JPS6058408B2 - radiation thermometer - Google Patents

radiation thermometer

Info

Publication number
JPS6058408B2
JPS6058408B2 JP55112217A JP11221780A JPS6058408B2 JP S6058408 B2 JPS6058408 B2 JP S6058408B2 JP 55112217 A JP55112217 A JP 55112217A JP 11221780 A JP11221780 A JP 11221780A JP S6058408 B2 JPS6058408 B2 JP S6058408B2
Authority
JP
Japan
Prior art keywords
signal
output
measured
temperature
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55112217A
Other languages
Japanese (ja)
Other versions
JPS5735739A (en
Inventor
敏彦 井手
利房 鈴木
憲作 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP55112217A priority Critical patent/JPS6058408B2/en
Publication of JPS5735739A publication Critical patent/JPS5735739A/en
Publication of JPS6058408B2 publication Critical patent/JPS6058408B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Description

【発明の詳細な説明】 この発明は、被測定対象からの放射エネルギーを利用
して被測定対象の温度を測定する放射温度計に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation thermometer that measures the temperature of an object by using radiant energy from the object.

従来、放射温度計には、被測定対象の物体からの放射
エネルギー量より物体温度を求める単色温度計、異なる
2波長の分光放射エネルギーの比より物体温度を求める
2色温度計等があつた。
Conventionally, radiation thermometers include monochromatic thermometers that determine the object temperature from the amount of radiant energy from the object to be measured, and two-color thermometers that determine the object temperature from the ratio of spectral radiant energy of two different wavelengths.

しかしながら、いずれも得られる電気信号は温度に対し
て非直線関係にあり、これを直線化するためリいたい場
合、アナログ信号処理を行つているたA−D変換器が必
要となり、それだけ回路が複雑で高価なものとなる問題
点があつた。 この発明の目的は、以上の点に鑑み、簡
単な回路にてリニアライザを特に設ける必要もなく、デ
ィジタル出力も得ることができるようにした放射温度計
を提供することである。
However, the electrical signals obtained in both cases have a non-linear relationship with temperature, and if you want to linearize them, you will need an A-D converter that performs analog signal processing, making the circuit that much more complicated. However, there was a problem in that it was expensive. In view of the above points, it is an object of the present invention to provide a radiation thermometer which uses a simple circuit, does not require a linearizer, and can also obtain a digital output.

第1図は、この発明の一実施例を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

図において1は被測定対象、2は被測定対象からの放射
エネルギーを集光する集光レンズ、3は集光レンズ2に
より集光された放射エネルギーが入射され電気信号に変
換する検出器、4は検出器3の出力から被測定対象1か
らの放射エネルギーのうち2波長に対応する第1の出力
信号、第2の出力信号Eoを分離して取り出す信号分離
器、5は信号分離器4の第1の出力信号を所定の増幅度
αで増幅する増幅器、6は増幅器5の出力信号Ecおよ
びコンデンサC)抵抗Rの並列接続よりなる時定数回路
7のコンデンサCの電位とを比較する比較器、8は比較
器6の出力パルス信号とする単安定マルチバイブレータ
のようなパルス発生器、9はパルス発生器8のパルス信
号を積分してアナログ信号電圧とする積分器、101は
積分器9よりアナログ出力信号を取り出す第1の出力端
子、102はパルス発生器8のデイジタて第2の出力端
子102より取り出される。なお、被測定対象1の温度
が上昇すると2波長に対応する第1の出力信号をα倍し
た信号Ecと第2の出力信号EOとの差は少さくなり、
発振周期は短いものとなり、温度か下ると逆に発振周期
は長いものとなる。そしてこの比較器6またはパルス発
生器7の出力信号より被測定対象の温度が求まることな
るが、その原理は次の通りである。時定数回路7の放電
特性は、時刻t=oのとき電圧e=EOとすれば次式の
ようになる。e=Ecなるときt=Tcとすれば、 となる。
In the figure, 1 is the object to be measured, 2 is a condenser lens that collects the radiant energy from the object to be measured, 3 is a detector that receives the radiant energy collected by the condenser lens 2 and converts it into an electrical signal, 4 5 is a signal separator that separates and extracts a first output signal and a second output signal Eo corresponding to two wavelengths of the radiation energy from the object to be measured 1 from the output of the detector 3; 5 is a signal separator 4; An amplifier that amplifies the first output signal with a predetermined amplification degree α; 6 a comparator that compares the output signal Ec of the amplifier 5 and the potential of a capacitor C of a time constant circuit 7 consisting of a parallel connection of a capacitor C) and a resistor R; , 8 is a pulse generator such as a monostable multivibrator that outputs the output pulse signal of the comparator 6, 9 is an integrator that integrates the pulse signal of the pulse generator 8 to obtain an analog signal voltage, and 101 is the output pulse signal from the integrator 9. A first output terminal 102 from which an analog output signal is taken out is taken out from a second output terminal 102 of the digitizer of the pulse generator 8 . Note that as the temperature of the object to be measured 1 rises, the difference between the signal Ec obtained by multiplying the first output signal corresponding to the two wavelengths by α and the second output signal EO becomes smaller.
The oscillation period becomes short, and as the temperature decreases, the oscillation period becomes longer. The temperature of the object to be measured is determined from the output signal of the comparator 6 or the pulse generator 7, and the principle is as follows. The discharge characteristic of the time constant circuit 7 is expressed by the following equation, assuming that the voltage e=EO at time t=o. If e=Ec and t=Tc, then the following is obtained.

