JP5029638B2 - Blood coagulation analyzer - Google Patents

Blood coagulation analyzer Download PDF

Info

Publication number
JP5029638B2
JP5029638B2 JP2009065462A JP2009065462A JP5029638B2 JP 5029638 B2 JP5029638 B2 JP 5029638B2 JP 2009065462 A JP2009065462 A JP 2009065462A JP 2009065462 A JP2009065462 A JP 2009065462A JP 5029638 B2 JP5029638 B2 JP 5029638B2
Authority
JP
Japan
Prior art keywords
coagulation
time
measurement
amount
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009065462A
Other languages
Japanese (ja)
Other versions
JP2010217059A (en
Inventor
弘治 谷水
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009065462A priority Critical patent/JP5029638B2/en
Publication of JP2010217059A publication Critical patent/JP2010217059A/en
Application granted granted Critical
Publication of JP5029638B2 publication Critical patent/JP5029638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、血液の凝固時間を測定するための血液凝固分析装置に関する。   The present invention relates to a blood coagulation analyzer for measuring blood coagulation time.

血液凝固分析は、血液検体(血漿)に所定の試薬を添加し、該試薬の添加時点から凝固塊が形成されるまでの時間を測定するものである。従来、こうした血液凝固分析は、検査者の手作業による用手法で行われていたが、近年では、検体への試薬の添加から凝固塊形成の検出、凝固時間の算出までを自動的に行うことのできる血液凝固分析装置が開発され、臨床検査等の分野で広く用いられている。   In blood coagulation analysis, a predetermined reagent is added to a blood sample (plasma), and the time from when the reagent is added until a clot is formed is measured. Conventionally, such blood coagulation analysis has been performed manually by the examiner, but in recent years, from the addition of reagents to specimens, the detection of clot formation and the calculation of coagulation time are automatically performed. Blood coagulation analyzers that can be used have been developed and are widely used in fields such as clinical tests.

上記のような血液凝固分析装置では、通常、反応液(所定の試薬を添加した血液検体)に一定光量の光を照射し、該反応液からの散乱光量を継続的に測定することで凝固塊の形成を検出している(例えば、特許文献1を参照)。図4は血液凝固反応における理想的な反応プロファイルを表したものであり、横軸が試薬添加時点からの経過時間、縦軸が反応液からの散乱光量である。同図に示すように、通常の血液凝固反応では、試薬添加からある程度の時間が経過した時点で凝固塊が形成されて散乱光量が急激に上昇し、その後、凝固塊形成が完了することで散乱光量が飽和する。従って、こうした散乱光量の経時変化を解析することで前記凝固塊の形成を検出することが可能であり、これに基づいて凝固時間を算出することができる。   In the blood coagulation analyzer as described above, a coagulated mass is usually obtained by irradiating a reaction liquid (blood sample added with a predetermined reagent) with a certain amount of light and continuously measuring the amount of light scattered from the reaction liquid. Is detected (see, for example, Patent Document 1). FIG. 4 shows an ideal reaction profile in the blood coagulation reaction, in which the horizontal axis represents the elapsed time from the time of reagent addition, and the vertical axis represents the amount of scattered light from the reaction solution. As shown in the figure, in a normal blood coagulation reaction, when a certain amount of time has passed since the addition of the reagent, a clot is formed and the amount of scattered light rises rapidly, and then the clot is formed by completing the formation of the clot. The light intensity is saturated. Therefore, it is possible to detect the formation of the coagulated mass by analyzing such a change in the amount of scattered light over time, and the coagulation time can be calculated based on this.

以下、従来の血液凝固分析装置における凝固時間の算出手順について図4を参照しつつ説明する。まず、血液凝固分析装置は、血液検体を収容したセルに光を照射して散乱光量の測定を開始し、次いで、該検体に所定の試薬を添加する。そして、所定の時間間隔で順次取得される散乱光量のデータをリアルタイムで解析し、該散乱光量の経時変化に基づいて凝固終了点aを検出する。ここでは、例えば、前記散乱光量の時間微分又は二階微分を利用して反応プロファイルの変曲点や飽和到達点等を検出し、これを凝固終了点aとする。   The procedure for calculating the coagulation time in the conventional blood coagulation analyzer will be described below with reference to FIG. First, the blood coagulation analyzer starts measurement of the amount of scattered light by irradiating a cell containing a blood sample with light, and then adds a predetermined reagent to the sample. Then, the scattered light quantity data sequentially obtained at predetermined time intervals is analyzed in real time, and the coagulation end point a is detected based on the change with time of the scattered light quantity. Here, for example, an inflection point or a saturation arrival point of the reaction profile is detected using time differentiation or second order differentiation of the scattered light amount, and this is set as a coagulation end point a.

次に、上記で検出した凝固終了点aにおける散乱光量が所定の閾値(以下、これを「光量閾値」と呼ぶ)以上であるか否かを判定し、該光量閾値以上であれば散乱光量の測定を終了する。このように、条件を満たす点が見つかった時点で測定を終了することにより、分析時間の短縮を図ることができ、多検体測定におけるスループットを向上させることができる。   Next, it is determined whether or not the amount of scattered light at the coagulation end point a detected above is equal to or greater than a predetermined threshold (hereinafter referred to as “light amount threshold”). End measurement. Thus, by terminating the measurement when a point satisfying the condition is found, the analysis time can be shortened and the throughput in multi-sample measurement can be improved.

続いて、前記凝固終了点aの散乱光量の1/N(Nは予め定められた1より大きい数)に達した時刻を求めてこれを凝固点bとし、試薬の添加から該凝固点bまでの経過時間を求めることで凝固時間を算出する。なお、前記のNは、測定に使用する試薬や装置によって変化する値であり、熟練した検査者による用手法での測定結果との整合を考慮して予め決定される。   Subsequently, a time at which 1 / N (N is a predetermined number greater than 1) of the amount of scattered light at the coagulation end point a is obtained, and this is set as the coagulation point b, and the process from the addition of the reagent to the coagulation point b is performed. The coagulation time is calculated by obtaining the time. The above N is a value that varies depending on the reagent and apparatus used for the measurement, and is determined in advance in consideration of the consistency with the measurement result obtained by a technique used by a skilled inspector.

