JPS6023306B2 - Moving object forward and backward detection device - Google Patents

Moving object forward and backward detection device

Info

Publication number
JPS6023306B2
JPS6023306B2 JP6680978A JP6680978A JPS6023306B2 JP S6023306 B2 JPS6023306 B2 JP S6023306B2 JP 6680978 A JP6680978 A JP 6680978A JP 6680978 A JP6680978 A JP 6680978A JP S6023306 B2 JPS6023306 B2 JP S6023306B2
Authority
JP
Japan
Prior art keywords
output
frequency
wire
signal
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6680978A
Other languages
Japanese (ja)
Other versions
JPS54158974A (en
Inventor
孝男 癸生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP6680978A priority Critical patent/JPS6023306B2/en
Publication of JPS54158974A publication Critical patent/JPS54158974A/en
Publication of JPS6023306B2 publication Critical patent/JPS6023306B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】 本発明は一定走行路上を走行するクレーン、台車、列車
などの移動体をたとえば自動運転しあるいは運転制御を
行う場合などにおいて移動体の走行安全のためその前進
あるいは後退の検知を移動体側または地上局側にて行う
装直に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a system for controlling the forward or backward movement of moving objects such as cranes, trolleys, trains, etc., which travels on a fixed running path, in order to ensure the running safety of the moving objects, such as automatic operation or operation control. This relates to remounting in which detection is performed on the moving body side or the ground station side.

従来は上記のような移動体の運転制御に当っては、指令
側より送られる指令信号によって移動体の走行制御部が
制御され、その動作結果を被制御情報として指令側に帰
還する方法あるいはこの帰還を行わない方法が用いられ
ているが、制御側と本発明は上記従釆の装置の欠点を除
き信頼性と検知機能の向上をはかることを目的とし、移
動体の短距離移動をも移動体側または地上局側で速かに
検知する装置を提供するもので、移動体の走行制御の安
全性確保に重大な効果がある。また本発明装置は地上局
と移動体闇のデータ伝送や移動体における地点情報伝送
、位置検知などに使用する誘導線路、送受機器、運用周
波数を共用することができるので経済上の効果が大きい
という特長がある。以下本発明をその実施例によって詳
細に説明する。まず誘導線を用いた移動体の位置検知方
法を説明する。
Conventionally, when controlling the operation of a mobile object as described above, the driving control section of the mobile object is controlled by a command signal sent from the command side, and the operation result is returned to the command side as controlled information, or this method is used. However, the purpose of the present invention and the control side is to improve the reliability and detection function by eliminating the drawbacks of the above-mentioned subordinate devices, and to improve the reliability and detection function of a moving object even when moving over short distances. This provides a device that quickly detects data on the body side or on the ground station side, and has a significant effect on ensuring the safety of traveling control of moving objects. In addition, the device of the present invention can share guidance lines, transmitting/receiving equipment, and operating frequencies used for data transmission between ground stations and mobile objects, point information transmission, and position detection in mobile objects, so it is said to have a large economic effect. It has its features. Hereinafter, the present invention will be explained in detail with reference to examples thereof. First, a method for detecting the position of a moving body using a guide line will be explained.

第1図は位贋(29点情報)検知装置の構成例図で、移
動体走行略に敷設した交差形平行2線式誘導線(記号6
)が1個のみの場合である。図中の1は2周波(周波数
〆,および〆2とする)送信機、4は結合器、5は終端
抵抗である。被制御側聞の通信系を含む制御系統の故障
時には安全面での信頼性が不十分で、特に移動体の停止
時の後退、たとえば勾配のある場所で停止した場合の後
退は制御系が正常な動作を行っているときでも起り得る
ものであるが、従来の移動体の前、後進の検出は移動体
の車輪あるいは車軸の回転から、または移動体の走行路
上の位置検知装置からそれぞれ得られるデータによって
行うものであるから、車輪の回転が徐々に行われるとき
は毎秒回転数が少なすぎて検出が困難であり、後者では
移動距離が大きくなってから検知されるなど、実用上不
測の後退の検出等には役に立たないという欠点があった
。この地上側送信機1からはデ−夕にて位相偏移変調(
MKという)した〆,波と、八とは異る周波数で無変調
の〆2波の2つの信号電流を結合器4を介して誘導体6
に出力する。
Figure 1 shows an example of the configuration of a counterfeit (29-point information) detection device.
) is only one. In the figure, 1 is a two-frequency (frequency end and frequency end 2) transmitter, 4 is a coupler, and 5 is a terminating resistor. In the event of a failure in the control system, including the communication system of the controlled side, reliability in terms of safety will be insufficient, especially if the moving object backs up when stopped, for example, if it stops on a slope, the control system may be in normal condition. Conventionally, detection of forward or backward movement of a moving object is obtained from the rotation of the moving object's wheels or axles, or from a position sensing device on the moving path of the moving object. Since this is done based on data, when the wheels rotate gradually, the number of revolutions per second is too low and it is difficult to detect, and in the latter case, it is detected only after the distance traveled has increased, resulting in unforeseen setbacks in practical use. The disadvantage is that it is not useful for detection. This ground-side transmitter 1 uses phase shift keying (
The two signal currents, the final wave (referred to as MK) and the unmodulated final wave at a frequency different from 8, are connected to the dielectric 6 through the coupler 4.
Output to.

