〜60℃が抗原抗体
反応の立ち上がりに最も鋭敏であり、かつ高精度での側
光が実現できる最適検出角度である。According to the present invention, the detection angle θ=30° C. to 60° C. is the optimum detection angle that is most sensitive to the rise of the antigen-antibody reaction and can realize side lighting with high accuracy.
この領域で検出を行なった場合、公知の電気回路によっ
て後の処理に必要とされる十分なレベルの信号を容易に
得ることができる。If detection is carried out in this region, known electrical circuits can easily obtain a signal of sufficient level for subsequent processing.
従って、従来のネフェロメトリックイムノアッセイの測
定時間TBの数分の1のはるかに短い測定時間TAで感
度よく高精度の測定が可能になる。Therefore, sensitive and highly accurate measurement is possible with a much shorter measurement time TA, which is a fraction of the measurement time TB of conventional nephelometric immunoassays.
このような散乱光の検出角度によって光散乱強度の時間
変化の様態が異なるという知見に基いて、抗原抗体反応
の初期過程に鋭敏な検出最適角度の存在を後方散乱の特
定領域に見出だし、これを迅速な定量法として応用する
という点に関して、本発明に係る技術開示以前に言及し
た例は無い。Based on the knowledge that the temporal change in light scattering intensity varies depending on the detection angle of scattered light, we discovered the existence of an optimal detection angle in a specific region of backscatter that is sensitive to the initial process of antigen-antibody reaction. Regarding the application of the method as a rapid quantitative method, there is no example mentioned before the technical disclosure related to the present invention.
上記実施例の装置を用いてマヒト免疫グロブリンG(以
下、IgGと略称する。)の検量線を求めた結果が第3
図である。The results of determining the calibration curve of human immunoglobulin G (hereinafter abbreviated as IgG) using the apparatus of the above example are the results of the third experiment.
It is a diagram.
即ち、抗IgG血清(緬羊)12.5倍希釈液300μ
■に、各濃度の人IgG抗原を含む標準血清301倍希
釈液30μ■を添加し、室温で5分間インキュベーショ
ンして上記装置の光検出器の出力を読み、△S=(5分
後の光散乱強度S)−(反応開始前の光散乱強度S)と
濃度との関係を求めた。That is, 300 μl of anti-IgG serum (sheep) 12.5-fold dilution
Add 30μ■ of a 301-fold dilution of standard serum containing human IgG antigens at various concentrations to ■, incubate for 5 minutes at room temperature, read the output of the photodetector of the above device, The relationship between the scattering intensity S) - (light scattering intensity S before the start of the reaction) and the concentration was determined.
反応時間5分で定量測定に十分な検量関係が得られた。A sufficient calibration relationship for quantitative measurement was obtained with a reaction time of 5 minutes.
従来のエンドポイント法では、同様の測定に30分〜1
時間を要していることからも、本発明の効果が顕著であ
ることは明らかである。Conventional endpoint methods require 30 minutes to 1 hour for similar measurements.
It is clear that the effects of the present invention are significant, also from the fact that it takes a long time.
さらに、光散乱強度の変化の速度から抗原あるいは抗体
の濃度を定量する方法(以下、動的ネフェロメトリック
イムノアッセイと略称する。)によれば測定の一層の迅
速化が実現される。Furthermore, a method of quantifying the concentration of antigen or antibody from the rate of change in light scattering intensity (hereinafter referred to as dynamic nephelometric immunoassay) allows for even faster measurement.
第2図(b)は、本発明による光散乱強度の経時変化の
波形である第2図(a)のAに対して時間による微分処
理を施した信号(dS/dT)を記録したものである。FIG. 2(b) is a recorded signal (dS/dT) obtained by performing differential processing with respect to time on A in FIG. 2(a), which is the waveform of the time-dependent change in light scattering intensity according to the present invention. be.
