JPH042906B2 - - Google Patents

Info

Publication number
JPH042906B2
JPH042906B2 JP57056433A JP5643382A JPH042906B2 JP H042906 B2 JPH042906 B2 JP H042906B2 JP 57056433 A JP57056433 A JP 57056433A JP 5643382 A JP5643382 A JP 5643382A JP H042906 B2 JPH042906 B2 JP H042906B2
Authority
JP
Japan
Prior art keywords
scattered light
antigen
antibody
intensity
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57056433A
Other languages
Japanese (ja)
Other versions
JPS58173465A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5643382A priority Critical patent/JPS58173465A/en
Priority to US06/481,961 priority patent/US4766083A/en
Priority to AT83103297T priority patent/ATE58245T1/en
Priority to DE8383103297T priority patent/DE3381979D1/en
Priority to EP83103297A priority patent/EP0091636B1/en
Publication of JPS58173465A publication Critical patent/JPS58173465A/en
Publication of JPH042906B2 publication Critical patent/JPH042906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、レーザー光源を光源とするネフエロ
メトリツクイムノアツセイによる、抗原或は抗体
の定量方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for quantifying antigens or antibodies by nephelometric immunoassay using a laser light source as a light source.

〔発明の背景〕[Background of the invention]

抗原或は抗体を正確に定量することは、医療分
野だけでなく広く生命科学の諸分野に於いて重要
な課題であり、近年、抗原或は抗体の定量測定の
需要が増大するにつれ、高精度且つ迅速な測定の
実現が強く望まれている。
Accurately quantifying antigens or antibodies is an important issue not only in the medical field but also in various fields of life science.In recent years, as the demand for quantitative measurement of antigens or antibodies has increased, high precision Moreover, it is strongly desired to realize rapid measurement.

従来より広く普及している平板免疫拡散法よる
定量法は、測定に1日〜数日を要し、また、結果
の判読が繁雑で熟練を要し個人差もすきいという
欠点を有している。
The quantitative method using the plate immunodiffusion method, which has been widely used in the past, has the drawbacks that it takes one to several days for measurement, and that the interpretation of the results is complicated and requires skill, and there are large individual differences. There is.

近年、抗原抗体複合物の形成反応を散乱光を用
いて捕え、これを利用して抗原或は抗体の定量を
行おうとするネフエロメトリツクイムノアツセイ
が提案され、操作性、定量精度の向上が図られた
が、この場合でも測定に数十分〜数時間を必要と
しているのが実情で、緊急検査或は多検体の高速
処理の実現には、定量法として未だ不十分なもの
であつた。
In recent years, a nephelometric immunoassay has been proposed, which uses scattered light to capture the formation reaction of antigen-antibody complexes and uses this to quantify antigens or antibodies. However, even in this case, the actual situation is that measurement takes several tens of minutes to several hours, and it is still insufficient as a quantitative method for emergency testing or high-speed processing of multiple samples. .

〔発明の目的〕[Purpose of the invention]

本発明は、上記した如き状況に鑑みなされたも
ので、簡便な操作で定量性良く抗原或は抗体の定
量を行うことができ、しかも、従来行われていた
ネフエロメトリツクイムノアツセイに比較して大
幅に短い時間で精度の高い測定が可能となるネフ
エロメトリツクイムノアツセイによる抗原又は抗
体の新規な定量法を提供することを目的とする。
The present invention was developed in view of the above-mentioned circumstances, and allows for the quantitative determination of antigens or antibodies with a simple operation and with good quantitative accuracy, and is moreover superior to the conventional nephelometric immunoassay. The purpose of the present invention is to provide a new method for quantifying antigens or antibodies using a nephelometric immunoassay, which enables highly accurate measurement in a significantly shorter time.