これよりが得られる。This is what you get.

一方、ウィーンの式より波長λI,温度Tにおける放射
エネルギーE(λI,T)は、で表わされる。
On the other hand, according to Wien's equation, the radiant energy E(λI,T) at wavelength λI and temperature T is expressed as follows.

2波長λ1,λ2について被測定対象お放射率をε1,
E2とすれば、このときの放射エネルギーEl,E2は
次式のようになる。
The emissivity of the object to be measured for two wavelengths λ1 and λ2 is ε1,
E2, the radiant energies El and E2 at this time are as shown in the following equation.

この波長λ1,λ2に対応する放射エネルギーが検出器
3に入射するため、次式が成立する。(3)式を利用し
て”一旦ソ1勾=ーソNe5−± ・・・
・(9)となるようαを選べば、(9)式はすれば、(
10式は となる。
Since the radiation energy corresponding to these wavelengths λ1 and λ2 is incident on the detector 3, the following equation holds true. Using equation (3), “Once So1 gradient = −So Ne5−±...
・If α is chosen so that (9) is obtained, then equation (9) becomes (
Equation 10 becomes.

つまり温度Tと周波数Fcとは比例することになり、周
波数FCを測定することより直接、被測定対象の温度の
測定を行うことができる。以上述べたように、この発明
は、被測定対象からの2波長についての放射エネルギー
を比較して時定数回路を充放電させ、これより発振パル
ス信号を取り出すようにし、被測定対象の温度を測定す
るようにした放射温度計である。従つて、発振パルス信
号が直接温度に比例しているので、このパルス信号を利
用して測定することにより、特別なリニアライザは不要
で回路の大幅な簡素化が図れ、高精度、高信頼性のもの
となる。
In other words, the temperature T and the frequency Fc are proportional, and the temperature of the object to be measured can be directly measured by measuring the frequency FC. As described above, the present invention compares the radiant energy of two wavelengths from the object to be measured, charges and discharges the time constant circuit, extracts the oscillation pulse signal from this, and measures the temperature of the object to be measured. This is a radiation thermometer designed to Therefore, since the oscillation pulse signal is directly proportional to the temperature, by using this pulse signal for measurement, there is no need for a special linearizer, and the circuit can be significantly simplified, resulting in high precision and high reliability. Become something.