ただし〆,波は位置検知には関係なく〆2波のみ考え机
まよい。2と3とは移動体に萩層するもので、3はアン
テナ、2は定#9点または位置検知機であるが、アンテ
ナ3は誘導線に結合しながら移動し、検知機2は走行路
上の定点すなわち譲導線6の交差が施されている地点を
検知する。
However, the final wave has nothing to do with position detection, and only the two final waves should be considered. 2 and 3 are attached to the moving object, 3 is an antenna, 2 is a fixed #9 point or a position detector, but antenna 3 moves while being connected to the guide wire, and detector 2 is attached to the running road. A fixed point, that is, a point where the concession line 6 intersects is detected.

これはアンテナ3に誘起される〆2波の信号の位相は移
動体が第1図のaまたはc区間にある場合とbまたはd
区間にある場合とでは180o異り、交差点A,B,C
等をアンテナ3が通過するとき信号位相180o変化す
ることから位相変化を検出して定点位置を検出できるか
らである。なお交差点の間隔は任意であるが、等間隔と
すれば位相変化点の計数から移動体の速度や相対位置の
検出に便利である。第2図は本発明を実施した固定−移
動間通信装置の基本的構成例図である。
This shows that the phase of the two-wave signal induced in antenna 3 is different when the moving object is in section a or c in Figure 1 and when it is in section b or d.
There is a 180 degree difference between intersections A, B, and C.
This is because when the antenna 3 passes through the antenna 3, the signal phase changes by 180 degrees, so the fixed point position can be detected by detecting the phase change. Note that the intervals between the intersections are arbitrary, but if they are set at equal intervals, it is convenient for detecting the speed and relative position of the moving object from counting the phase change points. FIG. 2 is a diagram showing an example of the basic configuration of a fixed-mobile communication device embodying the present invention.