〔発明の構成〕[Structure of the invention]

本発明は、抗原抗体複合物にレーザー光線を照
射し、生ずる散乱光を測定することにより、抗原
或は抗体の定量を行うネフエロメトリツクイムノ
アツセイに於いて、該散乱光を、レーザー光源か
ら抗原抗体複合物を含む溶液へ照射させるレーザ
ー光の光軸に対して後方30゜から60゜の散乱角θで
選択的に検出し、得られた散乱光強度の変化の時
間に対する一次導関数の最大値から、抗原或は抗
体を定量することを特徴とするネフエロメトリツ
クイムノアツセイの発明である。
The present invention relates to a nephelometric immunoassay in which an antigen or antibody is quantified by irradiating an antigen-antibody complex with a laser beam and measuring the resulting scattered light. Selective detection is performed at a scattering angle θ of 30° to 60° backward with respect to the optical axis of the laser beam irradiated onto the solution containing the antibody complex, and the maximum of the first derivative of the change in the intensity of the scattered light obtained with respect to time is determined. This invention is a nephelometric immunoassay characterized by quantifying antigens or antibodies based on their values.

即ち、本発明者らは、簡便な操作で定量性良く
抗原或は抗体の定量を行うことができ、しかも、
従来のネフエロメトリツクイムノアツセイに比較
して大幅に短い時間で且つ精度の高い測定が可能
となる定量方法を開発すべく鋭意研究の結果、レ
ーザーを光源とするネフエロメトリツクイムノア
ツセイに於いて、溶液中で抗原抗体複合物が形成
される反応の初期に、抗原抗体複合物に起因する
散乱光強度が極めて鋭敏に変化する散乱角θ(散
乱角θの意味する角度については第2図参照)が
存在し、この散乱角θで得られる散乱光強度Sの
変化の時間Tに対する一次導関数(dS/dT)の
最大値を用いて抗原或は抗体の定量を行つた場合
には、従来行われていたネフエロメトリツクイム
ノアツセイに比較して大幅に短い時間で且つ精度
の高い定量が可能となることを見出し、本発明を
完成するに至つた。
That is, the present inventors were able to quantify antigens or antibodies with good quantitative accuracy using simple operations, and
As a result of intensive research to develop a quantitative method that enables highly accurate measurements in a significantly shorter time than conventional nephelometric immunoassays, we have developed a nephelometric immunoassay that uses a laser as a light source. At the initial stage of the reaction in which an antigen-antibody complex is formed in a solution, the scattering angle θ at which the intensity of scattered light caused by the antigen-antibody complex changes extremely sharply (see Figure 2 for the meaning of the scattering angle θ). ), and when the antigen or antibody is quantified using the maximum value of the first derivative (dS/dT) of the change in scattered light intensity S with respect to time T obtained at this scattering angle θ, The present inventors have discovered that quantification can be performed in a significantly shorter time and with higher precision than in conventional nephelometric immunoassays, leading to the completion of the present invention.

本発明に於いて、散乱光強度を測定する散乱角
θとしては、30゜〜60゜が挙げられる。この範囲で
あれば抗原抗体反応の結果生ずる抗原抗体複合物
に起因する散乱光の立ち上がりが最も鋭敏であ
り、且つ高精度での測定が実施できる。
In the present invention, the scattering angle θ for measuring the intensity of scattered light may range from 30° to 60°. Within this range, the rise of the scattered light caused by the antigen-antibody complex resulting from the antigen-antibody reaction is most sensitive, and measurement can be performed with high precision.

一方、θが30゜よりも小さい場合には、散乱光
強度自体が微弱となり、また、反応容器自体から
の反射光の影響が強くなり測定精度が低下してし
まう。
On the other hand, if θ is smaller than 30°, the intensity of the scattered light itself will be weak, and the influence of the reflected light from the reaction vessel itself will be strong, resulting in a decrease in measurement accuracy.

本発明を実施するには、例えば以下の如く行え
ばよい。
The present invention may be carried out, for example, as follows.

