JPS6057741B2 - Data transmission method using guided radio - Google Patents

Data transmission method using guided radio

Info

Publication number
JPS6057741B2
JPS6057741B2 JP53003559A JP355978A JPS6057741B2 JP S6057741 B2 JPS6057741 B2 JP S6057741B2 JP 53003559 A JP53003559 A JP 53003559A JP 355978 A JP355978 A JP 355978A JP S6057741 B2 JPS6057741 B2 JP S6057741B2
Authority
JP
Japan
Prior art keywords
frequency
output
data transmission
frequencies
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53003559A
Other languages
Japanese (ja)
Other versions
JPS5496913A (en
Inventor
孝男 癸生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP53003559A priority Critical patent/JPS6057741B2/en
Publication of JPS5496913A publication Critical patent/JPS5496913A/en
Publication of JPS6057741B2 publication Critical patent/JPS6057741B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は誘導線を他目的の通信と共用するデータ伝送の
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a data transmission method in which a guided wire is shared for communication for other purposes.

一定走行路上を移動する移動体(クレーンや台車など)
の制御、移動体と地上固定局(以下地上局という)間の
情報伝送、移動体の位置検知など多目的の伝送に走行路
に沿つて敷設した誘導線を利用した誘導無線方式が用い
られている。
A moving object that moves on a fixed travel path (crane, trolley, etc.)
Guided radio systems are used for multi-purpose transmission, such as control of vehicles, information transmission between mobile bodies and fixed ground stations (hereinafter referred to as ground stations), and detection of the position of mobile bodies. .

このうち移動体の位置を検知するには走行路を複数区間
に分割し、区間毎に設けた検知器で検出するかまたはそ
の各区間に与えた番地(2進コード等)に対応した複数
の平行2線式誘導線群の交叉点設置を行い、たとえば移
動体よりの電磁波によつて各誘導線に誘導された電流の
位相検出によつて行う方法などが用いられているが、従
来はこれらの位置検知用の誘導線とデータ伝送や通話の
ための誘導線とは互に妨害を与えぬようにするためそれ
ぞれ分離して布線しているが経済的でなく高価につくこ
とが欠点であつた。また上記のように分離された移動体
位置検知用誘導線を利用して地上局と移動体間のデータ
伝送を行う場合地上局から送出のデータ信号が区間の分
割点または接合点で位相の不連続(最悪時には両誘導線
の磁界位相か反転すなわち180時の差となる)を発生
したり、交叉形誘導線を用いた場合は交叉点上では位相
相殺によつて磁界が零になりデータ伝送は満足に行われ
ない。本発明はこのような場合においても十分な品質の
データ伝送が行われるようにしたもので、一定走行路を
移動する移動体の監視、制御、位置検知等に用いる伝送
線をデータ伝送にも共用するという経済化に効果がある
。以下本発明の詳細な説明する。図1は移動体の走行路
を付与番地毎に分割した区間毎に敷設した移動体位置検
知用誘導線をデータ伝送に共用する場合の誘導無線装置
の構成例図である。
In order to detect the position of a moving object, it is possible to divide the travel route into multiple sections and use detectors installed in each section, or to detect the position of a moving object using multiple detectors corresponding to the address (binary code, etc.) assigned to each section. A method has been used in which a group of parallel two-wire guide wires is installed at a crossing point, and the phase of the current induced in each guide wire by electromagnetic waves from a moving object is detected. The guide wires for position detection and the guide wires for data transmission and telephone calls are wired separately to prevent interference with each other, but the drawback is that they are uneconomical and expensive. It was hot. In addition, when data is transmitted between the ground station and the moving object using the separated guiding wire for detecting the position of the moving object as described above, the data signal sent from the ground station may have a phase difference at the division point or junction point of the section. If continuous (in the worst case, the magnetic field phase of both guide wires will be reversed, that is, a difference of 180 o'clock), or if crossed guide wires are used, the magnetic field will become zero due to phase cancellation at the point of intersection, resulting in data transmission. is not performed satisfactorily. The present invention enables data transmission of sufficient quality even in such a case, and the transmission line used for monitoring, controlling, position detection, etc. of a moving object moving on a fixed travel path can also be used for data transmission. This has the effect of economicalization. The present invention will be explained in detail below. FIG. 1 is a diagram illustrating an example of the configuration of a guidance radio device in the case where guide lines for detecting the position of a moving body, which are laid in sections where a traveling route of a moving body is divided into assigned addresses, are shared for data transmission.

A,B,C・・・・・・は分割区間名、1は各区間毎に
電気的に独立した平行2線式誘導線、2はその終端抵抗
器、3は誘導線毎の結合器Cで他目的の諸機器aもこれ
に接続される。4,4b,4c,4dは誘導線毎の送信
機(TX)、5はデータ変調器、Dinはデータ信号入
力端子である。
A, B, C...... are divided section names, 1 is an electrically independent parallel two-wire induction wire for each section, 2 is its terminating resistor, 3 is a coupler C for each induction wire Various devices a for other purposes are also connected to this. 4, 4b, 4c, and 4d are transmitters (TX) for each guide wire, 5 is a data modulator, and Din is a data signal input terminal.

以上は地上局側の設備であるが、送信機(TX)の送出
周波数は周波数が異る2波またはそれ以上の複数波を交
互にまたは一定の繰返しで割当てるが、この図の場合に
は4,4cには周波数Fl,4b,4dには周波数F2
が割当てられているものとする。またこれらの送信機(
TX)には変調器5からオン・オフキーイング(00K
)、周波数偏移(FSK)、位相偏移(PSK)いずれ
かの変調入力が共通に与えられるが、これによつて複数
の誘導線電流のデータ位相は同期される。次に11〜1
3は移動体に載置する設備で、11は誘導線1と結合移
動する受信アンテナAll2は受信機(RX)、13は
復調器(DEM)、DOutはデータ信号出力である。
この受信装置の詳細は図2〜図4を用いて次に説明する
。図2はFSK変調によつて地上局側からデータ伝送が
行われる場合の復調器13の構成例ブロック図で、入力
には受信機12の出力が接続される。
The above is equipment on the ground station side, but the transmission frequency of the transmitter (TX) is to assign two or more waves of different frequencies alternately or with a certain repetition, but in the case of this figure, 4 , 4c has the frequency Fl, and 4b, 4d have the frequency F2.
is assigned. Also, these transmitters (
TX) has on/off keying (00K) from modulator 5.
), frequency shift (FSK), or phase shift (PSK) modulation input is commonly applied, and thereby the data phases of the plurality of guiding wire currents are synchronized. Next 11-1
Reference numeral 3 designates equipment mounted on a moving object, reference numeral 11 designates a moving receiving antenna All2 connected to the guide wire 1, a receiver (RX), 13 a demodulator (DEM), and DOut a data signal output.
Details of this receiving device will be explained next using FIGS. 2 to 4. FIG. 2 is a block diagram of a configuration example of the demodulator 13 when data is transmitted from the ground station side by FSK modulation, and the output of the receiver 12 is connected to the input.