一方、凝固終了点aにおける散乱光量が前記の光量閾値未満であった場合には、該凝固終了点aを取り消して測定を継続する。その後、所定の時間が経過するまでに条件を満たす点が発見されなかった場合は、測定不能と判定してその旨をユーザに通知する。   On the other hand, if the amount of scattered light at the coagulation end point a is less than the light amount threshold, the coagulation end point a is canceled and the measurement is continued. After that, if a point that satisfies the condition is not found before the predetermined time elapses, it is determined that measurement is impossible and the user is notified accordingly.

特開平4-318463号公報Japanese Patent Laid-Open No. 4-318463

しかしながら、図4の反応プロファイルはあくまで理想的なものであり、検査項目の違い(即ち添加する試薬等の違い)によっては、散乱光量が上記のような理想的変化を示さない場合がある。例えば、APTT(Activated Partial Thromboplastin Time:活性化部分トロンボプラスチン時間)項目の測定では、図5の実線で示すように、反応初期において一時的に散乱光量の変化が少なくなる部分(これを「プレピーク」と呼ぶ)が生じることがある。また、ヘパリン投与や因子欠乏などにより凝固時間が長い検体では、本来の凝固反応によるピークが出現する前に散乱光量の微妙な変化が見られる場合がある。   However, the reaction profile in FIG. 4 is ideal only, and the amount of scattered light may not show the ideal change as described above depending on the difference in the inspection item (that is, the difference in the added reagent or the like). For example, in the measurement of the APTT (Activated Partial Thromboplastin Time) item, as shown by the solid line in FIG. 5, the portion where the change in the amount of scattered light temporarily decreases in the initial reaction (this is referred to as “pre-peak”). May occur). In addition, in a specimen having a long coagulation time due to heparin administration or factor deficiency, a slight change in the amount of scattered light may be seen before the peak due to the original coagulation reaction appears.

このようなプレピークや微妙な光量変化に基づいて凝固時間が判定されるのを防止するためには、前記の光量閾値を高く設定することが考えられる。例えば、図5の実線のような反応プロファイルを示す検体の場合、光量閾値を500に設定すれば、プレピークを無視して後に現れる本来のピークを凝固時間の算出に用いることができる。   In order to prevent the determination of the coagulation time based on such a pre-peak or subtle light quantity change, it is conceivable to set the light quantity threshold value high. For example, in the case of a specimen showing a reaction profile as shown by the solid line in FIG. 5, if the light intensity threshold is set to 500, the original peak that appears after ignoring the pre-peak can be used for the calculation of the coagulation time.

しかし、光量閾値を高く設定した場合、低フィブリノーゲン検体(Fib100mg/dl以下)のように散乱光量の変化量が少ない検体では、本来のピークに基づいて前記凝固終了点が決定された場合でも、該凝固終了点aの散乱光量が前記光量閾値を満たさずに凝固時間を算出できなくなる場合がある。例えば、図5の一点鎖線のような反応プロファイルを示す検体の場合、光量閾値が250であれば、凝固終了点の散乱光量が該閾値を超えるので凝固時間を測定できるが、光量閾値が500に設定された場合には測定不能となる。このような場合には、検体量を増やして再検査したり、用手法による測定を行ったりする必要があった。   However, when the light amount threshold is set high, even in the case where the amount of change in the amount of scattered light is small, such as a low fibrinogen sample (Fib 100 mg / dl or less), even when the coagulation end point is determined based on the original peak, In some cases, the amount of scattered light at the coagulation end point a does not satisfy the light amount threshold, and the coagulation time cannot be calculated. For example, in the case of a specimen showing a reaction profile such as a one-dot chain line in FIG. 5, if the light amount threshold is 250, the amount of scattered light at the coagulation end point exceeds the threshold, so that the coagulation time can be measured. If set, measurement is impossible. In such a case, it is necessary to increase the amount of the sample and perform a reexamination, or to perform a measurement using a method.

そこで、上述のような凝固時間の算出機能に加えて、算出された凝固時間が正常な凝固反応に基づくものであるか否かを判定するノイズ判定機能を備えた装置も開発されている。例えば、APTT項目では、前記凝固点における散乱光量と凝固時間との間に図6に示すような分散関係があり、正常な凝固反応では図中のノイズ判定ラインより下の領域のデータは発生しないことが実測により判明している。そこで、上記のような血液凝固分析の結果が図6のノイズ判定ラインよりも下であった場合には、ノイズのおそれがあると判定し、測定結果を記載した測定レポートを出力する際に該ノイズ判定の結果を付記してユーザに注意を促していた。このようにすることで、光量閾値を低く設定した場合であっても、プレピーク等による誤った凝固時間が検査結果として採用されるのを防止することができる。   Therefore, in addition to the above-described calculation function of the coagulation time, an apparatus having a noise determination function for determining whether or not the calculated coagulation time is based on a normal coagulation reaction has been developed. For example, in the APTT item, there is a dispersion relationship as shown in FIG. 6 between the amount of scattered light and the coagulation time at the freezing point, and data in the area below the noise judgment line in the figure does not occur in a normal coagulation reaction. Is found by actual measurement. Therefore, if the result of the blood coagulation analysis as described above is below the noise judgment line in FIG. 6, it is judged that there is a risk of noise, and the measurement report describing the measurement result is output when the measurement report is output. The result of noise judgment was added to alert the user. By doing in this way, even if it is a case where a light quantity threshold value is set low, it can prevent that the incorrect coagulation time by a pre peak etc. is employ | adopted as a test result.