即ち、第3図に示す如き散乱光測定装置を用
い、測定対象物である抗原或は抗体を含む溶液と
対応する抗体或は抗原とを反応キユベツト2に於
いて混合反応せしめ、この混合液を含むキユベツ
ト2にレーザー光線を照射し、生ずる散乱光の強
度を、レーザー光源から上記混合液へ照射される
レーザー光の光軸に対て後30゜〜60゜の散乱角θで
選択的に光検出器3により検出し、得られた散乱
光強度をコンピユータ7で処理し、その変化の時
間に対する一次導関数の最大値を求める。この最
大値と、予め濃度既知の測定対象物を含む試料を
用いて同様の操作を行つて作成した測定対象物濃
度とその上記一次導関数の最大値との関係を表わ
す検量線から、測定対象物を定量することができ
る。
That is, using a scattered light measuring device as shown in FIG. 3, a solution containing an antigen or antibody to be measured and a corresponding antibody or antigen are mixed and reacted in a reaction cuvette 2, and this mixed solution is A laser beam is irradiated onto the cube 2 containing the mixed liquid, and the intensity of the resulting scattered light is selectively detected at a scattering angle θ of 30° to 60° with respect to the optical axis of the laser beam irradiated from the laser light source to the above-mentioned mixed liquid. The scattered light intensity is detected by the detector 3, and the obtained scattered light intensity is processed by the computer 7, and the maximum value of the first derivative of the change with respect to time is determined. From this maximum value, a calibration curve representing the relationship between the concentration of the analyte created by performing the same operation using a sample containing the analyte of known concentration and the maximum value of the above first derivative, the analyte Be able to quantify things.

尚、第3図に於いて、各番号は、夫々以下のも
のを示す。
In addition, in FIG. 3, each number indicates the following.

1:レーザー光源、2:測定対象物である抗原
或は抗体を含む溶液と対応する抗体或は抗原との
混合液(以下、被検液と略記する。)4を保持す
るための反応キユベツト、3:後方散乱光を測定
するための光検出器、4:被検液、5:信号前処
理器(信号の電気増幅及び該信号の微分処理を行
う。)、6:A/D変換器、7:コンピユーター、
8:コンピユーターで処理したデータの表示印字
部、9:試薬分注機構並びに自動検体準備機構、
10:反応過程を連続的に観測する記録計。
1: a laser light source; 2: a reaction cuvette for holding a mixed solution (hereinafter abbreviated as test solution) 4 of a solution containing an antigen or antibody to be measured and a corresponding antibody or antigen; 3: Photodetector for measuring backscattered light, 4: Test liquid, 5: Signal preprocessor (electrical amplification of the signal and differential processing of the signal), 6: A/D converter, 7: Computer,
8: Display and print section for data processed by computer, 9: Reagent dispensing mechanism and automatic sample preparation mechanism,
10: Recorder that continuously observes the reaction process.

本発明に利用される散乱光測定装置に於いて用
いられるレーザー光源としては、例えば発振波長
632.8nmのヘリウムネオンレーザー、700〜
800nmの可視近赤外半導体レーザー等が挙げら
れ、反応キユベツトとしては、例えば内径5mmの
試験管キユベツトが挙げられ、光検出器としては
通常の光電変換素子が挙げられる。
The laser light source used in the scattered light measuring device used in the present invention includes, for example, the oscillation wavelength
632.8nm helium neon laser, 700~
Examples include a visible near-infrared semiconductor laser of 800 nm, examples of the reaction cuvette include a test tube cuvette with an inner diameter of 5 mm, and examples of the photodetector include an ordinary photoelectric conversion element.

