JPS6058407B2 - radiation thermometer - Google Patents

radiation thermometer

Info

Publication number
JPS6058407B2
JPS6058407B2 JP55112216A JP11221680A JPS6058407B2 JP S6058407 B2 JPS6058407 B2 JP S6058407B2 JP 55112216 A JP55112216 A JP 55112216A JP 11221680 A JP11221680 A JP 11221680A JP S6058407 B2 JPS6058407 B2 JP S6058407B2
Authority
JP
Japan
Prior art keywords
output
measured
signal
amplifier
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55112216A
Other languages
Japanese (ja)
Other versions
JPS5735738A (en
Inventor
敏彦 井手
利房 鈴木
憲作 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP55112216A priority Critical patent/JPS6058407B2/en
Publication of JPS5735738A publication Critical patent/JPS5735738A/en
Publication of JPS6058407B2 publication Critical patent/JPS6058407B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 この発明は、被測定対象からの放射エネルギーを利用
して被測定対象の温度を測定する放射温度計に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation thermometer that measures the temperature of an object by using radiant energy from the object.

従来、、放射温度計には、被測定対象の物体からの放
射エネルギー量より物体温度を求める単色温度計、異な
る2波長の分光放射エネルギーの比より物体温度を求め
る2色温度計等があつた。
Traditionally, radiation thermometers include monochromatic thermometers that measure object temperature from the amount of radiant energy from the object being measured, and two-color thermometers that measure object temperature from the ratio of spectral radiant energy of two different wavelengths. .

しカルながら、いずれも得られる電気信号は温度に対し
て非直線関係にあり、これを直線化するためリニアライ
ザが必要となり、又、デジタル表示を行いたい場合、ア
ナログ信号処理を行つているためA−D変換器が必要と
なり、それだけ回路が複雑で高価なものとなる問題点が
あつた。 この発明の目的は、以上の点に鑑み、簡単な
回路にてリニアライザを特に設ける必要もなく、デジタ
ル出力も得ることができるようにした放射温度計を提供
することである。
However, the electrical signals obtained in both cases have a non-linear relationship with temperature, and a linearizer is required to linearize this, and if you want to display digitally, analog signal processing is required. -D converter is required, which causes the problem that the circuit becomes complicated and expensive. In view of the above points, it is an object of the present invention to provide a radiation thermometer which uses a simple circuit, does not require the provision of a linearizer, and can also obtain a digital output.

第1図は、この発明の一実施例を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

図において1は被測定対象、2は被測定対象からの放射
エネルギーを集光する集光レンズ、3は集光レンズ2に
より集光された放射エネルギーが入射され電気信号に変
換する検出器、4は検出器3の出力信号を所定の増幅度
αで増幅する増幅器、5は増幅器4の出力信号Ecおよ
びコンデンサC)抵抗Rの並列接続よりなる時定数回路
6のコンデンサCの電位とを比較する比較器、7は比較
器5の出力をパルス信号とする単安定マルチバイブレー
タのようなパルス発生器、8はパルス発生器7のパルス
信号を積分してアナログ信号電圧とする積分器、91は
積分器8よりアナログ出力信号を取り出す第1の出力端
子、92はパルス発生器7のデジタル出力信号を取り出
す第2”の出力端子、51は時定数回路6のコンデンサ
Cに電圧モoを充電するため第1のスイチツ手段、52
はコンデンサCに充電された電荷を抵抗Rを介して放電
するための第2のスイッチ手段で、これら第1、第2の
スイッチ手段5、、50は比較器5の出力信号またはパ
ルス発生器7の出力信号により交が得られる。一方、ウ
ィーンの式より、波長λ、温度Tにおける放射エネルギ
ーE(λ,T)は、放射率をε″としてで表わされる。
In the figure, 1 is the object to be measured, 2 is a condenser lens that collects the radiant energy from the object to be measured, 3 is a detector that receives the radiant energy collected by the condenser lens 2 and converts it into an electrical signal, 4 5 is an amplifier that amplifies the output signal of the detector 3 with a predetermined amplification degree α, and 5 compares the output signal Ec of the amplifier 4 and the potential of a capacitor C of a time constant circuit 6 consisting of a parallel connection of a capacitor C) and a resistor R. A comparator, 7 is a pulse generator such as a monostable multivibrator that uses the output of the comparator 5 as a pulse signal, 8 is an integrator that integrates the pulse signal of the pulse generator 7 to obtain an analog signal voltage, and 91 is an integrator. 92 is a second output terminal for taking out the digital output signal of the pulse generator 7; 51 is for charging the capacitor C of the time constant circuit 6 with voltage Moo; first switch means, 52
is a second switch means for discharging the electric charge stored in the capacitor C via the resistor R, and these first and second switch means 5, 50 are connected to the output signal of the comparator 5 or the pulse generator 7. The intersection is obtained by the output signal of . On the other hand, according to Wien's equation, the radiant energy E(λ, T) at wavelength λ and temperature T is expressed as emissivity ε″.

これが検出器3の出力で、増幅器4でα倍した出力をE
cとすればとなる。
This is the output of detector 3, and the output multiplied by α by amplifier 4 is E
If it is c, then it becomes.

(5)式を(3)式に代人するととなる。Substituting equation (5) into equation (3) becomes.