この図において7は地上固定側(以下地上局という)の
データおよび位置検知の各信号送信機、8,9はそれぞ
れ誘導線10,11との結合器、1川ま走行線中の必要
長区間に敷設したデータ伝送用平行2線式誘導線、11
は同じく必要な区間に敷設した位置検知用交差形平行2
線式議導線、12.13は誘導線の終端抵抗器、14〜
16は移動体に戦層する部分で、14,15は譲導線と
結合するアンテナ、16はデータ受信、位置検知および
走行方向検知の各機能を備えた受信機である。またLは
誘導線11の交差点間隔、L2は移動体のアンテナI4
と15の走行線に沿った間隔でL2ニL/2にとる。D
,nはデータ入力、Dmtはデータ出力、sは前後進検
知出力、pは位贋検知出力である。さて信号送信機7に
は〆,,〆2の2周波発振器、その増幅器およびデータ
(2進コード)によって〆,をMKする変調器が含まれ
、的Kされた〆,波は譲導線1川こ送出され、ナ,に対
して〆2=mノ,/(m−1)〔mは2以上の整数〕の
関係にある〆2波は無変調で議導線11に送出される。
以下では説明を簡単にするためmを2に選んだ場合を説
明するが、mを2以外に選んだときも同様の動作が得ら
れる。m=2とすれば〆,=ナ2/2となる。第3図は
第2図中の受信機16の詳細な構成例7ロック図で、1
7,18はそれぞれアンテナ15,14よりのナ2波成
分を抽出する帯城炉波器(BPF)、19はアンテナ1
4の出力からナ,波を抽出するBPF、20,21,2
2は増幅兼振幅制限器(A・L)、23はPSK復調器
、24は周波数2逓倍器(m=2の場合)、25,26
は位相位別器(PD)、27は位置検出出力器、28,
29は低域炉波器(LPF)を含む方形波変換器W、3
0,31は立上り変換点(低レベルから高レベルへ、L
→H)および立上り変換点(H→L)のそれぞれを区分
した変換点パルス発生器P、32〜35はアンゲート、
36,37はオアゲート、38はフリツプフロツプを含
む走行方向信号出力器である。
In this figure, 7 is a signal transmitter for data and position detection on the ground fixed side (hereinafter referred to as a ground station), 8 and 9 are couplers with guide lines 10 and 11, respectively, and the required length section of the running line. Parallel two-wire guide wire for data transmission installed in 11
is also a cross-type parallel 2 for position detection installed in the required section.
Wire type conductor, 12.13 is the terminating resistor of the induction wire, 14~
Reference numeral 16 denotes a part that connects to the mobile body, 14 and 15 are antennas that connect to the transfer line, and 16 is a receiver that has the functions of data reception, position detection, and traveling direction detection. Also, L is the intersection interval of the guide line 11, and L2 is the antenna I4 of the mobile object.
The interval along the traveling line of and 15 is taken as L2 ni L/2. D
, n is data input, Dmt is data output, s is forward/backward detection output, and p is forgery detection output. Now, the signal transmitter 7 includes a two-frequency oscillator of 〆,, 〆2, its amplifier, and a modulator that MKs 〆, using data (binary code). The second wave, which has a relationship of 2=m/(m-1) (m is an integer of 2 or more) with respect to n, is sent to the communication line 11 without modulation.
In the following, to simplify the explanation, a case will be explained in which m is selected to be 2, but a similar operation can be obtained when m is selected to be other than 2. If m=2, then 〆,=na2/2. FIG. 3 is a detailed configuration example 7 lock diagram of the receiver 16 in FIG.
7 and 18 are band filter filters (BPFs) that extract the two-wave components from the antennas 15 and 14, respectively; 19 is the antenna 1;
BPF extracts the wave from the output of 4, 20, 21, 2
2 is an amplifier/amplitude limiter (A/L), 23 is a PSK demodulator, 24 is a frequency doubler (when m=2), 25, 26
is a phase discriminator (PD), 27 is a position detection output device, 28,
29 is a square wave converter W, 3 including a low-pass filter (LPF);
0,31 is the rising transition point (from low level to high level, L
→H) and the rising conversion point (H→L) are respectively divided into conversion point pulse generators P, 32 to 35 are ungated,
36 and 37 are OR gates, and 38 is a running direction signal output device including a flip-flop.

第4図は第3図の各部波形例図でこれを用いて第3図の
動作を次に説明する。第3図においてBPFI9にて抽
出された〆,波成分はA・L22において増幅されかつ
一定レベルに振幅制限された後24で周波数2逓倍され
2ナ,=「2となった出力が位相弁別器PD25および
PD26それぞれの1入力となる。
FIG. 4 is a waveform example diagram of each part of FIG. 3. Using this diagram, the operation of FIG. 3 will be explained below. In Fig. 3, the wave component extracted by the BPFI 9 is amplified in the A/L 22 and limited in amplitude to a constant level, then doubled in frequency in the A/L 24, and the output of 2 is output to the phase discriminator. This becomes one input for each of PD25 and PD26.