しかしながら、上記従来のノイズ判定機能を備えた血液凝固分析装置では、光量閾値を満たす凝固終了点が検出された時点で散乱光量の測定を終了し、その後に、上記のようなノイズ判定を行うため、プレピーク等に基づいて誤った凝固終了点を決定してしまった場合、後に現れるはずの正常なピークは観測されないままとなっていた。そのため、ユーザが前記のような測定レポートを参照して凝固時間の判定結果の信頼性が低いと判断した場合には、条件を変更して測定をやり直す必要があり煩雑であった。   However, in the blood coagulation analyzer having the conventional noise determination function, the measurement of the scattered light amount is terminated when the coagulation end point satisfying the light amount threshold is detected, and then the noise determination as described above is performed. When the wrong solidification end point was determined based on the pre-peak or the like, the normal peak that should appear later was not observed. For this reason, when the user refers to the measurement report as described above and determines that the reliability of the determination result of the coagulation time is low, it is necessary to change the conditions and perform the measurement again, which is troublesome.

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、プレピークの生じる検体や低フィブリノーゲン検体であっても一度の測定で適切に凝固時間を算出することのできる血液凝固分析装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to obtain a blood coagulation that can appropriately calculate the coagulation time by a single measurement even for a pre-peaked specimen or a low fibrinogen specimen. An analyzer is provided.

上記課題を解決するために成された本発明に係る血液凝固分析装置は、
a)血液検体に光を照射して該血液検体からの散乱光量を測定する測定手段と、
b)前記測定手段で測定される散乱光量値を所定の時間間隔で取得し、前記血液検体に所定の試薬が添加された後の散乱光量値の経時変化に基づいて凝固終了点を検出する凝固終了点検出手段と、
c)前記凝固終了点における散乱光量の1/N(Nは1以上の所定の値)の散乱光量に達した時点を凝固点とし、前記試薬の添加時点から該凝固点までの経過時間を凝固時間として算出する凝固時間算出手段と、
d)前記凝固時間が正常なものか否かを判定する判定手段と、
e)前記判定手段により前記凝固時間が正常なものと判定された場合には前記測定手段による測定を終了させ、それ以外の場合には前記測定手段による測定を継続させると共に、該継続測定開始以降の各時点を凝固終了点と仮定して前記凝固時間算出手段による凝固時間の算出及び前記判定手段による判定を逐次実行させ、該判定手段により凝固時間が正常なものであると判定されれば前記測定手段による測定を終了させる制御手段と、
を有することを特徴としている。
A blood coagulation analyzer according to the present invention, which has been made to solve the above problems,
a) a measuring means for irradiating a blood sample with light to measure the amount of scattered light from the blood sample;
b) Coagulation that obtains a scattered light amount value measured by the measuring means at a predetermined time interval and detects a coagulation end point based on a change over time in the scattered light amount value after a predetermined reagent is added to the blood sample. End point detection means;
c) The point at which the amount of scattered light reaches 1 / N (N is a predetermined value of 1 or more) of the amount of scattered light at the end point of coagulation is defined as the freezing point, and the elapsed time from the point of addition of the reagent to the coagulation point is defined as the coagulation time. A coagulation time calculating means for calculating;
d) determining means for determining whether the coagulation time is normal;
e) When the determination means determines that the coagulation time is normal, the measurement by the measurement means is terminated; otherwise, the measurement by the measurement means is continued and after the start of the continuous measurement Assuming that each time point is the end point of coagulation, the calculation of the coagulation time by the coagulation time calculation unit and the determination by the determination unit are sequentially executed, and if the determination unit determines that the coagulation time is normal, Control means for terminating the measurement by the measuring means;
It is characterized by having.

また、上記本発明に係る血液凝固分析装置は、前記制御手段が、前記継続測定の実行中に散乱光量の立ち上がりが確認された場合に前記凝固終了点検出手段による凝固終了点の検出を再開させ、これにより前記立ち上がりの開始以降において凝固終了点が検出されれば、前記凝固時間算出手段による凝固時間の算出、及び前記判定手段による判定を実行させるものとすることが望ましい。   In the blood coagulation analyzer according to the present invention, the control means restarts the detection of the coagulation end point by the coagulation end point detection means when the rising of the amount of scattered light is confirmed during the continuous measurement. Thus, if the end point of coagulation is detected after the start of the rise, it is desirable to execute the calculation of the coagulation time by the coagulation time calculation unit and the determination by the determination unit.

なお、前記判定手段は、例えば、前記凝固点における散乱光量と前記凝固時間との組合せから該凝固時間が正常なものか否かを判定するものとすることができる。   In addition, the said determination means shall determine whether this coagulation time is normal from the combination of the amount of scattered light in the said solidification point, and the said coagulation time, for example.

上記のような構成によれば、プレピーク等の本来の凝固反応に由来しない光量変化に基づいて凝固終了点の決定及び凝固時間の算出がなされた場合には、前記判定手段によって該凝固時間が正常なものでないと判定されて、正常な凝固時間が求められるまで散乱光量の測定が継続される。そのため、上記のようなプレピーク等を生じる検体であっても後の正常なピークに基づいて凝固時間を算出することができ、信頼性の高い血液凝固分析を行うことが可能となる。   According to the above configuration, when the coagulation end point is determined and the coagulation time is calculated based on the light amount change not derived from the original coagulation reaction such as a pre-peak, the coagulation time is normal by the determination unit. Measurement of the amount of scattered light is continued until it is determined that the normal coagulation time is determined. Therefore, even for a specimen that generates the above-described pre-peak or the like, the clotting time can be calculated based on the subsequent normal peak, and a highly reliable blood clotting analysis can be performed.

本発明の一実施例に係る血液凝固分析装置の概略構成を示すブロック図。1 is a block diagram showing a schematic configuration of a blood coagulation analyzer according to an embodiment of the present invention. 同実施例の血液凝固分析装置における凝固時間の算出手順を説明するフローチャート。The flowchart explaining the calculation procedure of the coagulation time in the blood coagulation analyzer of the same Example. 同実施例の血液凝固分析装置における凝固時間の算出方法を説明するための図。The figure for demonstrating the calculation method of the coagulation time in the blood coagulation analyzer of the Example. 血液凝固分析における理想的な反応プロファイルを示す図。The figure which shows the ideal reaction profile in a blood coagulation analysis. 血液凝固分析における反応プロファイルの他の例を示す図。The figure which shows the other example of the reaction profile in a blood coagulation analysis. 算出された凝固時間が正常なものであるか否かの判定方法を説明する図。The figure explaining the determination method of whether the calculated coagulation time is normal.