又、直接ディジタル信号にて測定信号が得られるので、
A−D変換器が不要でディジタル表示、外部出力が容易
なものとなる。
Also, since the measurement signal can be obtained directly as a digital signal,
No A-D converter is required, making digital display and external output easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す構成説明図、第2
図は波形説明図である。 1・・・・・・被測定対象、3・・・・・・検出器、4
・・・・・・信号分離器、5・・・・・・増幅器、6・
・・・・・比較器、7・・・・・・時定数回路、C・・
・・・・コンデンサ。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention, and FIG.
The figure is a waveform explanatory diagram. 1...Object to be measured, 3...Detector, 4
... Signal separator, 5 ... Amplifier, 6.
...Comparator, 7...Time constant circuit, C...
...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定対象からに放射エネルギーを受光する検出器
と、この検出器出力を前記被測定対象からの放射エネル
ギーのうち2波長に対応する第1、第2の信号に分離し
て取り出す信号分離器と、この信号分離器の前記第1の
信号を増幅する増幅器と、この増幅器の出力と時定数回
路の出力とを比較し、時定数回路の放電出力が増幅器出
力よりも小さくなつたとき出力信号を発生する比較器と
、この比較器の出力信号が発生したとき前記時定数回路
のコンデンサに前記信号分離器の第2の出力信号を充電
するスイッチ手段とを備え、前記比較器より得られるパ
ルス信号から前記被測定対象の温度を測定することを特
徴とする放射温度計。
1. A detector that receives radiant energy from the object to be measured, and a signal separator that separates the output of this detector into first and second signals corresponding to two wavelengths of the radiant energy from the object to be measured. and an amplifier that amplifies the first signal of this signal separator, and the output of this amplifier is compared with the output of the time constant circuit, and when the discharge output of the time constant circuit becomes smaller than the amplifier output, the output signal is a comparator that generates a second output signal of the signal separator; and switch means that charges a second output signal of the signal separator to a capacitor of the time constant circuit when the output signal of the comparator is generated; A radiation thermometer characterized in that the temperature of the object to be measured is measured from a signal.
JP55112217A 1980-08-14 1980-08-14 radiation thermometer Expired JPS6058408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55112217A JPS6058408B2 (en) 1980-08-14 1980-08-14 radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55112217A JPS6058408B2 (en) 1980-08-14 1980-08-14 radiation thermometer

Publications (2)

Publication Number Publication Date
JPS5735739A JPS5735739A (en) 1982-02-26
JPS6058408B2 true JPS6058408B2 (en) 1985-12-19

Family

ID=14581183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55112217A Expired JPS6058408B2 (en) 1980-08-14 1980-08-14 radiation thermometer

Country Status (1)

Country Link
JP (1) JPS6058408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179936A (en) * 1984-10-23 1993-01-19 Intelligent Medical Systems, Inc. Disposable speculum with membrane bonding ring

Also Published As

Publication number Publication date
JPS5735739A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
GB1412449A (en) Radiometry
US4470710A (en) I. R. Radiation pyrometer
JPS6058408B2 (en) radiation thermometer
GB2043878A (en) Dark Signal Compensation in Spectrophotometers
JPS6058407B2 (en) radiation thermometer
US3926522A (en) Far-infrared radiant intensity meter
JPS55144513A (en) Measuring method of emissivity
JPH05264352A (en) Spectorophotometer
RU2270984C1 (en) Pyrometer
SU708175A2 (en) Temperature measuring device
SU1394068A1 (en) Device for measuring thermal lag factor of temperature-sensitive elements
JP3162831B2 (en) Temperature compensation method for pyroelectric sensor
SU654863A1 (en) Noise thermometer
JPH11128179A (en) Radiation thermometer
JPS6190024A (en) Radiation thermometer
SU678339A1 (en) Noise thermometer
SU709958A1 (en) Spectral ratio pyrometer
JPH0464016B2 (en)
JPH02662Y2 (en)
Wang et al. Two-colour ratio pyrometer with optical fiber
SU386270A1 (en) PYROMETER TOTAL RADIATION1, .—-
JPS6058411B2 (en) radiation thermometer
SU794552A1 (en) Current or voltage effective value converter
JPS5932898Y2 (en) multicolor radiation thermometer
SU1672235A1 (en) Monochromatic radiation pyrometer with a shifting spectral region