動的ネフェロメトリックイムノアッセイでは、例えば該
微分信号の最大値Pを抗原あるいは抗体の定量に利用す
る。In dynamic nephelometric immunoassay, for example, the maximum value P of the differential signal is used for quantifying antigen or antibody.
反応時間からPが出現する迄の時間TCが測定に要する
時間であり、TC<TAであるから、エンドポイント法
より更に測定時間は短縮される。The time TC from the reaction time to the appearance of P is the time required for measurement, and since TC<TA, the measurement time is further shortened than in the end point method.
上記実施例の装置を用いて血小板のフィブリノーゲン(
以下、FIBと略称する。)の検量線をPを利用する動
的ネフェロメトリックイムノアッセイによって求めた結
果が第4図である。Using the device of the above example, platelet fibrinogen (
Hereinafter, it will be abbreviated as FIB. Figure 4 shows the results of a calibration curve obtained by dynamic nephelometric immunoassay using P.
即ち、坑FIB血清(ウサギ)12.5倍希釈液300
μ■に、各濃度のFIB抗原を含む標準血漿21倍希釈
液50μ■を添加し、上記装置の光検出器の出力を公知
の微分電気回路で処理し、微分の最大値Pと濃度との関
係を求めた。That is, anti-FIB serum (rabbit) 12.5-fold diluted solution 300
50μ■ of standard plasma diluted 21 times containing FIB antigen at each concentration was added to μ■, and the output of the photodetector of the above device was processed by a known differential electric circuit, and the maximum value P of the differential and the concentration were I wanted a relationship.
測定時間2分以内で定量測定に十分な検量関係が得られ
た。A sufficient calibration relationship for quantitative measurement was obtained within 2 minutes of measurement time.
動的ネフェロメトリックイムノアッセイでは、反応初期
過程での高い検出感度が必要とされ、反応開始直後から
鋭敏な検出が可能な本発明はその効果が顕著であること
は明らかである。Dynamic nephelometric immunoassay requires high detection sensitivity in the initial stage of the reaction, and it is clear that the present invention, which allows sensitive detection immediately after the start of the reaction, is significantly effective.
第5図は、本発明を実際の抗原抗体反応測定装置として
構成した装置のブロック図である。FIG. 5 is a block diagram of an actual antigen-antibody reaction measuring device according to the present invention.
光検出器で電気信号に変換された光散乱強度信号は、信
号前処理器5.に入力される。The light scattering intensity signal converted into an electric signal by the photodetector is sent to a signal preprocessor 5. is input.
信号前処理器5.は電気的増幅、また、Pを利用する動
的ネフェロメトリックイムノアッセイでは更に微分処理
を行い、その結果をA/D変換器6.に入力する。Signal preprocessor5. In dynamic nephelometric immunoassay using P, electrical amplification is performed, and differential processing is further performed, and the results are sent to an A/D converter 6. Enter.
コンピューター7.は該A/D変換器によってデジタル
量に変換された光散乱強度信号の情報を演算処理し、抗
原あるいは抗体の濃度を算出する。Computer 7. calculates the concentration of the antigen or antibody by processing the information of the light scattering intensity signal converted into a digital quantity by the A/D converter.
抗原あるいは抗体の濃度の算出方法として、上記実施例
以外にも種々の手順が提案され、各々に対応する様々な
プログラムが作成できることは周知であるが、それは本
発明の実施態様を制限するものではない。It is well known that various procedures other than the above-mentioned examples have been proposed as a method for calculating the concentration of an antigen or antibody, and that various programs corresponding to each procedure can be created, but this does not limit the embodiments of the present invention. do not have.
さらに、コンピューターで処理したデータの表示印字部
8.反応過程を連続的に観測する記録計10.及び試薬
分注機構自動検体準備機構9.によって装置は構成され
る。Furthermore, there is a display/print section 8 for displaying data processed by the computer. Recorder to continuously observe the reaction process 10. and reagent dispensing mechanism automatic sample preparation mechanism9. The device is configured by:
このように、本発明と既存技術の組み合わせによって自
動化、省略化された抗原抗体反応の測定装置が容易に実
現できることは明らかである。As described above, it is clear that an automated and simplified antigen-antibody reaction measuring device can be easily realized by combining the present invention and existing techniques.