本発明は、レーザー光源を光源とするネフエロ
メトリツクイムノアツセイ於いて、散乱角θ=
30゜〜60゜の範囲で散乱光を測定し、その変化の時
間に対する一次導関数の最大値から、測定対象物
を測定すると、従来行われていたネフエロメトリ
ツクイムノアツセイに比較して大幅に短い時間で
且つ精度の高い測定が可能となることを見出した
点に特徴を有する発明であるが、従来の免疫比ろ
う法では単に散乱光強度のみに注目していたた
め、本発明で言う散乱角θが90゜<θ<180゜の範
囲に於ける散乱光、即ち前方散乱光の利用が一般
的であり、後方散乱光を測定することによりこの
様な利点が生じるということは意外なことであつ
た。
The present invention provides a nephelometric immunoassay using a laser light source as a light source, in which the scattering angle θ=
By measuring the scattered light in the range of 30° to 60° and measuring the object from the maximum value of the first derivative with respect to time of change, the result is significantly greater than the conventional nephelometric immunoassay. This invention is characterized by the discovery that it is possible to perform highly accurate measurements in a short period of time. Scattered light in the angle θ range of 90° < θ < 180°, that is, forward scattered light, is commonly used, and it is surprising that measuring backscattered light provides such advantages. It was hot.

以下に、実験例、参考例及び実施例を挙げ、本
発明を更に詳細に説明するが、本発明これらによ
り何ら制限されるものではない。
EXAMPLES The present invention will be explained in more detail below by giving experimental examples, reference examples, and examples, but the present invention is not limited by these in any way.

〔実施例〕〔Example〕

実験例 1 抗原抗体反応の結果生ずる抗原抗体複合物に起
因する散乱光強度の時間的変化を、散乱角θを変
化させて測定を行つた。
Experimental Example 1 Temporal changes in the intensity of scattered light caused by the antigen-antibody complex generated as a result of the antigen-antibody reaction were measured by varying the scattering angle θ.

結果を第1図a及びbに示す。 The results are shown in Figures 1a and b.

第1図aのAは、反応キユベツト2の中心を通
るレーザー光軸と光検出器3のなす角度θが50゜
の場合の抗原抗体反応の結果生ずる抗原抗体複合
物に起因する散乱光強度Sの経時変化を測定した
結果を示したものであり、第1図aのBはレーザ
ー光軸と光検出器3のなす角度θが150゜の場合の
抗原抗体反応の結果生ずる抗原抗体複合物に起因
する散乱光強度Sの経時変化を測定した結果を示
したものである。また、第1図aに於いて、該抗
原抗体複合物に起因する散乱光強度が一定のレベ
ルになるまでに要する時間は、散乱角θ=50゜の
場合はTAで示され、散乱角θ=150゜の場合はTB
で示されている。
A in Figure 1a is the scattered light intensity S caused by the antigen-antibody complex produced as a result of the antigen-antibody reaction when the angle θ between the laser optical axis passing through the center of the reaction cube 2 and the photodetector 3 is 50°. B in Figure 1a shows the results of measuring changes over time in the antigen-antibody complex produced as a result of the antigen-antibody reaction when the angle θ between the laser optical axis and the photodetector 3 is 150°. This figure shows the results of measuring changes over time in the scattered light intensity S caused by the scattering. In addition, in Figure 1a, the time required for the intensity of the scattered light caused by the antigen-antibody complex to reach a certain level is indicated by T A when the scattering angle θ = 50°, When θ=150°, T B
is shown.

第1図aの結果から明らかな如く、測定に要す
る時間は、散乱角θ=50゜で測定した場合の方が、
散乱角θ=150゜で測定を行つた場合に比較して、
明らかに短時間で測定を行えることが判る。
As is clear from the results in Figure 1a, the time required for measurement is longer when measuring at a scattering angle θ = 50°.
Compared to the case where measurement is performed at scattering angle θ = 150°,
It is clear that measurements can be made in a short time.

また、第1図bは、第1図aのAを時間に対し
て微分処理(dS/dT)、即ち散乱光強度Sの変
化の時間Tに対する一次導関数により得られる値
をグラフに表わしたものである。
In addition, Fig. 1b shows a graph of the value obtained by differentiating A in Fig. 1a with respect to time (dS/dT), that is, the first derivative of the change in scattered light intensity S with respect to time T. It is something.