以下、本発明の一実例に係る血液凝固分析装置について図面を参照しつつ説明する。図1は、本実施例の血液凝固分析装置の概略構成を示すブロック図である。   Hereinafter, a blood coagulation analyzer according to an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of the blood coagulation analyzer of this embodiment.

測定部10は、散乱光測定用のセル(キュベット)11を保持するためのセル保持部12と、セル保持部12に収容されたセル11に光を照射するための光源13、及び光源13からの光照射によって前記セル内部から生じる散乱光を検出するための光検出器14を備えている。セル保持部12には図示しない加温手段が設けられ、セル11内の液体を一定温度に維持できるようになっている。   The measurement unit 10 includes a cell holding unit 12 for holding a scattered light measurement cell (cuvette) 11, a light source 13 for irradiating the cell 11 accommodated in the cell holding unit 12, and a light source 13. The light detector 14 for detecting the scattered light which arises from the said cell inside by light irradiation of is provided. The cell holding part 12 is provided with a heating means (not shown) so that the liquid in the cell 11 can be maintained at a constant temperature.

セル移送機構15は、未使用のセルが複数個格納されたセル供給部(図示略)から空のセル11を取り出してセル保持部12にセットすると共に、使用済みのセル11をセル保持部12から取り出して所定の廃棄容器(図示略)に廃棄するものであり、セル11を把持して移動させるためのマニピュレータ等を備えている。   The cell transfer mechanism 15 takes out an empty cell 11 from a cell supply unit (not shown) in which a plurality of unused cells are stored, sets the cell 11 in the cell holding unit 12, and sets the used cell 11 to the cell holding unit 12. And a manipulator or the like for grasping and moving the cell 11 is provided.

検体分注機構16は、所定量の血液検体(血漿又はその希釈物)をセル保持部12に収容されたセル11に注入するものであり、例えば、血液検体を収容した検体容器を複数個収容可能なサンプルトレイと、検体を吸引及び吐出するピペットと、該ピペットをサンプルトレイとセル保持部の間で移動させるための駆動機構を備えたものなどとすることができる。   The sample dispensing mechanism 16 is for injecting a predetermined amount of blood sample (plasma or a diluted product thereof) into the cell 11 accommodated in the cell holding unit 12, for example, accommodating a plurality of sample containers containing blood samples. A possible sample tray, a pipette that sucks and discharges the specimen, and a drive mechanism for moving the pipette between the sample tray and the cell holding unit can be used.

試薬分注機構17は、セル保持部12に保持されたセル11に所定の試薬(凝固試薬)を注入するためのものであり、例えば、前記試薬が収容された試薬容器と、試薬を吸引及び吐出するピペットと、該ピペットを試薬容器とセル保持部の間で移動させるための駆動機構を備えたものなどとすることができる。更に、試薬分注機構17は、セル保持部12内のセル11に試薬を添加した際に、その旨を知らせる添加通知信号を後述の制御部19に送出する機能を有している。   The reagent dispensing mechanism 17 is for injecting a predetermined reagent (coagulation reagent) into the cell 11 held in the cell holding unit 12. For example, the reagent dispensing mechanism 17 sucks the reagent and holds a reagent container containing the reagent. A pipette to be discharged and a drive mechanism for moving the pipette between the reagent container and the cell holding unit can be used. Furthermore, the reagent dispensing mechanism 17 has a function of sending an addition notification signal to that effect to the control unit 19 described later when a reagent is added to the cell 11 in the cell holding unit 12.

データ処理部18は、測定部10の光検出器14から順次出力される検出信号を所定の時間間隔(例えば0.1秒間隔)でサンプリングしてデジタルデータ(光量データ)に変換し、該光量データを所定のアルゴリズムに従ってリアルタイムで解析することで凝固時間を算出する。上記各部の動作は制御部19によって統括的に制御されており、該制御部19にはキーボードや各種操作ボタン等を備えた操作部20を介してユーザの指示が入力される。また、データ処理部18による分析結果は、制御部19に接続されたモニタ21に表示されたりあるいはプリンタ(図示略)で印字出力されたりする。なお、前記データ処理部18及び制御部19は、例えば、所定のプログラムを搭載したマイクロコンピュータ等によって構成することができ、該プログラムに従って、前記測定部10、セル移送機構15、検体分注機構16、及び試薬分注機構17の動作が制御されると共に、データ処理部18における各種の演算が実行される。   The data processing unit 18 samples the detection signals sequentially output from the photodetector 14 of the measurement unit 10 at predetermined time intervals (for example, 0.1 second intervals) and converts them into digital data (light amount data). The coagulation time is calculated by analyzing in real time according to a predetermined algorithm. The operation of each of the above-described units is comprehensively controlled by the control unit 19, and a user instruction is input to the control unit 19 via an operation unit 20 including a keyboard and various operation buttons. The analysis result by the data processing unit 18 is displayed on a monitor 21 connected to the control unit 19 or printed out by a printer (not shown). The data processing unit 18 and the control unit 19 can be configured by, for example, a microcomputer equipped with a predetermined program, and according to the program, the measurement unit 10, the cell transfer mechanism 15, and the sample dispensing mechanism 16 are configured. The operation of the reagent dispensing mechanism 17 is controlled, and various calculations in the data processing unit 18 are executed.

以下、本実施例の血液凝固分析装置を用いた凝固時間の測定手順について図2のフローチャートを参照しつつ説明する。なお、ここでは、図3の実線又は一点鎖線で示すような反応プロファイルを生じる検体の測定を例に挙げて説明を行う。   Hereinafter, the measurement procedure of the coagulation time using the blood coagulation analyzer of the present embodiment will be described with reference to the flowchart of FIG. Here, description will be made by taking as an example measurement of a specimen that generates a reaction profile as indicated by a solid line or a one-dot chain line in FIG.