なお「,波は前記のようにPSKされたもの(この例で
はm=2で2相PSKである)であるが、2逓倍される
と明らかにm相変調波はシフト量ゼロの連続位相波ナ2
となるからこれを基準位相信号として各PDに上記のよ
うに入力する。なお「. =ナ2/2の場合は上記のよ
うに逓倍器24で〆,波を2逓倍するが、ナ2=m〆,
/(m一1)となる一般の場合にはナ2とナ,の差の周
波数を取り出しそれをm倍の周波数に遼倍すれば、シフ
ト量ゼロの連続位相〆2波が得られるからこれを基準位
相信号として用いればよい。さらにデータ信号の復調で
は一定レベルとなった〆,波はA・L22からDTC2
3に送られこのPSK復調器で復調されたデータ出力D
。山が得られる。次に同じアンテナ14よりのナ2 波
成分はBPF18にて抽出されA・L21を経て−定振
幅となった〆2波がPD26のもう1つの入力となる。
``The wave is PSKed as described above (in this example, m = 2 and 2-phase PSK), but when it is multiplied by 2, it becomes clear that the m-phase modulated wave becomes a continuous phase wave with a shift amount of zero. Na2
Therefore, this is inputted to each PD as a reference phase signal as described above. In addition, in the case of ". = Na2/2, the wave is doubled by the multiplier 24 as described above, but if Na2 = m〆,
/(m - 1) In the general case, if you take the frequency of the difference between Na2 and Na, and multiply it by m times the frequency, you can obtain a continuous phase 2 wave with a shift amount of zero, so this may be used as the reference phase signal. Furthermore, when the data signal was demodulated, the wave reached a certain level, and the wave was from A/L22 to DTC2.
The data output D sent to 3 and demodulated by this PSK demodulator
. You will get mountains. Next, the N2 wave component from the same antenna 14 is extracted by the BPF 18, passes through A/L 21, and the final N2 wave, which has a constant amplitude, becomes another input to the PD 26.

PD26は2つの入力が同相か逆相かを弁別して出力し
、次段の方形波変換器29では低減炉波器を通じた後方
形波に変換する。第4図の波形aはこれを示したもので
、図の上方に示すように誘導線の交差を施してある場合
とする。なおアンテナ入力からBPF、A・L出力まで
には一般に位相回転量をもっているが、これらは予測で
きないのでPD入力には理想的な位相差とするための移
相回路を挿入して補正しておくことが必要である。また
アンテナ14とアンテナ15の間隔−を誘導線の交差間
隔山,の1/2とし、アンテナ1 5の出力からBPF
17にて〆2波を抽出しA・L20にて増幅後一定振幅
に制限してPD25の1方の入力とする。PD25では
この入力と先に示した基準位相信号との位相弁別を行い
次段28で方形変換したものが第4図の波形bのように
なる。このa,b両波形からこれらの波形は誘導線の交
差位置をアンテナ14と15がそれぞれ対向通過する毎
に反転していることがわかる。さて位置検知出力pは第
3図に示すように上記方形変換回路W28およびW29
それぞれよりのa,b波形を2入力する排他的論理和回
路27から第4図p波形のように得られる。
The PD 26 discriminates whether the two inputs are in phase or out of phase and outputs it, and the square wave converter 29 in the next stage converts it into a backward wave through a reduction wave generator. Waveform a in FIG. 4 shows this, and assumes that the guide lines are crossed as shown in the upper part of the figure. Note that there is generally a phase rotation amount from the antenna input to the BPF, A/L outputs, but these cannot be predicted, so a phase shift circuit is inserted in the PD input to create an ideal phase difference to correct it. It is necessary. In addition, the interval between the antennas 14 and 15 is set to 1/2 of the crossing interval of the guide wires, and the BPF is calculated from the outputs of antennas 1 to 5.
The final two waves are extracted at 17, amplified at A/L 20, and then limited to a constant amplitude to be input to one of the PDs 25. The PD 25 performs phase discrimination between this input and the reference phase signal shown earlier, and the signal is square-converted in the next stage 28, resulting in a waveform b in FIG. It can be seen from the waveforms a and b that these waveforms are inverted every time the antennas 14 and 15 pass oppositely through the intersection of the guide lines. Now, the position detection output p is as shown in FIG.
A waveform as shown in FIG. 4 is obtained from an exclusive OR circuit 27 which inputs two waveforms a and b from each side.

p波形は誘導線1 1の交差間隔L.の1/2賭こ規則
正しく反転する波形で、この変換点から交差点毎の位置
を知り、また変換点の計数して走行路上のあらかじめ定
めてある基準地点よりの移動体の相対位置や移動体の速
度などを検出することができる。次に本発明の主眼であ
る移動体の前進および後進の検知について説明する。
The p waveform has a crossing interval of L. With a waveform that inverts regularly, the position of each intersection can be determined from this conversion point, and by counting the conversion points, the relative position of the moving object from a predetermined reference point on the driving route and the relative position of the moving object can be determined by counting the conversion points. It can detect speed, etc. Next, detection of forward movement and backward movement of a moving object, which is the main focus of the present invention, will be explained.