21はデータ信号の所要帯域のみ通過させる帯域濾波器
(BPF)、22は増幅器、23は振幅制限器(リミタ
)、24は検波すなわち周波数弁別器、25はデータ信
号の基本波に帯域制限するための低域濾波器(LPF)
、26はシユミツト回路などを用いた方形波変換器であ
る。
21 is a bandpass filter (BPF) that passes only the required band of the data signal, 22 is an amplifier, 23 is an amplitude limiter, 24 is a detection or frequency discriminator, and 25 is for band limiting to the fundamental wave of the data signal. low pass filter (LPF)
, 26 are square wave converters using Schmitt circuits or the like.

こ)で地上局よりの送出波f1とF2の関係について説
明する。f1とF2の最適周波数差は変調方式およびデ
ータ伝送速度から決められるが、受信側での検L波前の
伝送帯域をデータ信号の基本波に近付けてC/N比の改
善を図ること、2波の差周波数成分は検波後の濾波器で
データ信号の基本波を損わずに十分除かれるように選ぶ
ことが必要である。そしてこのFSK変調の場合はデー
タ伝送速度をたとえば200ボーとすればデータの基本
波は100Hzとなり、検波後のLPFの遮断周波数は
100Hz差周波Ifl−F2lが十分除去できる値は
約200Hzとすればよい。さらにFSK変調の偏移周
波数Δfを±200Hz(偏移幅は400Hz)とした
場合には、F2−f1を200Hzに選定すればf1±
ΔF.f2±Δfはそれぞれ200Hzの間隔に配列さ
れる。そして検波前の伝送帯域はf1またはF2のみ抽
出のものより200Hz広くなるのみでC/Nの劣化は
実用上大きな損失はない。地上局ではこのようにf1と
F2の周波数関係を維持しかつ相互にデータ位相同期状
態で各誘導線に送出させる。図3は図2の周波数弁別器
24の特性例図で、f1とF2の中央を中心周波数とし
F2〉f1としたとき、f1±200Hzは+100H
zと−300Hz1f2±200Hzは+300Hzと
−100Hzとなり、かつデータ位相の同相化から+3
00Hz1+100Hzが出力正(+)、−100Hz
と−300Hzが出力負(−)をそれぞれ出力する。
In this section, the relationship between the waves f1 and F2 transmitted from the ground station will be explained. The optimal frequency difference between f1 and F2 is determined by the modulation method and data transmission speed, but it is important to improve the C/N ratio by bringing the transmission band before the detection L wave on the receiving side closer to the fundamental wave of the data signal. It is necessary to select the difference frequency component of the wave so that it can be sufficiently removed by the filter after detection without damaging the fundamental wave of the data signal. In the case of FSK modulation, if the data transmission rate is, for example, 200 baud, the fundamental wave of the data is 100 Hz, and the cutoff frequency of the LPF after detection is 100 Hz.The value that can sufficiently remove the difference frequency Ifl-F2l is approximately 200 Hz. good. Furthermore, if the deviation frequency Δf of FSK modulation is set to ±200Hz (deviation width is 400Hz), if F2-f1 is selected to 200Hz, f1±
ΔF. f2±Δf are arranged at intervals of 200 Hz. The transmission band before detection is only 200 Hz wider than that obtained by extracting only f1 or F2, and the deterioration of C/N does not cause a large loss in practice. In this way, the ground station maintains the frequency relationship between f1 and F2, and transmits data to each guide line in a phase-synchronized state. FIG. 3 is a characteristic diagram of the frequency discriminator 24 in FIG. 2. When the center frequency is set at the center of f1 and F2 and F2>f1, f1±200Hz is +100H
z and -300Hz1f2±200Hz become +300Hz and -100Hz, and +3 from in-phase data phase
00Hz1+100Hz is output positive (+), -100Hz
and -300Hz output negative (-) outputs, respectively.

図4は各分割区間の誘導線から移動体受信アンテナ11
に誘起する電圧eの特性図で、実線はA,C等の区間に
おけるf1波(f1±Δf)による電圧、破線はB,D
等の区−におけるF2(F2±Δf)波による電圧であ
る。
Figure 4 shows the mobile receiving antenna 11 from the guide line of each divided section.
In the characteristic diagram of the voltage e induced in
This is the voltage due to the F2 (F2±Δf) wave in the area such as .

これらの誘起電圧は受信機12を経て図2に示すような
復調器に入力し、上記のように周波数弁別器24から±
Δfに対応した検波出力を次段のLPF25に入力する
。ところて移動体アンテナがたとえばAとBの区間区分
点(または接合点)に近づくか区分点を通過したある範
囲内ではf1もF2も検波され、この差周波数200H
zも周波数弁別器24から入力レベルに応じて出力する
。LPF25ではデータ信号の基本波100Hz以下が
通過し上記差周波数波は遮断されるから、シユミツト回
路26はデータのみの出力で駆動されその出力に方形波
になつたデータ信号を復元する。以上はFSK変調の場
合を説明したが、PSK変調が用いられた場合も同様で
ある。次に図5は差動形位相偏移変調(DPSK)によ
つてデータ伝送が行われる場合の復調器13の構−成例
ブロック図である。
These induced voltages are input to a demodulator as shown in FIG.
The detection output corresponding to Δf is input to the next stage LPF 25. However, within a certain range where the mobile antenna approaches or passes through the division point (or junction) of sections A and B, both f1 and F2 are detected, and this difference frequency is 200H.
z is also output from the frequency discriminator 24 according to the input level. Since the fundamental wave of the data signal of 100 Hz or less passes through the LPF 25 and the difference frequency wave is cut off, the Schmitt circuit 26 is driven by an output of only data and restores the square wave data signal to its output. Although the case of FSK modulation has been described above, the same applies to the case where PSK modulation is used. Next, FIG. 5 is a block diagram showing an example of the configuration of the demodulator 13 when data transmission is performed by differential phase shift keying (DPSK).