測定の開始に際しては、まずセル移送機構15によって空のセル11がセル保持部12にセットされ、更に、検体分注機構16によって該セル11に所定量の検体が注入される。次いで、測定部10によって該セル内の検体からの散乱光量の測定が開始され(ステップS31)、光検出器14からの検出信号がデータ処理部18へと出力される。該検出信号はデータ処理部18にてデジタルデータ(光量データ)に変換される。   When starting the measurement, first, an empty cell 11 is set in the cell holding unit 12 by the cell transfer mechanism 15, and a predetermined amount of sample is injected into the cell 11 by the sample dispensing mechanism 16. Next, measurement of the amount of scattered light from the specimen in the cell is started by the measurement unit 10 (step S31), and a detection signal from the photodetector 14 is output to the data processing unit 18. The detection signal is converted into digital data (light quantity data) by the data processing unit 18.

その後、試薬分注機構17によって前記セル11に所定量の試薬が添加され(ステップS32)、それと同時に添加通知信号が試薬分注機構17から制御部19に出力される。この添加通知信号を受けた制御部19は、データ処理部18に光量データに基づく凝固終了点の探索を開始させる(ステップS33)。このとき、データ処理部18は、試薬添加後に散乱光量が上昇してから一定値となるまでの間の所定の段階、例えば反応プロファイルの変曲点や飽和到達点等を凝固終了点として検出する。こうした凝固終了点の検出方法としては、従来既知の方法を用いることができ、例えば、散乱光量を時間で微分又は二階微分した値を利用して凝固終了点を検出することができる。例えばこのとき、図3の例では、実線及び一点鎖線に対応する検体で共に、68秒の時点が凝固終了点a1として検出される。   Thereafter, a predetermined amount of reagent is added to the cell 11 by the reagent dispensing mechanism 17 (step S32), and simultaneously, an addition notification signal is output from the reagent dispensing mechanism 17 to the control unit 19. Upon receiving this addition notification signal, the control unit 19 causes the data processing unit 18 to start searching for a coagulation end point based on the light amount data (step S33). At this time, the data processing unit 18 detects a predetermined stage from when the amount of scattered light rises to a constant value after addition of the reagent, for example, an inflection point of the reaction profile, a saturation arrival point, or the like as a coagulation end point. . As a method for detecting such a coagulation end point, a conventionally known method can be used. For example, the coagulation end point can be detected using a value obtained by differentiating the scattered light quantity with time or second-order differentiation. For example, at this time, in the example of FIG. 3, the time point of 68 seconds is detected as the coagulation end point a1 in both the specimens corresponding to the solid line and the one-dot chain line.

なお、予め定められた最大測定時間(例えば試薬添加から200秒)が経過するまでに凝固終了点が検出されなかった場合(即ち、ステップS33でNo且つステップS34でYes)には、測定不能と判定されて光量測定が終了され(ステップS35、S39)、その旨がモニタ21に表示される(ステップS40)。   In addition, when the coagulation end point is not detected until the predetermined maximum measurement time (for example, 200 seconds from the addition of the reagent) has elapsed (that is, No in step S33 and Yes in step S34), measurement is impossible. Determination is made and the light quantity measurement ends (steps S35 and S39), and a message to that effect is displayed on the monitor 21 (step S40).

以上により凝固終了点が検出された場合(ステップS33でYes)、続いて、該凝固終了点における散乱光量が予め定められた所定の光量閾値以上であるか否かが判定される(ステップS36)。ここで、該散乱光量が光量閾値未満であった場合(ステップS36でNo)には、ステップS33に戻って凝固終了点の探索を再開し、前記光量閾値を満たす点が見つかるまでステップS33、S34、及びS36を繰り返し実行する。   When the coagulation end point is detected as described above (Yes in step S33), it is subsequently determined whether or not the amount of scattered light at the coagulation end point is greater than or equal to a predetermined light amount threshold value (step S36). . Here, if the scattered light amount is less than the light amount threshold value (No in step S36), the process returns to step S33 to resume the search for the coagulation end point, and steps S33 and S34 until a point satisfying the light amount threshold value is found. , And S36 are repeatedly executed.

一方、凝固終了点の散乱光量が前記光量閾値以上であった場合(ステップS36でYes)には、該凝固終了点における散乱光量の1/N(Nは1より大きい所定の値)の光量に到達する時刻を求めてこれを凝固点とする。図3の例では、前記光量閾値は250に設定されており、実線及び一点鎖線に相当する検体の凝固終了点a1(68秒)における散乱光量は共に該光量閾値を超えているため、該散乱光量の1/Nの光量に到達する時刻(30秒)が前記凝固点b1となる。   On the other hand, when the amount of scattered light at the coagulation end point is equal to or greater than the light amount threshold (Yes in step S36), the amount of light is 1 / N (N is a predetermined value greater than 1) of the amount of scattered light at the coagulation end point. The arrival time is determined and this is set as the freezing point. In the example of FIG. 3, the light amount threshold value is set to 250, and the scattered light amount at the coagulation end point a1 (68 seconds) of the specimen corresponding to the solid line and the alternate long and short dash line exceeds the light amount threshold value. The time (30 seconds) when the light amount reaches 1 / N of the light amount is the solidification point b1.

次に、試薬添加時点から前記凝固点までの経過時間を凝固時間とし、この凝固時間と前記凝固点における散乱光量との組み合わせが正常な凝固反応で出現し得る組み合わせであるか否かを判定する(ステップS37)。上述したように、正常な凝固反応における凝固時間及び凝固点の散乱光量は図6の○印のような分布を示すことが実測により明らかとなっている。そこで、同図のようにノイズ判定ラインを定め、上記で求められた凝固点の散乱光量と前記凝固時間をプロットした結果が、ノイズ判定ラインの右上の領域(正常域)に位置していれば、前記凝固時間は正常なものと判定することができる。   Next, the elapsed time from the reagent addition time to the freezing point is defined as a freezing time, and it is determined whether or not the combination of the freezing time and the amount of scattered light at the freezing point is a combination that can appear in a normal freezing reaction (step) S37). As described above, the solidification time and the amount of scattered light at the solidification point in a normal solidification reaction are clearly shown by measurement as shown by the circles in FIG. Therefore, if the noise determination line is determined as shown in the figure and the result of plotting the amount of scatter of the freezing point and the coagulation time obtained above is located in the upper right region (normal region) of the noise determination line, It can be determined that the coagulation time is normal.