まず第4図に示すように移動体の進行方向を右方向なら
Sr、左方向ならS,で表わすものとする。つぎに第3
図において30,31はそれぞれa波形、b波形の立上
り変換点および立下り変換点において区分したパルスを
発生するが、いま立上り変換点をu、立下り変換点をd
とすると、30ではW29からのa波形を入力してau
およびad各パルスを、また31ではW28からの波形
を入力してbuおよびM各パルスを発生する。従って第
4図においてSr方向ではa波形からau,ad各パル
スが、b波形からbu,bd各パルスがそれぞれ出力す
るが、逆のS,方向ではSr方向の立上りが立下りに、
立下りが立上りとなるからSrとは反対の位置に第4図
のSー群のように発生する。そして次段のアンドゲート
、たとえば32ではb波形の高Hレベルでauパルスが
ゲート出力されるときは移動体はSr方向に進み、ad
パルスがゲート出力されるときはSI方向に進むことに
なる。なおアンドゲ−ト中には中央の入力を共通する2
入力アンド回路が含まれるものとする。このようにして
32〜35のアンドゲートにおけるa,a,b,b,a
い ad,bu,W(a,bはそれぞれa,bの反転し
た出力である)の組合わせによる出力は次のようになる
。ただしr,1はそれぞれSr方向、S,方向を表わす
パルス出力である。従って移動体の進行方向がSrなら
r波形をオアゲート36から出力し、SI方向なら1波
形をオアゲート37から出力して次段のフリツプフロッ
プ回路38を駆動してその出力sには移動方向に示す“
1”,“0”,または“H”,“L”レベルが出力され
る。
First, as shown in FIG. 4, the moving direction of the moving body is represented by Sr if it is to the right and S if it is to the left. Then the third
In the figure, 30 and 31 generate divided pulses at the rising and falling conversion points of the a and b waveforms, respectively.
Then, in 30, input the a waveform from W29 and au
and ad pulses, and the waveform from W28 is input at 31 to generate bu and M pulses. Therefore, in Fig. 4, in the Sr direction, au and ad pulses are output from the a waveform, and bu and bd pulses are output from the b waveform, but in the opposite S direction, the rising edge in the Sr direction becomes a falling edge,
Since the falling edge becomes the rising edge, it occurs at a position opposite to that of Sr, as shown in the S-group in FIG. Then, in the next-stage AND gate, for example 32, when the au pulse is gated out at the high H level of the b waveform, the moving object moves in the Sr direction, and the ad
When the pulse is gated out, it will proceed in the SI direction. In addition, during AND gate, 2
Assume that an input AND circuit is included. In this way, a, a, b, b, a in the AND gates 32 to 35
The output from the combination of ad, bu, and W (a and b are the inverted outputs of a and b, respectively) is as follows. However, r and 1 are pulse outputs representing the Sr direction and the S direction, respectively. Therefore, if the moving direction of the moving body is Sr, the r waveform is output from the OR gate 36, and if the moving direction is the SI direction, one waveform is output from the OR gate 37 to drive the next stage flip-flop circuit 38, and its output s shows "
1", "0", or "H", "L" level is output.

これを数値例で示すとL,=500肋、L2=L/2=
25仇肌ことつた場合には少くとも25比廠以上移動す
ると移動方向が出力されることになる。なおアンテナの
間隔−はL2=(n十2/1)L,としても同様である
。たゞしnは0,1,2,3・・・等の整数であり、ア
ンテナ14と15間に干渉があればnを1以上に選んだ
干渉をさげることができる。この移動方向の検知は地上
局よりのデータ伝送および移動体の位置検知のための2
つの周波数と誘導線、送信機および受信機のアンテナか
らパルス発生器28,29までの部分を共用し、僅かな
方向検出回路の付加によって行うもので経済的であり、
移動体の緩慢な移動においても最小移動距離によって移
動方向の検知ができるという著しい効果が得られる。
To show this as a numerical example, L,=500 ribs, L2=L/2=
If the distance is 25 degrees, the direction of movement will be output if the distance is at least 25 degrees. Note that the antenna spacing - may also be set to L2=(n+2/1)L. However, n is an integer such as 0, 1, 2, 3, etc., and if there is interference between the antennas 14 and 15, the interference can be reduced by selecting n to be 1 or more. Detection of this direction of movement is used for data transmission from the ground station and for detection of the position of the mobile object.
It is economical because it uses two frequencies, a guide line, the transmitter and receiver antennas, and the pulse generators 28 and 29 in common, and only requires a small addition of a direction detection circuit.
Even when the moving body moves slowly, a remarkable effect can be obtained in that the moving direction can be detected using the minimum moving distance.