これらの結果から明らかな如く、上記一次導関
数の最大値が出現する時間TCは、TAよりも更に
短いこと、言い換えれば、本発明の方法により測
定対象物の測定を行つた場合には、従来行われて
いたネフエロメトリツクイムノアツセイに比較し
て、極めて短時間のうちに測定を行えることは明
らかである。
As is clear from these results, the time T C at which the maximum value of the first derivative appears is even shorter than T A. In other words, when the object to be measured is measured by the method of the present invention, It is clear that measurements can be carried out in an extremely short time compared to conventional nephelometric immunoassays.

実施例 1 フイブリノーゲン(FIB)の測定 (検 体) 所定濃度のFIBを含む標準血漿を生理食塩水で
21倍に希釈したものを検体とした。
Example 1 Measurement of fibrinogen (FIB) (sample) Standard plasma containing FIB at a specified concentration was dissolved in physiological saline.
The sample was diluted 21 times.

(測定試薬) ウサギ由来の抗FIB血清の12.5倍希釈液を用い
た。
(Measurement reagent) A 12.5-fold dilution of rabbit-derived anti-FIB serum was used.

(操作法) 第3図に示す構成から成る散乱光測定装置を用
いて以下の操作を行つた。尚、光検出器はθ=
50゜の位置に固定した。
(Operation Method) The following operations were performed using a scattered light measuring device having the configuration shown in FIG. In addition, the photodetector is θ=
It was fixed at a position of 50°.

検体50μ1及び測定試薬300μ1を、内径50mmの試
験管型反応キユベツトに取り、良く混合し、散乱
光強度を測定し、その変化の時間に対する一次導
関数の最大値Pを求めた。
50 μl of the sample and 300 μl of the measurement reagent were placed in a test tube type reaction cube with an inner diameter of 50 mm, mixed well, the scattered light intensity was measured, and the maximum value P of the first derivative of its change with respect to time was determined.

(結 果) 得られた結果を第4に示す。尚、第4図は、横
軸の各FIB濃度(mg/d1)に対して得られた散乱
光強度の一次導関数の最大値Pを縦軸に沿つてプ
ロツトした点を結んだものである。
(Results) The obtained results are shown in the fourth section. In addition, Fig. 4 connects the points where the maximum value P of the first derivative of the scattered light intensity obtained for each FIB concentration (mg/d1) on the horizontal axis is plotted along the vertical axis. .