以上で凝固時間が正常なものと判定された場合(ステップS37でYes)には、該凝固時間を最終的な測定結果として確定し(ステップS38)、測定部10による散乱光量の測定を終了して(ステップS39)モニタ21に測定結果を表示する(ステップS40)。   When it is determined that the coagulation time is normal (Yes in step S37), the coagulation time is determined as the final measurement result (step S38), and the measurement of the amount of scattered light by the measurement unit 10 is completed. (Step S39) The measurement result is displayed on the monitor 21 (Step S40).

一方、前記凝固時間が正常なものでないと判定された場合(ステップS37でNo)には、その凝固時間を取り消して、引き続き散乱光量の測定を継続する。図3の例では凝固時間は30秒であり、凝固点b1における散乱光量と該凝固時間を図6のグラフにプロットすると異常域となるため、この凝固時間は正常なものではないと判定され、散乱光量の測定が継続される。   On the other hand, if it is determined that the coagulation time is not normal (No in step S37), the coagulation time is canceled and the measurement of the scattered light amount is continued. In the example of FIG. 3, the coagulation time is 30 seconds. When the amount of scattered light at the freezing point b1 and the coagulation time are plotted in the graph of FIG. The light intensity measurement is continued.

以上のようにして散乱光量の測定が継続された場合には、それ以降の各時点を前記凝固終了点と仮定して上記と同様に凝固時間の算出及び判定を行い、凝固時間が正常なものであると判定されるまで光量測定を継続する。即ち、継続測定の開始後にデータ処理部18が光量データを取得すると、その散乱光量の1/Nの光量に達した時刻を求めてこれを仮の凝固点とし、試薬添加から前記仮の凝固点に達するまでの経過時間を仮の凝固時間として算出する。次いで、図6のノイズ判定ラインを利用して前記仮の凝固点における散乱光量と仮の凝固時間の組み合わせが正常なものであるか否かを判定する。このような仮の凝固時間の算出及び判定をデータ処理部18が新たな光量データを取得する度に(又は、所定の時間間隔で)繰り返し実行し、該仮の凝固時間が正常なものであると判定された時点(ステップS42でYes)で、その時の仮の凝固時間をその検体の凝固時間として確定し(ステップS43)、光量測定を終了する(ステップS46)。例えば、図3の一点鎖線の検体の場合、160秒まで測定を継続した時点で、該時点を仮の凝固終了点a2として求められた仮の凝固点b2の散乱光量と仮の凝固時間との組み合わせが図6のノイズ判定ラインを超えるため、この時の凝固時間(62秒)がこの検体の凝固時間として確定される。   When the measurement of the amount of scattered light is continued as described above, the clotting time is calculated and determined in the same manner as described above, assuming that each subsequent time point is the clotting end point, and the clotting time is normal. The light quantity measurement is continued until it is determined that That is, when the data processing unit 18 acquires the light amount data after the start of the continuous measurement, the time when the light amount reaches 1 / N of the scattered light amount is obtained and used as a temporary freezing point, and the temporary freezing point is reached from the reagent addition. The elapsed time until is calculated as a temporary coagulation time. Next, it is determined using the noise determination line in FIG. 6 whether the combination of the amount of scattered light at the temporary solidification point and the temporary solidification time is normal. Such calculation and determination of the temporary coagulation time are repeatedly executed every time the data processing unit 18 acquires new light quantity data (or at predetermined time intervals), and the temporary coagulation time is normal. Is determined (Yes in step S42), the temporary coagulation time at that time is determined as the coagulation time of the sample (step S43), and the light quantity measurement is terminated (step S46). For example, in the case of the sample of the one-dot chain line in FIG. 3, when the measurement is continued up to 160 seconds, the combination of the amount of scattered light at the provisional coagulation point b2 and the provisional coagulation time obtained as the provisional coagulation end point a2. 6 exceeds the noise judgment line in FIG. 6, and the coagulation time (62 seconds) at this time is determined as the coagulation time of this specimen.

また、上記のような継続測定の実行中において、凝固時間が正常なものであると判定される前に(即ちステップS42がYesとなる前に)、図3の実線で示すような散乱光量の立ち上がり(急上昇)が確認された場合(ステップS41でYes)には、データ処理部18はステップS33に戻り、該急上昇開始時点(例えば、散乱光量の変化率が所定の値を超えた時点)以降の光量データに基づいて再び凝固終了点の探索を開始し、上記と同様にして凝固終了点の検出及び判定(ステップS36)や凝固時間の算出及び判定(ステップS37)等を実行する。このとき、図3の実線で示す検体では、ステップS33において152秒の時点が凝固終了点a3として検出され、ステップS36において該凝固終了点a3の散乱光量が光量閾値以上と判定される。更に、該凝固終了点a3における散乱光量の1/Nの光量に達する時刻を凝固点b3として凝固時間(128秒)が求められ、ステップS37において該凝固時間が正常なものであると判定される。なお、本例では、凝固終了点a3の散乱光量の1/Nを、測定開始時の散乱光量を0としたベースラインから求めたが、再上昇開始点の散乱光量を0として算出してもよい。そして、該凝固時間が最終的な測定結果として確定されて(ステップS38)光量測定が終了し(ステップS39)、測定結果がモニタ21に表示される(ステップS40)。   Further, during the execution of the continuous measurement as described above, before it is determined that the coagulation time is normal (that is, before Step S42 becomes Yes), the amount of scattered light as shown by the solid line in FIG. When the rising (rapid increase) is confirmed (Yes in step S41), the data processing unit 18 returns to step S33, and after the rapid increase start time (for example, when the change rate of the scattered light amount exceeds a predetermined value). The search for the coagulation end point is started again based on the light quantity data, and the detection and determination of the coagulation end point (step S36), the calculation and determination of the coagulation time (step S37), and the like are performed in the same manner as described above. At this time, in the specimen indicated by the solid line in FIG. 3, the time point of 152 seconds is detected as the coagulation end point a3 in step S33, and in step S36, the amount of scattered light at the coagulation end point a3 is determined to be greater than or equal to the light amount threshold value. Further, the solidification time (128 seconds) is obtained by setting the time at which the light amount reaches 1 / N of the scattered light amount at the solidification end point a3 as the solidification point b3, and it is determined in step S37 that the solidification time is normal. In this example, 1 / N of the amount of scattered light at the coagulation end point a3 is obtained from a baseline where the amount of scattered light at the start of measurement is 0. Good. Then, the coagulation time is determined as the final measurement result (step S38), the light quantity measurement is completed (step S39), and the measurement result is displayed on the monitor 21 (step S40).