たS゛しこの例は2相DPSKを用いた場合で、2つの
送信波f1とF2の周波数差はTをデータ信号のビット
時間長としてデータ伝送速度が1/Tボーのとき、n/
Tにとる。nは1以上の整数で1/T=200ボーなら
周波数差はn=1では200Hz..n=2では400
Hzとなる。図5において41は所要帯域に制限するた
めのBPFl42は増幅器、43はリミタ、44はT時
間だけ遅延させる回路、45は位相弁別器、46はLP
Fl47はシユミツト回路であるが、46,47を積分
一放電濾波器に置換えてもよい。さて送信側(地上局)
よりデータ信号は200Hz差のFl,f2皺で送出さ
れ誘導線−アンテナ→受j信機→復調器の順に入力し図
5のBPF4lに入力する。いまアンテナ11がA区間
の中央附近にあるとすればf1のデータ信号のみが増幅
器42、リミタ43を経て位相弁別器(PD)45の1
入力になり、同時にビット時間長Tの遅延回路−(D)
44を経た前ビット入力がPD45の他の入力となる。
PDでは1ビット時間前の位相と現ビット位相の位相差
が弁別されてその出力(たとえば同相なら1、逆相なら
0に対応する出力)をLPF46に送出し、LPF46
ではデータの基本波・以下の周波数成分のみ通過させて
方形波符号を方形波変換器47から出力し送信側のデー
タ信号を復元する。アンテナ11がB区間の中央附近に
あるときも全く同様でF2によるデータ信号が復元され
る。また区間区分点やその近傍のf1とF2がいずれも
受信される状態ではf1波とF2波が上記の動作をする
(たStデータは位相同期している)ほかに、f1とF
2の差周波数200HzがPD45から入力レベルに応
じて出力されるが、LPF46で除去されデータ信号の
復元が正しく行われる。以上の説明のように図1の誘導
線方式では伝送速度や偏移周波数に対して最適の周波数
差を設定すれば区間区分点およびその近傍においてもビ
ットエラー率を低下することなくデータ伝送が可能であ
る。ここで図1の誘導線方式により移動体の位置を地上
局にて検知する方法の1つを説明する。
However, this example is when two-phase DPSK is used, and the frequency difference between the two transmission waves f1 and F2 is n/ when the data transmission rate is 1/T baud, where T is the bit time length of the data signal.
Take T. If n is an integer greater than or equal to 1 and 1/T = 200 baud, the frequency difference is 200Hz when n = 1. .. 400 for n=2
Hz. In FIG. 5, 41 is a BPF for limiting the band to the required band; 42 is an amplifier; 43 is a limiter; 44 is a circuit for delaying by T time; 45 is a phase discriminator; and 46 is an LP
Fl 47 is a Schmitt circuit, but 46 and 47 may be replaced with integral-discharge filters. Now, the transmitting side (ground station)
Therefore, the data signal is sent out with a 200 Hz difference between Fl and f2, and is input in the order of guide line - antenna -> receiver -> demodulator, and then input to BPF 4l in FIG. Now, if the antenna 11 is located near the center of section A, only the data signal f1 passes through the amplifier 42 and limiter 43, and then passes through the phase discriminator (PD) 45.
input, and at the same time a delay circuit with bit time length T - (D)
The previous bit input after passing through the PD 44 becomes the other input to the PD 45.
The PD discriminates the phase difference between the phase of one bit time before and the current bit phase, and sends the output (for example, an output corresponding to 1 if the phase is in-phase and 0 if the phase is opposite) to the LPF 46.
Then, only the frequency components below the fundamental wave of the data are passed, and a square wave code is output from the square wave converter 47 to restore the data signal on the transmitting side. When the antenna 11 is located near the center of section B, the data signal by F2 is restored in exactly the same manner. In addition, in a state where both f1 and F2 at or near the section dividing point are received, the f1 and F2 waves operate as described above (and the St data are phase-synchronized).
A difference frequency of 200 Hz is output from the PD 45 according to the input level, but it is removed by the LPF 46 and the data signal is correctly restored. As explained above, in the guided wire method shown in Figure 1, by setting the optimum frequency difference for the transmission speed and shift frequency, it is possible to transmit data without reducing the bit error rate even at the section dividing point and its vicinity. It is. Here, one method of detecting the position of a moving object at a ground station using the guide line method shown in FIG. 1 will be explained.

ます移動体にその固有番号を2進コードで与えておき、
移動体に設けた送信機からアンテナ11を共用するかま
たは別に設けた送信アンテナ(送信機と送信アンテナは
図示省略)を通じてF3波を送出する。F3波はデータ
伝送を行うf1およびF2両波と異る周波数を有し、移
動体載置のデータ受信復調器のBPF(帯域沖波器)2
1と41の帯域外で上記固有番号で変調(たとえは下S
K)しておく。他方地上局側の誘導線1の各分割区間に
は結合器3を経てF3の受信機(図示してないが図中の
αに含まれる。
Give the mobile object its unique number in binary code,
The F3 wave is transmitted from a transmitter provided in the mobile body by sharing the antenna 11 or through a separately provided transmitting antenna (the transmitter and transmitting antenna are not shown). The F3 wave has a different frequency from both the f1 and F2 waves that transmit data, and is used as a BPF (bandwidth wave transmitter) 2 of a data reception demodulator mounted on a mobile body.
Modulation with the above unique number outside the bands 1 and 41 (for example, the lower S
K) Leave it. On the other hand, each divided section of the guide line 1 on the ground station side is connected to a receiver F3 (not shown, but included in α in the figure) via a coupler 3.