さらにこのs出力を利用してたとえば移動体が停止状態
より不測の方向えの移動を検出しようとすれば、s出力
の極性(高低レベル)が防止すべく方向の極性と一致す
ることが検出する一致回路を設ければよいことは明らか
である。以上の説明のように本発明装置では地上局から
データ伝送信号波ナ,を誘導線101こ、また位置検知
用無変調波〆2 を定地点毎にあるいは等間隔に交差を
施した譲導線11にそれぞれ送出すれば、移動体側でデ
ータ受信と定地点検知(移動体位置検知)および走行方
向検知(前後進および後退検知)を同時に行うことがで
きる。
Furthermore, if an attempt is made to use this s output to detect, for example, the movement of a moving object in an unexpected direction from a stopped state, it will be detected that the polarity (high/low level) of the s output matches the polarity of the direction to be prevented. It is clear that a matching circuit can be provided. As described above, in the device of the present invention, the data transmission signal wave from the ground station is transmitted through the guide line 101, and the non-modulated wave for position detection is transmitted through the transfer line 11, which is crossed at each fixed point or at regular intervals. By sending the data to the respective locations, the moving object can simultaneously perform data reception, fixed point detection (moving object position detection), and running direction detection (forward/reverse movement detection).

さらにもし移動体にデータ信号送出および位置検知信号
送出の送信機を設け、1つのアンテナのみにデータ伝送
信号波〆,を送出して誘導線と結合させ、また他の1つ
のアンテナとこのアンテナとに交互に位置検知信号波〆
2を時分割送出して誘導線と結合させて走行し、地上局
では無交差譲導線10から〆,波を取出してデータの復
調および位置検知の基準位相信号波の作成を行い、また
交差形誘導線11からはナ2波を取出して上記基準位相
信号と2つのアンテナと誘導線11との結合による各出
力の位相差を検出してそれぞれのa,b波を出力する、
すなわち第5図はこの場合の地上局受信機の回路構成例
ブロック図であるが、(第3図と同一記号のものは同一
機能のものである)方形変換器W39の出力は出力分配
器(DST)40および分配制御同期回路(SYC)4
1に与えられる。SYC41では上記時分割に対応する
分配制御タイミング信号を同期させ、このSYC39の
出力をDST40のゲート信号としてW39よりの入力
信号(位相弁別出力)を時分割してフリツプフロツプ(
F・F)42および43に出力する。42および43よ
りの出力は第3図W28およびW29の出力と全く同じ
で、(従って波形は第4図a,bと同一)誘導線11の
交差位相に合致したアンテナそれぞれの位相検出出力が
発生する。
Furthermore, if a mobile object is equipped with a transmitter for transmitting a data signal and a position detection signal, the data transmission signal wave is transmitted to only one antenna and combined with the guide wire, and this antenna is connected to another antenna. The position detection signal wave 2 is sent out alternately in a time-division manner and is coupled to the guide line for travel, and at the ground station, the signal wave 2 is taken out from the non-crossing transfer line 10 and used as a reference phase signal wave for data demodulation and position detection. In addition, the two waves are taken out from the cross-shaped guide wire 11, and the phase difference between the reference phase signal and each output due to the combination of the two antennas and the guide wire 11 is detected, and the a and b waves are obtained. output,
That is, FIG. 5 is a block diagram of an example of the circuit configuration of the ground station receiver in this case. (Those with the same symbols as in FIG. 3 have the same functions.) DST) 40 and distribution control synchronization circuit (SYC) 4
1 is given. The SYC41 synchronizes the distribution control timing signal corresponding to the above-mentioned time division, and uses the output of this SYC39 as the gate signal of the DST40 to time-divide the input signal (phase discrimination output) from the W39 and output the flip-flop (
F・F) Output to 42 and 43. The outputs from 42 and 43 are exactly the same as the outputs from W28 and W29 in Fig. 3 (therefore, the waveforms are the same as those in Fig. 4 a and b), and the phase detection outputs of the antennas that match the cross phase of the guide wire 11 are generated. do.