この結果から明らかな如く、良好な検量関係が
得られることが判る。
As is clear from this result, it can be seen that a good calibration relationship can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明は、レーザーを光源と
するネフエロメトリツクイムノアツセイに於い
て、散乱角θ=30゜〜60゜の範囲で抗原抗体反応の
結果生ずる抗原抗体複合物に起因する散乱光の強
度を測定し、その変化の時間に対する一次導関数
の最大値から、測定対象物である抗原或は抗体を
定量する点に特徴を有する発明であり、従来行わ
れていたネフエロメトリツクイムノアツセイによ
る同様な定量方法に比較して、大幅に短い時間で
且つ精度の高い定量が可能となる定量方法を提供
するものであり、斯業に大なる貢献を成す発明で
ある。
As described above, the present invention is applicable to nephelometric immunoassay using a laser as a light source, in which scattering due to antigen-antibody complexes resulting from antigen-antibody reactions occurs at a scattering angle θ = 30° to 60°. This invention is characterized by measuring the intensity of light and quantifying the antigen or antibody to be measured from the maximum value of the first derivative with respect to the time of its change. This invention provides a quantitative method that enables highly accurate quantitative determination in a significantly shorter time than a similar quantitative assay method, and thus makes a great contribution to this industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、実験例1に於いて得られた、測定
対象物である抗原或は抗体を含む溶液と対応する
抗体或は抗源との混合溶液にレーザー光線を照射
した場合に得られる散乱光強度Sの時間の経過に
よる変化を示すものであり、横軸の各時間に対し
て得られたS値を縦軸に沿つてプロツトした点を
結んだものである。第1図bは、第1図aのAを
時間に対して微分処理して得られた結果を示す。
第2図は、本発明に於いて用いられる散乱光測定
装置の光学系の原理図である。尚、図中の各部に
付された番号は第3図のそれと同じである。第3
図は、本発明の散乱光測定装置の概略図を示すも
のである。 1……レーザー光源、2……測定対象物である
抗原或は抗体を含む溶液と対応する抗体或は抗原
との混合液(以下、被検液と略記する。)4を保
持するための反応キユベツト、3……後方散乱光
を測定するための光検出器、4……被検液、5…
…信号前処理器、6……A/D変換器、7……コ
ンピユーター、8……コンピユーター7で処理し
たデータの表示印字部、9……試薬分注機構並び
に自動検体準備機構、10……反応過程を連続的
に観測する記録計。第4図は、実施例1に於いて
得られた、フイブリノーゲン濃度(mg/d1)と、
散乱光強度Sの変化を時間に対して微分して得ら
れるdS/dT値の最大値Pとの関係を表わす検量
線である。
Figure 1a shows the scattering obtained when a laser beam is irradiated to a mixed solution containing the antigen or antibody to be measured and the corresponding antibody or antigen source obtained in Experimental Example 1. It shows the change in light intensity S over time, and is a graph connecting the points obtained by plotting the S value obtained for each time on the horizontal axis along the vertical axis. FIG. 1b shows the result obtained by differentiating A in FIG. 1a with respect to time.
FIG. 2 is a diagram showing the principle of the optical system of the scattered light measuring device used in the present invention. Note that the numbers assigned to each part in the figure are the same as those in FIG. 3. Third
The figure shows a schematic diagram of a scattered light measuring device of the present invention. 1... Laser light source, 2... Reaction for retaining a mixed solution (hereinafter abbreviated as test solution) 4 of a solution containing an antigen or antibody to be measured and the corresponding antibody or antigen. Cuvette, 3... Photodetector for measuring backscattered light, 4... Test liquid, 5...
...Signal preprocessor, 6...A/D converter, 7...Computer, 8...Display and print section for data processed by computer 7, 9...Reagent dispensing mechanism and automatic sample preparation mechanism, 10... A recorder that continuously observes the reaction process. FIG. 4 shows the fibrinogen concentration (mg/d1) obtained in Example 1,
This is a calibration curve showing the relationship with the maximum value P of the dS/dT value obtained by differentiating the change in the scattered light intensity S with respect to time.

Claims (1)

【特許請求の範囲】[Claims] 1 抗原抗体複合物にレーザー光線を照射し、生
ずる散乱光を測定することにより、抗原或は抗体
の定量を行うネフエロメトリツクイムノアツセイ
に於いて、該散乱光の強度を、レーザー光源から
抗原抗体複合物を含む溶液へ照射されるレーザー
光の光軸に対して後方30゜から60゜の散乱角θで選
択的に検出し、得られた散乱光強度の変化の時間
に対する一次導関数の最大値から、抗原或は抗体
を定量することを特徴とするネフエロメトリツク
イムノアツセイ。
1. In nephelometric immunoassays, which quantify antigens or antibodies by irradiating the antigen-antibody complex with a laser beam and measuring the resulting scattered light, the intensity of the scattered light is measured from the laser light source to the antigen-antibody complex. Selective detection is performed at a scattering angle θ of 30° to 60° backward from the optical axis of the laser beam irradiated onto the solution containing the compound, and the maximum of the first derivative of the change in the intensity of the scattered light with respect to time is determined. A nephelometric immunoassay characterized by quantifying antigens or antibodies from values.
JP5643382A 1982-04-04 1982-04-05 Optical measuring method of antigen and antibody reaction Granted JPS58173465A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5643382A JPS58173465A (en) 1982-04-05 1982-04-05 Optical measuring method of antigen and antibody reaction
US06/481,961 US4766083A (en) 1982-04-04 1983-04-04 Method for the photometric determination of biological agglutination
AT83103297T ATE58245T1 (en) 1982-04-04 1983-04-05 PROCEDURE FOR THE PHOTOMETRIC DETERMINATION OF BIOLOGICAL AGGLUTINATES.
DE8383103297T DE3381979D1 (en) 1982-04-04 1983-04-05 METHOD FOR PHOTOMETRICALLY DETERMINING BIOLOGICAL AGGLUTINATES.
EP83103297A EP0091636B1 (en) 1982-04-04 1983-04-05 Method for the photometric determination of biological agglutination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5643382A JPS58173465A (en) 1982-04-05 1982-04-05 Optical measuring method of antigen and antibody reaction