たとえば上記FSK(周波数偏移変調波)の復調器およ
び受信レベル検出器を備えている。)が設けられ、各受
信機の出力は地上局内の移動体の存在する区間と固有番
号を判定する移動体位置判定器(図示省略)に送出され
るが、各受信機内の受信レベル検出器では復調(検波)
したレベルが一定レベルを超えた場合にのみ復調出力を
上記移動体位置判定器に送出する。この一定レベルとは
移動体が存在する分割区間の受信機検波出力の最低値以
下に選んでおく。このようにして移動体存在区間の受信
機のみから移動体の前記固有番号を示す信号が上記移動
体位置判定器に入力し、こ)で移動体の存在する区間と
移動体の固有番号を検出することができる。以上のよう
にデータ伝送と移動体の位置検知は同一誘導線を共用し
て行うことができる。次に分割区間毎に割当てた番地コ
ードのビット数に等しい組数の交叉形平行2線式誘導線
を並列に走行路に沿つて連続敷設し、各組の誘導線には
そのビットの1からOに合わせて区間区分点に交叉を施
して、誘導線に流れる電流が交叉点の前後にて位相が反
転することを利用して移動体の位置を検出する構成方法
がある。
For example, it includes a demodulator for the above-mentioned FSK (frequency shift keyed wave) and a reception level detector. ), and the output of each receiver is sent to a mobile object position determiner (not shown) that determines the section where the mobile object exists in the ground station and its unique number. Demodulation (detection)
The demodulated output is sent to the mobile body position determiner only when the level exceeds a certain level. This constant level is selected to be less than or equal to the lowest value of the receiver detection output in the divided section where the moving object is present. In this way, a signal indicating the unique number of the mobile object is input only from the receiver in the section where the moving object exists to the mobile object position determiner, and the section where the moving object exists and the unique number of the moving object are detected in this way. can do. As described above, data transmission and position detection of a moving body can be performed by sharing the same guiding wire. Next, a number of sets of crossed parallel two-wire guide wires equal to the number of bits of the address code assigned to each divided section are continuously laid in parallel along the running route, and each set of guide wires is set from bit 1 to There is a configuration method in which the position of the moving body is detected by making intersections at the section division points in accordance with O and utilizing the fact that the phase of the current flowing through the guide wire is reversed before and after the intersection point.

たとえば図6はその構成例図でグレイコードのうちの2
ビットを割当てられた平行2線式誘導線61,62を区
間区分点にコードに合わせて交叉を施し、移動体側には
前記f1およびF2と異る2周波F3およびF4=2f
3の送信機を載置し、誘導線61および62に結合する
送信アンテナ67を送信用に共用するかまたは別の送信
アンテナを用いてF3波およびF4波を送出する。(F
3,f4用の送信機および送信アンテナは図示してない
。)他方地上側には誘導線61,62それぞれの結合器
からF3波およびF4を取出し、これによつて移動体の
位置を検出することができる。
For example, Figure 6 shows an example of the configuration of two of the Gray codes.
The parallel two-wire guide wires 61 and 62 to which the bits are assigned are crossed at the section division points according to the code, and two frequencies F3 and F4 different from the above f1 and F2 are connected to the moving body side.
3 transmitters are installed, and the transmitting antenna 67 coupled to the guide wires 61 and 62 is shared for transmission, or another transmitting antenna is used to transmit the F3 wave and the F4 wave. (F
3. The transmitter and transmitting antenna for f4 are not shown. ) On the other hand, on the ground side, the F3 wave and F4 are taken out from the couplers of the guide wires 61 and 62, thereby making it possible to detect the position of the moving object.

(このような交叉形平行2線誘導線を用いた移動体位置
検知装置については本願出願人による特願昭52一83
019号(特開昭54−18569号)、特願昭52−
113195号(特開昭54−47676号)等の明細
書に詳細に説明してあるので以下には概略を説明する)
。上記のように取り出されたF,波およびF4波はそれ
ぞれを分離する枦波器によつて抽出する。
(A mobile object position detection device using such crossed parallel two-wire guide wires is described in Japanese Patent Application No. 52-83 filed by the applicant of the present application.
No. 019 (Japanese Unexamined Patent Publication No. 18569/1983), Patent Application No. 18569/1973
113195 (Japanese Unexamined Patent Application Publication No. 54-47676), etc., it is explained in detail in the specifications, so the outline will be explained below.)
. The F, wave and F4 wave taken out as described above are extracted by a wave generator that separates them.

このうちF3波を2逓倍器で逓倍し次段の位相弁別器に
基準位相波2f3として入力させる。(これらの結合器
、F3,f4枦波器、2逓倍器、位相弁別器は図示して
ない)この基準位相波は各誘導線の交叉があれば交叉点
の前後でF3波入力は180交位相が変化するが、これ
を2逓倍した2f3波は連続位相となる(2逓倍をたと
えば全波整流によつて行う場合を考えれば容易に理解さ
れる)から基準位相に用いられる。位相弁別器のもう1
つの入力は戸波器よりのF4波であるが、誘導線の交叉
点の前後でF4波も位相が180、変化することから、
位相弁別器の出力も正負の反転を生ずる。このようにし
て各誘導線61および62毎にF4波の位相弁別器出力
が得られるから、移動体の存在位置を示す2ビットコー
ドが得られる。次に上記のように移動体位置検知に用い
る複数の交叉形平行2線式誘導線群中の2誘導線をデー
タ伝送に共用する場合を説明する。図6はその実施例構
成図で、誘導線には番地コードの2nビットと2n−1
ビットに相当する61および62の2つを用いた場合で
ある。なお線の交叉は両ビット線の同位置には決して生
じないが、これは番地コードにたとえばグレイコードを
用いればよい。63,64は結合器すなわち誘導線とf
1波およびF2波の各送信機65,66との結合回路で
、これらの送信機(TX)にはその変調方式に対応す”
る変調器(図示せず)からデータ信号Din゛が入力す
る。67,68は移動体に載置する装置で、67は誘導
線61,62に結合する受信アンテナ、68は受信機と
復調器を含む受信装置である。
Among these waves, the F3 wave is multiplied by a doubler and inputted to the next stage phase discriminator as a reference phase wave 2f3. (These combiners, F3 and f4 waveforms, doubler, and phase discriminator are not shown.) If there is a crossover of each guide wire, the F3 wave input will have 180 intersections before and after the intersection point. Although the phase changes, the 2f3 wave obtained by doubling this becomes a continuous phase (this can be easily understood if one considers the case where doubling is performed by, for example, full-wave rectification) and is therefore used as a reference phase. Another phase discriminator
The two inputs are the F4 waves from the wave detector, but since the phase of the F4 waves also changes by 180 degrees before and after the intersection of the guide lines,
The output of the phase discriminator also causes a positive/negative inversion. In this way, since the F4 wave phase discriminator output is obtained for each guide line 61 and 62, a 2-bit code indicating the location of the moving object is obtained. Next, a case will be described in which two guide wires in a plurality of intersecting parallel two-wire guide wire groups used for detecting the position of a moving object are shared for data transmission as described above. FIG. 6 is a configuration diagram of this embodiment, in which the guide wire includes 2n bits of the address code and 2n-1 bits of the address code.
This is a case where two bits, 61 and 62, are used. Although line crossing never occurs at the same position of both bit lines, this can be achieved by using, for example, a Gray code as the address code. 63 and 64 are couplers or guiding wires and f
This is a coupling circuit with each of the 1-wave and F2-wave transmitters 65 and 66, and these transmitters (TX) have a circuit that corresponds to their modulation method.
A data signal Din' is input from a modulator (not shown). 67 and 68 are devices placed on the moving body; 67 is a receiving antenna coupled to the guide wires 61 and 62; and 68 is a receiving device including a receiver and a demodulator.