以上、本発明の実施例についても併せて述べたが、本発
明はこれらの実施例にのみ限定されるものではなく本発
明の範囲内で各種の具体例に応用することができるもの
である。Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, but can be applied to various specific examples within the scope of the present invention.
本発明は、上述した如く、抗原抗体反応の初期過程を感
度よく捉えることができ、また定量関係にも優れたもの
であるため、従来法に比し大幅に測定時間が短縮された
高精度の測定を実現することができ、測定の省略化、自
動化に大きく貢献するものである。As mentioned above, the present invention can capture the initial process of antigen-antibody reactions with high sensitivity and is also excellent in quantitative relationships, so it is highly accurate and can significantly shorten measurement time compared to conventional methods. This makes it possible to realize measurements and greatly contributes to the abbreviation and automation of measurements.
また、本発明の方法による自動測定装置によれば緊急検
査あるいは多数検体の高速処理を迅速かつ正確に高感度
で実施することができる。Further, according to the automatic measuring device according to the method of the present invention, emergency testing or high-speed processing of a large number of samples can be performed quickly, accurately, and with high sensitivity.
第1図は本発明による側光系原理図、第2図(a)は被
検液の時間光散乱強度特性図、第2図(b)は第1図(
a)のAについての時間微分特性図、第3図はIgG測
定における抗原濃度と光散乱強度についての検量特性図
、第4図はFIB測定における抗原濃度と光散乱強度変
化の最大速度についての検量特性図、第5図は本発明を
応用した抗原抗体反応測定装置のブロック図である。
1.レーザー光源
2.反応キュベット
3.光検出器
6.A/Dコンバーター
7.コンピューター
特許出願人 和光純薬工業株式会社FIG. 1 is a diagram of the principle of the side light system according to the present invention, FIG.
Figure 3 is a calibration characteristic diagram for antigen concentration and light scattering intensity in IgG measurement, and Figure 4 is a calibration diagram for maximum rate of change in antigen concentration and light scattering intensity in FIB measurement. The characteristic diagram, FIG. 5, is a block diagram of an antigen-antibody reaction measuring device to which the present invention is applied. 1. Laser light source 2. Reaction cuvette 3. Photodetector6. A/D converter7. Computer patent applicant Wako Pure Chemical Industries, Ltd.
Claims (2)
体あるいは抗原と混合反応せしめ、この反応混合物にレ
ーザー光線を照射し、該反応混合物の散乱光の強度を散
乱角θ=30℃〜60℃で選択的に検出することを特徴
とする抗原抗体反応の光学的測定方法。(1) Mix and react a solution of the antigen or antibody to be measured with the corresponding liquid or antigen, irradiate this reaction mixture with a laser beam, and measure the intensity of the scattered light of the reaction mixture at a scattering angle θ = 30°C to 60°C. An optical measurement method for antigen-antibody reactions characterized by selective detection.