Publications (2)

Publication Number Publication Date
JPS58173465A JPS58173465A (en) 1983-10-12
JPH042906B2 true JPH042906B2 (en) 1992-01-21

Family

ID=13026949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5643382A Granted JPS58173465A (en) 1982-04-04 1982-04-05 Optical measuring method of antigen and antibody reaction

Country Status (1)

Country Link
JP (1) JPS58173465A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1393218B1 (en) * 2009-02-25 2012-04-11 Alifax Holding S P A EQUIPMENT FOR ANALYZING A BIOLOGICAL SAMPLE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313492A (en) * 1976-06-02 1978-02-07 Beckman Instruments Inc Process and method for immunity nephelometry
JPS54151495A (en) * 1978-05-19 1979-11-28 Hitachi Ltd Nephelometric immuno-assay method
JPS5694244A (en) * 1979-12-27 1981-07-30 Chugai Pharmaceut Co Ltd Quantitative apparatus for determining reaction product of antigen antibody utilizing laser light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313492A (en) * 1976-06-02 1978-02-07 Beckman Instruments Inc Process and method for immunity nephelometry
JPS54151495A (en) * 1978-05-19 1979-11-28 Hitachi Ltd Nephelometric immuno-assay method
JPS5694244A (en) * 1979-12-27 1981-07-30 Chugai Pharmaceut Co Ltd Quantitative apparatus for determining reaction product of antigen antibody utilizing laser light

Also Published As

Publication number Publication date
JPS58173465A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
US4766083A (en) Method for the photometric determination of biological agglutination
US4421860A (en) Homogeneous fluoroimmunoassay involving autocorrelation processing of optically sensed signals
US4446239A (en) Light scattering immunoassay involving particles with selective frequency band apparatus
US4157871A (en) System for rate immunonephelometric analysis
US3990851A (en) Process and device for measuring antigen-antibody reactions
US4407964A (en) Homogeneous fluoroimmunoassay involving sensing radiation for forward and back directions
US4203724A (en) Method and apparatus for the measurement of antigens and antibodies
JPS5925460B2 (en) Nephelometric immunoassay method and device
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
EP0222341B1 (en) A method for immunoassay and reagents therefor
US4204837A (en) Method of rate immunonephelometric analysis
JP3283078B2 (en) Immunological measurement device
NO149864B (en) IMMUNOLOGICAL REAGENT.
JPS638560A (en) Immunological analytic system
JPH042906B2 (en)
JPS6128866A (en) Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
JPH0421821B2 (en)
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
JPH0233097B2 (en)
CN103529208A (en) Homogeneous-phase immunoassay method
GB1600069A (en) Method for the measurement of antigens and antibodies
JPS63247644A (en) Method for measuring immune reaction
CA1112473A (en) Method and combination for detecting specific binding substances
JPS6093353A (en) Immunological measurement method of fdp