まず地上局送信機からはデータの伝送速度・(ボー)よ
り大きい値の周波数偏差を有するf1波およびF2波に
よつて同一データ信号(データ位相同期の)がそれぞれ
誘導線61および62に送出される。図7は各誘導線か
ら移動体アンテナ67に誘起ノする電圧eの走行路に沿
つた変化特性例図である。
First, the same data signal (with data phase synchronization) is sent from the ground station transmitter to the guide lines 61 and 62, respectively, using f1 waves and F2 waves that have frequency deviations larger than the data transmission rate (baud). Ru. FIG. 7 is a diagram showing an example of the change characteristics of the voltage e induced in the mobile antenna 67 from each guide wire along the travel path.

図示のように誘導線の交叉点では結合損失は実用土1と
なりその近傍でも180は逆位相の相殺があつてレベル
が著しく低下するが、前記のようにf1とF2によるア
ンテナ出力が同時にレベル急減を生じることはないので
、移動体においてf1波およびF2波による2信号を同
時に復調しf1とF2の差周波数(たとえば200Hz
)は検波後除去すれば、図1の場合同様に妨害なくデー
タ信号DOutが復元される。なお上記の説明では簡単
のため送信波はf1とF2としたが、一般には順に同一
差周波数を有し位相同期した変調を行つた複数波とする
ことが可能で、図1の場合なら各区間に順に繰返して1
周波ずつ割当て、また図6の場合なら(誘導線は2以上
)各誘導線毎に1周波ずつ割当て、受信側ではこれらの
複数波を1受信機で受信復調すればよい。
As shown in the figure, at the intersection of the guide lines, the coupling loss is 1, and even in the vicinity of 180, the level drops significantly due to the cancellation of the opposite phase, but as mentioned above, the antenna output due to f1 and F2 simultaneously decreases in level. Therefore, the two signals of the f1 wave and F2 wave are simultaneously demodulated in the mobile object and the difference frequency between f1 and F2 (for example, 200Hz
) is removed after detection, the data signal DOut can be restored without interference as in the case of FIG. In the above explanation, the transmitted waves were f1 and F2 for simplicity, but generally it is possible to use multiple waves that have the same difference frequency and are modulated in phase synchronization, and in the case of Fig. 1, each interval Repeat in order 1
In the case of FIG. 6, one frequency is assigned to each guide wire (there are two or more guide wires), and on the receiving side, these multiple waves may be received and demodulated by one receiver.

以上詳説したように本発明の方法によれば、データ伝送
速度(ボー)の数倍の周波数差を有しデータ位相同期さ
れた2波またはそれ以上の複数波を用いて、移動体の分
割形位置検知用誘導線の分割区間の接合点上およびその
近傍においても、また交叉形位置検知用誘導線の交叉点
上およびその近傍においてもデータ品質の劣化を伴わず
にデー;夕伝送が可能で、誘導線を位置検知とデータ伝
送に共用できるという経済上著しい利点が得られる。
As explained in detail above, according to the method of the present invention, two or more waves having a frequency difference several times the data transmission rate (baud) and data phase synchronization are used to form a divided form of a mobile object. Data transmission is possible without deterioration in data quality on and near junction points of divided sections of position detection guide wires, and on and near intersections of intersecting position detection guide wires. , a significant economic advantage is obtained in that the guided wire can be shared for position sensing and data transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は移動体走行路を分割した区間毎に敷設し2た誘導
線を移動体位置検知とデータ伝送に共用する場合の回路
構成例図、図2はFSK(周波数偏移)変調によつて地
上局からデータ伝送を行う場合の移動体(受信側)復調
器の構成例図、図3は図2中の周波数弁別器の特性例図
、図4は図1の移動体アンテナに誘起する電圧の特性図
、図5はDPSK(差動形位相偏移)変調によつてデー
タ伝送を行う場合の復調器の構成例図、図6は分割区間
毎に割当てた番地コードのビット数の誘導線を並列に連
続敷設し番地コードに合わせて交叉を施したものを移動
体位置検知とデータ伝送に共用する場合の回路構成例図
、図7は図6における受信アンテナの誘起電圧の走行路
に沿つた変化特性図である。 1,61,62・・・・・誘導線、3,63,64・・
・・・結合器、4,4b,4c,4d,65,66・・
・・・送信機、5・・・・・・変調器、11,67・・
・・・・受信アンテナ、12・・・・・受信機、13・
・・・・・復調器、21,41・・・・・BPFl22
,42・・・・・増幅器、23,43・・・・・リミタ
、24・・・・・・周波数弁別器、25,46・・・・
・・LPFl26,47・・・・・方形波変換器、44
・・・・・・遅延回路、45・・・・・位相弁別器、6
8・・・・・・受信、復調器。
Figure 1 is an example of a circuit configuration in which two guide lines installed in each divided section of a mobile vehicle travel path are used for mobile body position detection and data transmission, and Figure 2 is a diagram of a circuit configuration using FSK (frequency shift) modulation. An example configuration diagram of a mobile (receiving side) demodulator when transmitting data from a ground station. Figure 3 shows an example characteristic of the frequency discriminator in Figure 2. Figure 4 shows the voltage induced in the mobile antenna in Figure 1. 5 is a diagram showing an example of the configuration of a demodulator when data is transmitted using DPSK (differential phase shift) modulation, and FIG. 6 is a diagram showing the number of bits of the address code assigned to each divided section. Figure 7 is an example of a circuit configuration where a circuit is installed in parallel in series and crossed in accordance with the address code, and is used for both mobile object position detection and data transmission. It is a characteristic diagram of ivy change. 1, 61, 62...guiding wire, 3, 63, 64...
...Coupler, 4, 4b, 4c, 4d, 65, 66...
...Transmitter, 5...Modulator, 11,67...
...Receiving antenna, 12...Receiver, 13.
... Demodulator, 21, 41 ... BPFl22
,42...Amplifier, 23,43...Limiter, 24...Frequency discriminator, 25,46...
...LPF126,47...Square wave converter, 44
... Delay circuit, 45 ... Phase discriminator, 6
8...Receiver, demodulator.