なお、所定の時間が経過するまで継続測定を行った時点で、ステップS41及びステップS42がいずれもNoであった場合(即ち、ステップS44でYes)には、該検体は測定不能であると判定して光量測定を終了し(ステップS45、S46)その旨をモニタ21に表示する(ステップS47)。なお、前記「所定の時間」とは、試薬添加時点からの時間であってもよく、継続測定開始時点からの時間であってもよい。   Note that, when continuous measurement is performed until a predetermined time has elapsed, if both Step S41 and Step S42 are No (that is, Yes in Step S44), it is determined that the sample cannot be measured. Then, the light quantity measurement is finished (steps S45 and S46), and a message to that effect is displayed on the monitor 21 (step S47). The “predetermined time” may be a time from the time of reagent addition or a time from the start of continuous measurement.

このように、本実施例に係る血液凝固分析装置によれば、上述のような凝固終了点の散乱光量の閾値(光量閾値)を低く設定した場合であっても、プレピーク等の本来の凝固反応によらない光量変化に基づいて凝固時間が決定されるのを防止することができ、且つ正常な凝固時間が求められるまで測定が継続されるため、APTT項目やLA(Lupus Anticoagulant)項目のようなプレピークを生じやすい測定項目や、低フィブリノーゲン検体等の多様な検体についても煩雑な再測定を行うことなく信頼性の高い測定結果を得ることが可能となる。   Thus, according to the blood coagulation analyzer according to the present embodiment, the original coagulation reaction such as a pre-peak can be achieved even when the threshold value of the scattered light amount (light amount threshold value) at the coagulation end point as described above is set low. Since it is possible to prevent the coagulation time from being determined based on the change in the amount of light that does not depend on, and the measurement is continued until a normal coagulation time is obtained, such as the APTT item and LA (Lupus Anticoagulant) item It is possible to obtain highly reliable measurement results without performing complicated re-measurement for various measurement items such as pre-peaks and various samples such as low fibrinogen samples.

なお、上記実施例では、ステップS37及びステップS42において、凝固点における散乱光量と凝固時間との組合せから該凝固時間が正常なものか否かを判定するものとしたが、これに代わり、例えば、試薬添加時点から凝固点までの散乱光量の積分値が所定の閾値以上であるか否か、又は前記の積分値と凝固時点との組合せが正常な凝固反応で出現し得る組み合わせであるか否かに基づいて該凝固時間が正常なものかどうかを判定するものとしてもよい。   In the above embodiment, in step S37 and step S42, it is determined whether or not the coagulation time is normal from the combination of the amount of scattered light at the coagulation point and the coagulation time. Based on whether the integrated value of the amount of scattered light from the addition point to the freezing point is a predetermined threshold or more, or whether the combination of the integrated value and the solidifying point is a combination that can appear in a normal coagulation reaction It is also possible to determine whether the coagulation time is normal.

10…測定部
11…セル
12…セル保持部
13…光源
14…光検出器
15…セル移送機構
16…検体分注機構
17…試薬分注機構
18…データ処理部
19…制御部
20…操作部
21…モニタ
DESCRIPTION OF SYMBOLS 10 ... Measurement part 11 ... Cell 12 ... Cell holding part 13 ... Light source 14 ... Photo detector 15 ... Cell transfer mechanism 16 ... Sample dispensing mechanism 17 ... Reagent dispensing mechanism 18 ... Data processing part 19 ... Control part 20 ... Operation part 21 ... Monitor

Claims (3)