これよりEnハ÷工k−ー0 xT−KCとなり、これを 1/Tについて解くと、 となる。From this, Enha ÷ engineering k - - 0 xT-KC, which is Solving for 1/T, becomes.

εαC1λ−5/EO=1となるようαを選べば、とな
る。
If α is chosen so that εαC1λ−5/EO=1, then

周期忙で発振させたときの周波数をFcとすれば、(8
)式は、となる。
If the frequency when oscillating in a busy period is Fc, then (8
) formula becomes.

つまり温度Tと周期数Fcとは比例することになり、周
波数Fcを測定することにより直接、被測定対象の温度
の測定を行うことができる。以上述べたように、この発
明は、被測定対象からの放射エネルギー信号と時定数回
路の放電出力とを比較して発振パルス信号を取り出すよ
うにし、被測定対象の温度を測定するようにした放射温
度計である。従つて、発振パルス信号が直接温度に比例
しているので、このパルス信号を利用して測定すること
により、特別なリニアライザは不要で回路の大幅な簡素
化が図れ、高密度、高信頼性のものとなる−V、直培デ
ィジタル信号に測定信号が得られので、A−D変換器が
不要でディジタル表示、外部出力が容易なものとなる。
In other words, the temperature T and the number of cycles Fc are proportional, and by measuring the frequency Fc, the temperature of the object to be measured can be directly measured. As described above, the present invention compares the radiant energy signal from the object to be measured with the discharge output of the time constant circuit to extract an oscillation pulse signal, thereby measuring the temperature of the object to be measured. It's a thermometer. Therefore, since the oscillation pulse signal is directly proportional to the temperature, by using this pulse signal for measurement, there is no need for a special linearizer, and the circuit can be greatly simplified, resulting in high density and high reliability. Since the measurement signal can be obtained as a direct cultivation digital signal of -V, an A-D converter is not required, and digital display and external output are easy.

又、増幅器4は、放射率の補正を行う機能を有する。Further, the amplifier 4 has a function of correcting emissivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す構成説明図、第2
図は波形説明図である。 1・・・・・・被測定対象、3・・・・・・検出器、4
・・・・・・増幅器、5・・・・・・比較器、6・・・
・・・時定数回路、C・・・・・・コンデンサ。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention, and FIG.
The figure is a waveform explanatory diagram. 1...Object to be measured, 3...Detector, 4
...Amplifier, 5...Comparator, 6...
...Time constant circuit, C...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定対象からの放射エネルギーを受光して電気信
号に変換する検出器と、この検出器の出力を増幅する増
幅器と、この増幅器の出力と時定数回路の出力とを比較
し、時定数回路の放電出力が増幅器出力よりも小さくな
つたとき出力信号を発生する比較器と、この比較器の出
力信号が発生したとき前記時定数回路のコンデンサを充
電するスイッチ手段とを備え、前記比較器より得られる
パルス信号から前記被測定対象の温度を測定することを
特徴とする放射温度計。
1. A detector that receives radiation energy from the object to be measured and converts it into an electrical signal, an amplifier that amplifies the output of this detector, and a time constant circuit that compares the output of this amplifier with the output of a time constant circuit. a comparator that generates an output signal when the discharge output of the comparator becomes smaller than the amplifier output, and switch means that charges the capacitor of the time constant circuit when the output signal of the comparator is generated, A radiation thermometer characterized in that the temperature of the object to be measured is measured from the obtained pulse signal.
JP55112216A 1980-08-14 1980-08-14 radiation thermometer Expired JPS6058407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55112216A JPS6058407B2 (en) 1980-08-14 1980-08-14 radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55112216A JPS6058407B2 (en) 1980-08-14 1980-08-14 radiation thermometer

Publications (2)

Publication Number Publication Date
JPS5735738A JPS5735738A (en) 1982-02-26
JPS6058407B2 true JPS6058407B2 (en) 1985-12-19

Family

ID=14581156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55112216A Expired JPS6058407B2 (en) 1980-08-14 1980-08-14 radiation thermometer

Country Status (1)

Country Link
JP (1) JPS6058407B2 (en)

Also Published As

Publication number Publication date
JPS5735738A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
US4952808A (en) Thermal radiation detection apparatus
GB1412449A (en) Radiometry
US3273395A (en) Automatic ambient temperature compensation for a medical thermometer
US4306807A (en) Light measuring system
JPS6058407B2 (en) radiation thermometer
JPS6058408B2 (en) radiation thermometer
SU708175A2 (en) Temperature measuring device
SU1394068A1 (en) Device for measuring thermal lag factor of temperature-sensitive elements
SU838407A1 (en) Digital thermometer
SU939963A1 (en) Digital temperature meter
JP3162831B2 (en) Temperature compensation method for pyroelectric sensor
SU708270A1 (en) Arrangement for registering electric values
SU974143A1 (en) Method and device for measuring pulse irradiation time and energy characteristics
KR790001827Y1 (en) Temperature measurement device
JPH02662Y2 (en)
SU654863A1 (en) Noise thermometer
RU2091805C1 (en) Zero radiometer
SU631788A1 (en) Material integral emissivity determining method
SU665217A1 (en) Temperature-measuring device
JPH11128179A (en) Radiation thermometer
SU966506A1 (en) Noise thermometer
JPH0512746Y2 (en)
JPH0464016B2 (en)
SU645207A1 (en) Analogue storage
SU794552A1 (en) Current or voltage effective value converter