Claims (1)

【特許請求の範囲】 1 移動体の一定走行路を任意複数区間に分割し、その
区間ごとに前記走行路に沿つて移動体位置検知用平行2
線式誘導線を展張して移動体の位置検知を行うように構
成した誘導線設備1〜3を共用して地上側より移動体へ
情報伝送を行う誘導無線によるデータ伝送方法であつて
、前記各分割区間にはデータ伝送速度(ボー)の2〜3
倍の周波数差を有する2つの周波数f_1とf_2を走
行路に沿つた隣接区間ごとに交互に1波ずつの割当てを
行い、地上側にはこの割当てによるf_1またはf_2
の1波を送出する各区間ごとの送信機4、4b、・・・
4dと情報伝送用データ信号(Din)を入力して前記
各送信機へ変調波を同時に出力する変調器5よりなる地
上側送信設備を備えて前記データ信号(Din)にて変
調された前記f_1またはf_2の周波数の送出波を前
記各区間誘導線に同時に送出し、移動体側は移動体に載
置され前記誘導線と誘導結合する受信アンテナ11とそ
の受信出力より、前記2周波数f_1とf_2を抽出す
る2波共通の受信機12およびその出力の変調波を復調
する2波共通の復調器13よりなる受信設備を備えて前
記誘導線よりの1波または2波を受信して前記データ信
号の出力(Dout)を得ることを特徴とする誘導無線
によるデータ伝送方法。 2 移動体位置検知用平行2線式誘導線と地上側送信設
備は、移動体の走行路の分割した区間毎に布設してその
両端をそれぞれ終端抵抗2と結合器3とで終端した平行
2線式誘導線と、地上側より伝送しようとするデータ信
号(Din)によつて搬送波を変調する変調器5とその
出力を入力して前記誘導線の各区間に設けられ隣接区間
毎に交互に割当てられた前記2つの周波数f_1とf_
2のうちの1波に周波数変換ならびに電力増幅して変調
された送信波を誘導線の結合器に出力する送信機4、4
b〜4dとよりなる地上側送信設備であることを特徴と
する特許請求の範囲第1項記載の誘導無線によるデータ
伝送方法。 3 データ信号を周波数偏移変調によつて伝送する場合
は、その偏移周波数Δfを2つの周波数f_1とf_2
の差周波数以上とすることを特徴とする特許請求の範囲
第1項記載の誘導無線によるデータ伝送方法。 4 データ信号を周波数偏移変調によつて伝送するとき
受信側の受信設備は2つの周波数f_1とf_2の差周
波数と偏移周波数Δfおよびデータ伝送速度(ボー)に
よつて定まる帯域幅を所要帯域幅とする2周波共用アン
テナ11、受信機および復調器12、13よりなり、前
記復調器は前記所要帯域を抽出する濾波器21とその出
力の増幅器22とその出力を一定レベルに制限する振幅
制限器23とその変調波を調する周波数弁別器24とそ
の出力中の伝送周波数2波の差周波数成分を除去する低
域濾波器25およびその出力の方形波変換器26によつ
て構成したことを特徴とする特許請求の範囲第1項記載
の誘導無線によるデータ伝送方法。 5 データ信号を位相偏移変調によつて伝送するとき、
2つの伝送周波数f_1とf_2の差周波数(Hz)を
データ伝送速度(ボー)の2倍とすることを特徴とする
特許請求の範囲第1項記載の誘導無線によるデータ伝送
方法。 6 データ信号を位相偏移変調によつて伝送するとき受
信側の受信設備は2つの伝送周波数f_1とf_2の差
周波数とデータ伝送速度(ボー)によつて定まる帯域幅
を所要帯域幅とする2周波共用アンテナ11、受信機お
よび復調器12、13よりなり、前記復調器は前記所要
帯域を抽出する濾波器41とその出力の増幅器42とこ
の増幅器出力を一定レベルに制限する振幅制限器43と
、その出力を1ビット時間遅延させる遅延回路44と、
前記振幅制限器と前記遅延回路の出力間の位相差を弁別
する位相弁別器45と、その弁別出力中の伝送2周波数
f_1とf_2の差周波数成分を除去する低域濾波器4
6およびその出力の方形波変換器47によつて構成した
ことを特徴とする特許請求の範囲第1項記載の誘導無線
によるデータ伝送方法。 7 移動体の一定走行路を任意複数区間に分割してその
区間ごとに一連のグレイコードを番地コードとして順に
付与し、その番地コードのビット数に等しい複数の平行
2線式誘導線に区間区分点に合わせて番地コードによる
交叉を施し前記走行路に沿つて展張して移動体の位置検
知を行うように構成した誘導線設備の任意の2誘導線6
1と62とその各終端の結合器63と64を共用して地
上側より移動体へ情報を伝送する誘導無線によるデータ
伝送方法であつて、前記2誘導線61と62にはデータ
伝送速度(ボー)の2〜3倍の周波数差を有する2つの
周波数f_1とf_2をそれぞれ1波ずつ割当てておき
、地上側よりは情報伝送用データ信号(Din)の入力
によつて同時に変調された前記のf_1またはf_2の
周波数波を送出する前記誘導線ごとの送信機65と66
より前記入力データ信号(Din)にて変調された2波
f_1とf_2を前記2誘導線61と62へ前記割当て
に従つてそれぞれ送出し、移動体においては移動体に載
置して前記2誘導線と誘導結合して前記2波を受信する
受信アンテナ67とその受信出力中の前記2周波数f_
1とf_2を抽出してその変調成分を共通に復調する受
信・復調器68を備えて前記誘導線からの2波または1
波を受信して地上側よりのデータ信号出力(Dout)
を得ることを特徴とする誘導無線によるデータ伝送方法
。 8 移動体位置検知用平行2線式誘導線と地上側送信設
備は、移動体の走行路の分割した区間ごとに一連のグレ
イコードを番地コードとして順に付与して、その番地コ
ードのビット数に等しい複数の平行2線式誘導線を用い
、これら複数の誘導線は前記分割区間の区分点において
番地コードに合わせて交叉を施しかつ各誘導線の両端は
終端抵抗器と結合器にそれぞれ接続した誘導線群と、前
記複数の誘導線中の任意の2誘導線のそれぞれの結合器
63と64に伝送しようとする同一のデータ信号(Di
n)によつて変調された前記2つの周波数f_1とf_
2の1波ずつを送出する一対の送信機65と66よりな
る地上側送信設備であることを特徴とする特許請求の範
囲第7項記載の誘導無線によるデータ伝送方法。 9 データ信号を周波数偏移変調ににつて伝送する場合
は、その偏移周波数Δfを2つの周波数f_1とf_2
の差周波数以上とすることを特徴とする特許請求の範囲
第7項記載の誘導無線によるデータ伝送方法。 10 データ信号は周波数偏移調によつて伝送するとき
受信側の受信設備は2つの周波数f_1とf_2の差周
波数と偏移周波数Δfおよびデータ伝送速度(ボー)に
よつて定まる帯域幅を所要帯域幅とする2周波共用アン
テナ67、受信部および復調器68よりなり、前記復調
器は前記所要帯域幅を抽出する濾波器21とその出力の
増幅器22とその出力を一定レベルに制限する振幅制限
器23とその変調波を復調する周波数弁別器24とその
出力中の伝送周波数2周波の差周波数成分を除去する低
域濾波器25およびその出力の方形波変換器26によつ
て構成したことを特徴とする特許請求の範囲第7項記載
の誘導無線によるデータ伝送方法。 11 データ信号を位相偏移変調によつて伝送するとき
、2つの伝送周波数f_1とf_2の差周波数(Hz)
をデータ伝送速度(ボー)の2倍とすることを特徴とす
る特許請求の範囲第7項記載の誘導無線によるデータ伝
送方法。 12 データ信号を位相偏移変調によつて伝送するとき
受信側の受信設備は2つの伝送周波数f_1とf_2の
差周波数とデータ伝送速度(ボー)によつて定まる帯域
幅を所要帯域幅とする2周波共用アンテナ67、受信部
および復調器68よりなり前記復調器は前記所要帯域を
抽出する濾波器41とその出力の増幅器42とその出力
を一定レベルに制限する振幅制限器43と、その出力を
1ビット時間遅延させる遅延回路44と、前記振幅制限
器と前記遅延回路の出力間の位相差を弁別する位相弁別
器45と、その弁別出力中の伝送2周波数f_1とf_
2の差周波数成分を除去する低域濾波器46およびその
出力の方形変換器47によつて構成したことを特徴とす
る特許請求の範囲第7項記載の誘導無線によるデータ伝
送方法。
[Scope of Claims] 1. A fixed running path of a moving object is divided into a plurality of arbitrary sections, and a parallel 2-way sensor for detecting the moving object position is installed along the running path for each section.
A data transmission method using guided radio for transmitting information from the ground side to a moving body by sharing guide line equipment 1 to 3 configured to detect the position of a moving body by extending a wire guide line, the method comprising: Each segment has a data transmission rate of 2 to 3 bauds.
The two frequencies f_1 and f_2, which have twice the frequency difference, are alternately assigned one wave at a time to each adjacent section along the running route, and on the ground side, f_1 or f_2 according to this assignment is applied.
The transmitters 4, 4b, . . . for each section transmit one wave of
The f_1 is modulated by the data signal (Din), and is equipped with a ground-side transmission equipment consisting of a modulator 5 that inputs 4d and a data signal (Din) for information transmission and simultaneously outputs a modulated wave to each of the transmitters. Alternatively, a transmission wave with a frequency of f_2 is simultaneously sent out to each section of the guide wire, and the moving object receives the two frequencies f_1 and f_2 from the receiving antenna 11 mounted on the moving object and inductively coupled to the guide wire and its reception output. A receiver 12 common to the two waves to be extracted and a demodulator 13 common to the two waves to demodulate the modulated wave output from the receiving equipment are provided to receive one wave or two waves from the guide wire to generate the data signal. A data transmission method using guided radio, characterized by obtaining an output (Dout). 2. The parallel two-wire guide wire for detecting the position of a moving object and the ground-side transmission equipment are installed in each divided section of the traveling path of the moving object, and both ends thereof are terminated with a terminating resistor 2 and a coupler 3, respectively. A modulator 5 that modulates a carrier wave by a data signal (Din) to be transmitted from the ground side and a modulator 5 which is provided in each section of the guide line and whose output is inputted, is installed alternately in each adjacent section. The two assigned frequencies f_1 and f_
Transmitters 4, 4 that convert the frequency and amplify the power into one of the two waves and output the modulated transmission wave to the coupler of the guide wire.
4. The data transmission method using guided radio according to claim 1, characterized in that the ground-side transmission equipment consists of the following. 3 When transmitting a data signal by frequency shift keying, the shift frequency Δf is divided into two frequencies f_1 and f_2.
2. The data transmission method using guided radio according to claim 1, wherein the difference frequency is greater than or equal to the difference frequency. 4 When transmitting a data signal by frequency shift keying, the receiving equipment on the receiving side uses the required bandwidth determined by the difference frequency between the two frequencies f_1 and f_2, the shift frequency Δf, and the data transmission rate (Baud). The demodulator includes a filter 21 for extracting the desired band, an amplifier 22 for its output, and an amplitude limiter for limiting the output to a certain level. 23, a frequency discriminator 24 for tuning its modulated wave, a low-pass filter 25 for removing the difference frequency component between the two transmission frequencies in its output, and a square wave converter 26 for its output. A data transmission method using guided radio according to claim 1. 5 When transmitting a data signal by phase shift keying,