a)血液検体に光を照射して該血液検体からの散乱光量を測定する測定手段と、
b)前記測定手段で測定される散乱光量値を所定の時間間隔で取得し、前記血液検体に所定の試薬が添加された後の散乱光量値の経時変化に基づいて凝固終了点を検出する凝固終了点検出手段と、
c)前記凝固終了点における散乱光量の1/N(Nは1以上の所定の値)の散乱光量に達した時点を凝固点とし、前記試薬の添加時点から該凝固点までの経過時間を凝固時間として算出する凝固時間算出手段と、
d)前記凝固時間が正常なものか否かを判定する判定手段と、
e)前記判定手段により前記凝固時間が正常なものと判定された場合には前記測定手段による測定を終了させ、それ以外の場合には前記測定手段による測定を継続させると共に、該継続測定開始以降の各時点を凝固終了点と仮定して前記凝固時間算出手段による凝固時間の算出及び前記判定手段による判定を逐次実行させ、該判定手段により凝固時間が正常なものであると判定されれば前記測定手段による測定を終了させる制御手段と、
を有することを特徴とする血液凝固分析装置。
a) a measuring means for irradiating a blood sample with light to measure the amount of scattered light from the blood sample;
b) Coagulation that obtains a scattered light amount value measured by the measuring means at a predetermined time interval and detects a coagulation end point based on a change over time in the scattered light amount value after a predetermined reagent is added to the blood sample. End point detection means;
c) The point at which the amount of scattered light reaches 1 / N (N is a predetermined value of 1 or more) of the amount of scattered light at the end point of coagulation is defined as the freezing point, and the elapsed time from the point of addition of the reagent to the coagulation point is defined as the coagulation time. A coagulation time calculating means for calculating;
d) determining means for determining whether the coagulation time is normal;
e) When the determination means determines that the coagulation time is normal, the measurement by the measurement means is terminated; otherwise, the measurement by the measurement means is continued and after the start of the continuous measurement Assuming that each time point is the end point of coagulation, the calculation of the coagulation time by the coagulation time calculation unit and the determination by the determination unit are sequentially executed, and if the determination unit determines that the coagulation time is normal, Control means for terminating the measurement by the measuring means;
A blood coagulation analyzer characterized by comprising:
前記制御手段が、前記継続測定の実行中に散乱光量の立ち上がりが確認された場合に前記凝固終了点検出手段による凝固終了点の検出を再開させ、これにより前記立ち上がりの開始以降において凝固終了点が検出されれば、前記凝固時間算出手段による凝固時間の算出、及び前記判定手段による判定を実行させることを特徴とする請求項1に記載の血液凝固分析装置。   When the rising of the scattered light amount is confirmed during execution of the continuous measurement, the control means restarts the detection of the coagulation end point by the coagulation end point detecting means, whereby the coagulation end point is determined after the start of the rise. 2. The blood coagulation analyzer according to claim 1, wherein if detected, the calculation of the coagulation time by the coagulation time calculation unit and the determination by the determination unit are executed. 前記判定手段が、前記凝固点における散乱光量と前記凝固時間の組合せから該凝固時間が正常なものか否かを判定することを特徴とする請求項1又は2に記載の血液凝固分析装置。   The blood coagulation analyzer according to claim 1 or 2, wherein the determination means determines whether or not the coagulation time is normal from a combination of the amount of scattered light at the coagulation point and the coagulation time.
JP2009065462A 2009-03-18 2009-03-18 Blood coagulation analyzer Active JP5029638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065462A JP5029638B2 (en) 2009-03-18 2009-03-18 Blood coagulation analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065462A JP5029638B2 (en) 2009-03-18 2009-03-18 Blood coagulation analyzer

Publications (2)

Publication Number Publication Date
JP2010217059A JP2010217059A (en) 2010-09-30
JP5029638B2 true JP5029638B2 (en) 2012-09-19

Family

ID=42976057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065462A Active JP5029638B2 (en) 2009-03-18 2009-03-18 Blood coagulation analyzer

Country Status (1)

Country Link
JP (1) JP5029638B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5911443B2 (en) 2013-03-06 2016-04-27 シスメックス株式会社 Blood coagulation analyzer and blood coagulation analysis method
EP2982988B1 (en) * 2013-04-02 2018-07-25 Hitachi High-Technologies Corporation Automatic analysis device and analysis method
CN104730260B (en) * 2015-04-14 2017-04-12 苏州国科芯感医疗科技有限公司 Portable mobile blood clotting analyzing system and blood clotting analyzing method
JP6147945B2 (en) * 2015-04-24 2017-06-14 公立大学法人奈良県立医科大学 Method for evaluating coagulation ability of blood sample, and reagent, reagent kit and apparatus for use in the method
BR112019003516A2 (en) 2016-08-29 2019-05-21 Fujimori Kogyo Co., Ltd. blood clotting test device and blood clotting test method
JP6952668B2 (en) 2018-09-28 2021-10-20 シスメックス株式会社 Blood coagulation analysis method, blood coagulation analyzer, program
EP4134675A4 (en) * 2020-04-07 2024-01-17 Sekisui Medical Co Ltd Method for measuring blood coagulation time
US20230393156A1 (en) 2020-10-29 2023-12-07 Sekisui Medical Co., Ltd. Method for detecting blood coagulation reaction
WO2023032978A1 (en) 2021-08-31 2023-03-09 積水メディカル株式会社 Method for detecting anomaly in blood coagulation reaction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318463A (en) * 1991-04-17 1992-11-10 Kyoto Daiichi Kagaku:Kk Method for measuring blood coagulation time
JP4334171B2 (en) * 2001-12-03 2009-09-30 シスメックス株式会社 Blood coagulation reaction analysis method
JP2008209350A (en) * 2007-02-28 2008-09-11 Matsushita Electric Ind Co Ltd Device for measuring blood coagulation time

Also Published As

Publication number Publication date
JP2010217059A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5029638B2 (en) Blood coagulation analyzer
CN105102988B (en) Automatic analysing apparatus and analysis method
EP3396384B1 (en) Method for analyzing blood specimen, and analyzer
JP5164388B2 (en) Sample measuring device
JP6073117B2 (en) Automatic analyzer, automatic analysis method
JP6430809B2 (en) Method, system and computer program for determining blood sample, and blood sample analyzer
JP7221490B2 (en) Blood analysis method, blood analysis device, and program
US20180100871A1 (en) Automated analyzer
JP5183457B2 (en) Automatic analyzer and its support system
JP2003169700A (en) Method for analyzing blood coagulation reaction
JP6276087B2 (en) Sample analyzer and sample analysis method
JP6444567B1 (en) How to determine fibrinogen
JP2019086518A (en) Blood coagulability assessment method
JPH0627115A (en) Method and apparatus for measuring blood coagulation time
JPWO2017138285A1 (en) Automatic analyzer
CN116472354A (en) Method for detecting coagulation reaction
JP2008076342A (en) Automatic analyzer
JP2017129460A (en) Automatic analyzer, light source abnormality detection method, and program
JP7330785B2 (en) automatic analyzer
JPH0334592B2 (en)
JP7241209B2 (en) Blood Coagulation Measuring Device, Method for Measuring Blood Coagulation Time, Method for Determining Completion of Blood Coagulation Reaction, and Automated Blood Centrifuge
US11567089B2 (en) Method for determining the fibrinogen concentration in a biological sample
TW201113522A (en) Microchip blood analyzer
JPH04318463A (en) Method for measuring blood coagulation time
CN116337817A (en) Blood analysis device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R151 Written notification of patent or utility model registration

Ref document number: 5029638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3