定すべき抗原あるいは抗体を定量する特許請求の範囲第
1項記載の抗原抗体反応の光学的測定方法。(2) The method for optically measuring an antigen-antibody reaction according to claim 1, wherein the antigen or antibody to be measured is quantified from the rate of change in intensity of scattered light of the reaction mixture.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5643382A JPS58173465A (en) | 1982-04-05 | 1982-04-05 | Optical measuring method of antigen and antibody reaction |
US06/481,961 US4766083A (en) | 1982-04-04 | 1983-04-04 | Method for the photometric determination of biological agglutination |
EP83103297A EP0091636B1 (en) | 1982-04-04 | 1983-04-05 | Method for the photometric determination of biological agglutination |
DE8383103297T DE3381979D1 (en) | 1982-04-04 | 1983-04-05 | METHOD FOR PHOTOMETRICALLY DETERMINING BIOLOGICAL AGGLUTINATES. |
AT83103297T ATE58245T1 (en) | 1982-04-04 | 1983-04-05 | PROCEDURE FOR THE PHOTOMETRIC DETERMINATION OF BIOLOGICAL AGGLUTINATES. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5643382A JPS58173465A (en) | 1982-04-05 | 1982-04-05 | Optical measuring method of antigen and antibody reaction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58173465A true JPS58173465A (en) | 1983-10-12 |
JPH042906B2 JPH042906B2 (en) | 1992-01-21 |
Family
ID=13026949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5643382A Granted JPS58173465A (en) | 1982-04-04 | 1982-04-05 | Optical measuring method of antigen and antibody reaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58173465A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102333855A (en) * | 2009-02-25 | 2012-01-25 | 亚历法克斯控股有限公司 | Apparatus to analyze a biological sample |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313492A (en) * | 1976-06-02 | 1978-02-07 | Beckman Instruments Inc | Process and method for immunity nephelometry |
JPS54151495A (en) * | 1978-05-19 | 1979-11-28 | Hitachi Ltd | Nephelometric immuno-assay method |
JPS5694244A (en) * | 1979-12-27 | 1981-07-30 | Chugai Pharmaceut Co Ltd | Quantitative apparatus for determining reaction product of antigen antibody utilizing laser light |
-
1982
- 1982-04-05 JP JP5643382A patent/JPS58173465A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313492A (en) * | 1976-06-02 | 1978-02-07 | Beckman Instruments Inc | Process and method for immunity nephelometry |
JPS54151495A (en) * | 1978-05-19 | 1979-11-28 | Hitachi Ltd | Nephelometric immuno-assay method |
JPS5694244A (en) * | 1979-12-27 | 1981-07-30 | Chugai Pharmaceut Co Ltd | Quantitative apparatus for determining reaction product of antigen antibody utilizing laser light |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102333855A (en) * | 2009-02-25 | 2012-01-25 | 亚历法克斯控股有限公司 | Apparatus to analyze a biological sample |
Also Published As
Publication number | Publication date |
---|---|
JPH042906B2 (en) | 1992-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4766083A (en) | Method for the photometric determination of biological agglutination | |
US4157871A (en) | System for rate immunonephelometric analysis | |
US3881992A (en) | Optical rate measurement method | |
JPS5925460B2 (en) | Nephelometric immunoassay method and device | |
JP2008529024A (en) | Method for quantitative determination of analytes in liquid samples by immunochromatography | |
US4988630A (en) | Multiple beam laser instrument for measuring agglutination reactions | |
US4204837A (en) | Method of rate immunonephelometric analysis | |
EP0254430B1 (en) | Light-scattering immunoassay system | |
JPH06174724A (en) | Immunologically measuring apparatus | |
JPS58172537A (en) | Apparatus for measuring light scattering | |
JPS58173465A (en) | Optical measuring method of antigen and antibody reaction | |
JPH03272466A (en) | Multiple immunologocal evaluating analyzing system | |
JPS6128866A (en) | Measuring method and apparatus for immuno-reaction using fluctuating intensity of light | |
JPS62116263A (en) | Method and apparatus for measuring immunoreaction using multiple scattering of linearly polarized light | |
JPS6166150A (en) | Immunoreaction measuring method | |
JPH0421821B2 (en) | ||
JPH0223825B2 (en) | ||
JP2595267B2 (en) | Methods for measuring substances using photometric evaluation | |
JP7330869B2 (en) | Automatic analysis method and automatic analysis device | |
JPH01313737A (en) | Inspection device for body to be inspected | |
JPS58173455A (en) | Measurement of light scattering | |
JPS61173138A (en) | Method for measuring immune reaction by intensity fluctuation of light | |
JPH01272973A (en) | Method and apparatus for laser magnetic immunoassay | |
JPS6093353A (en) | Immunological measurement method of fdp | |
JPS6165144A (en) | Instrument for measuring immune reaction using intensity fluctuation of light |