The data transmission method using guided radio according to claim 1, characterized in that the difference frequency (Hz) between the two transmission frequencies f_1 and f_2 is twice the data transmission rate (baud). 6 When transmitting a data signal using phase shift keying, the receiving equipment on the receiving side uses a required bandwidth determined by the difference frequency between the two transmission frequencies f_1 and f_2 and the data transmission rate (baud)2. It consists of a frequency sharing antenna 11, a receiver, and demodulators 12 and 13, and the demodulator includes a filter 41 for extracting the required band, an amplifier 42 for its output, and an amplitude limiter 43 for limiting the output of this amplifier to a certain level. , a delay circuit 44 that delays its output by one bit time;
a phase discriminator 45 for discriminating the phase difference between the outputs of the amplitude limiter and the delay circuit; and a low-pass filter 4 for removing the difference frequency component between the two transmission frequencies f_1 and f_2 in the discriminator output.
6. The data transmission method by guided radio according to claim 1, characterized in that the method comprises a square wave converter 47 for the output thereof. 7 Divide a certain travel path of a moving object into arbitrary sections, assign a series of gray codes as address codes to each section in order, and divide the sections into a plurality of parallel two-wire guide lines equal to the number of bits of the address code. Any two guide wires 6 of the guide wire equipment configured to intersect with address codes at points and extend along the travel path to detect the position of a moving object.
1 and 62 and couplers 63 and 64 at their respective ends are shared to transmit information from the ground side to the mobile body. One wave each of two frequencies f_1 and f_2 having a frequency difference of 2 to 3 times the frequency difference of baud) is allocated, and from the ground side, the above-mentioned frequency signal which is simultaneously modulated by the input of the information transmission data signal (Din) is allocated. transmitters 65 and 66 for each of said guide wires transmitting frequency waves of f_1 or f_2;
The two waves f_1 and f_2 modulated by the input data signal (Din) are sent to the two-lead wires 61 and 62, respectively, according to the assignment, and in the moving body, the two waves f_1 and f_2 are placed on the movable body and A receiving antenna 67 that receives the two waves by inductively coupling with the line and the two frequencies f_ in its received output.
1 and f_2 and commonly demodulates the modulated components thereof.
Receive waves and output data signal from ground side (Dout)
A data transmission method using guided radio, characterized by obtaining the following information. 8 The parallel two-wire guide wire and ground-side transmission equipment for detecting the position of a moving object sequentially assign a series of gray codes as address codes to each divided section of the moving path of the moving object, and calculate the number of bits of the address code. A plurality of equal parallel two-wire induction wires were used, and these multiple induction wires were crossed in accordance with the address code at the dividing point of the divided section, and both ends of each induction wire were connected to a terminating resistor and a coupler, respectively. The same data signal (Di
said two frequencies f_1 and f_
8. The data transmission method using guided radio according to claim 7, wherein the ground-side transmission equipment is comprised of a pair of transmitters 65 and 66 that transmit one wave of each wave. 9 When transmitting a data signal using frequency shift keying, the shift frequency Δf is divided into two frequencies f_1 and f_2.
8. The data transmission method using guided radio according to claim 7, wherein the difference frequency is greater than or equal to the difference frequency. 10 When the data signal is transmitted by frequency shift keying, the receiving equipment on the receiving side uses the required bandwidth determined by the difference frequency between the two frequencies f_1 and f_2, the shift frequency Δf, and the data transmission rate (Baud). The demodulator includes a filter 21 for extracting the required bandwidth, an amplifier 22 for its output, and an amplitude limiter for limiting the output to a certain level. 23, a frequency discriminator 24 for demodulating its modulated wave, a low-pass filter 25 for removing the difference frequency component between the two transmission frequencies in its output, and a square wave converter 26 for its output. A data transmission method using guided radio according to claim 7. 11 When transmitting a data signal by phase shift keying, the difference frequency (Hz) between two transmission frequencies f_1 and f_2
8. The method for transmitting data using guided radio according to claim 7, wherein the data transmission rate is twice the data transmission rate (baud). 12 When transmitting a data signal using phase shift keying, the receiving equipment on the receiving side uses a required bandwidth determined by the difference frequency between the two transmission frequencies f_1 and f_2 and the data transmission rate (baud)2. The demodulator consists of a frequency sharing antenna 67, a receiving section, and a demodulator 68. The demodulator includes a filter 41 for extracting the desired band, an amplifier 42 for the output thereof, an amplitude limiter 43 for limiting the output to a certain level, and an amplitude limiter 43 for limiting the output to a certain level. a delay circuit 44 for delaying by one bit time; a phase discriminator 45 for discriminating the phase difference between the outputs of the amplitude limiter and the delay circuit; and two transmission frequencies f_1 and f_ in the discriminated outputs.
8. The data transmission method using guided radio according to claim 7, characterized in that the method comprises a low-pass filter 46 for removing a difference frequency component between the two and a rectangular converter 47 for its output.
JP53003559A 1978-01-17 1978-01-17 Data transmission method using guided radio Expired JPS6057741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53003559A JPS6057741B2 (en) 1978-01-17 1978-01-17 Data transmission method using guided radio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53003559A JPS6057741B2 (en) 1978-01-17 1978-01-17 Data transmission method using guided radio

Publications (2)

Publication Number Publication Date
JPS5496913A JPS5496913A (en) 1979-07-31
JPS6057741B2 true JPS6057741B2 (en) 1985-12-17

Family

ID=11560774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53003559A Expired JPS6057741B2 (en) 1978-01-17 1978-01-17 Data transmission method using guided radio

Country Status (1)

Country Link
JP (1) JPS6057741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371134U (en) * 1989-11-17 1991-07-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371134U (en) * 1989-11-17 1991-07-18

Also Published As

Publication number Publication date
JPS5496913A (en) 1979-07-31

Similar Documents

Publication Publication Date Title
US5185591A (en) Power distribution line communication system for and method of reducing effects of signal cancellation
CA1246709A (en) Receiver apparatus for three-phase power line carrier communications
EP0174612A2 (en) Composite shift keying communication system
US4734920A (en) High speed modem for multiple communication circuits
JPS6057741B2 (en) Data transmission method using guided radio
JPS6057740B2 (en) Data transmission method using guided radio
JP3246947B2 (en) Communication device for train control
EP0670093B1 (en) High speed fsk demodulator
CN105119855B (en) A kind of modulation and demodulation method and device
JPS6025354A (en) Radio communication system
JP3142779B2 (en) Position detection and data transmission device
JP2000134269A5 (en)
JPH0644731B2 (en) Diversity transmission / reception method in broadcasting format data communication
JPS606580B2 (en) Data and point information transmission device to mobile objects
EP0098665A2 (en) Data demodulator for a direct frequency modulated signal
JPS606581B2 (en) mobile communication device
JP3118073B2 (en) Communication device for train control
US2185687A (en) Carrier system with phase discrimination
JP2764266B2 (en) Information transmission equipment for floating railway
JPS6057776B2 (en) Mobile object position detection and information signal transmission equipment
JPS6023306B2 (en) Moving object forward and backward detection device
JPH0638596B2 (en) Digital communication system
KR930003282B1 (en) Transmitter system of data signal
US1458225A (en) Multiple balancing arrangement for multiplex transmission
US3163716A (en) Multi-channel phase shift code transmission system