これらの出力a,a,b,bは次段の走行方向弁別回路
44から走行方向を表わす信号sを出力させる。走行方
向弁別回路44の詳細は図示省略したが第3図の30〜
38の回路から構成され、第4図の波形図もそのまま成
立する。このようにして地上側でも移動体よりのデータ
受信と定地点検知および走行方向検知を同時に行うこと
ができる。なお上記の説明では〆,波をデータ伝送に用
いる実用上一般的な場合のみ取上げているが、走行方向
検知のためにはこれは必要条件ではなく〆,波はナ2に
対して「2=m「,/(m−1)の条件を満足すればよ
く、変調の有無は問題とならぬことは第3図および第5
図から明らかである。
These outputs a, a, b, and b cause the next-stage running direction discrimination circuit 44 to output a signal s representing the running direction. The details of the running direction discrimination circuit 44 are omitted from illustration, but are shown at 30 to 30 in FIG.
It is composed of 38 circuits, and the waveform diagram in FIG. 4 also holds true. In this way, data reception from the moving object, fixed point detection, and traveling direction detection can be performed simultaneously on the ground side. Note that in the above explanation, only the practical case where waves are used for data transmission is discussed, but this is not a necessary condition for detecting the running direction. As shown in Figures 3 and 5, it is sufficient to satisfy the condition m'',/(m-1), and the presence or absence of modulation does not matter.
It is clear from the figure.

また本発明では交差部の検知方法として位相弁別方式を
用いているので振幅制御器を使用することができ、移動
体の走行に伴って誘導線とアンテナ間隔が変動し結果と
して結合損失に大きな変動があっても交差位置を正確に
検出することが可能であり、またこれによって緩慢な移
動でも小さな移動距離で走行方向や後退の検知が行える
ことは著しい特徴である。
Furthermore, since the present invention uses a phase discrimination method as a method for detecting intersections, it is possible to use an amplitude controller, and as the moving object moves, the distance between the guide wire and the antenna changes, resulting in large fluctuations in coupling loss. It is a remarkable feature that it is possible to accurately detect the intersection position even if the vehicle is moving slowly, and that it is possible to detect the traveling direction and backward movement even if the vehicle is moving slowly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は位置検知装置の構成例図、第2図は本発明を実
施した通信装置の基本的構成例図、第3図は第2図中の
受信機の構成例図、第4図は第3図の各部波形図、第5
図は地上固定側受信機の構成例図である。 1,7・・・・・・2周波送信機、2・・・・・・位贋
検知機、3,14,15……アンテナ、4,8,9……
結合器、5,12,13・・・・・・終端抵坑、6,1
0,11・・・・・・誘導線、16・・・・・・受信機
、17,18,19・・・・・・帯城炉波器、20,2
1,22・・・・・・増幅と振幅制限器(A・L)、2
3・・・・・・位相偏移信号復調器、24・・・・・・
周波数逓倍器、25,26….・・位相弁別器(PD)
、27・・…・排他的論理和回路、28,29,39・
・・・・・方形波形変換器W、30,31・・・・・・
変換点パルス発生器P、32,33,34,35……ア
ンド回路、36,37・・・…オア回路、38,42,
43……フリツプフロツプ、40・・・・・・出力分配
器、41・・・・・・分配制御同期回路、44・・・・
・・走行方向弁別回路、Din・Dout・・・・・・
7ータ信号入力,出力、P・・・・・・位贋検知出力、
s・・・・・・走行方向信号。 力18 汁2四 汁5四 図 m 舵 外4凶
FIG. 1 is a diagram showing a configuration example of a position detection device, FIG. 2 is a diagram showing a basic configuration example of a communication device implementing the present invention, FIG. 3 is a diagram showing a configuration example of a receiver in FIG. 2, and FIG. Waveform diagram of each part in Fig. 3, 5th
The figure is a diagram showing an example of the configuration of a ground-fixed receiver. 1,7...2-frequency transmitter, 2...Failure detector, 3,14,15...Antenna, 4,8,9...
Coupler, 5, 12, 13...Terminal resistor, 6, 1
0,11...Guiding wire, 16...Receiver, 17,18,19...Obijo reactor, 20,2
1, 22...Amplification and amplitude limiter (A/L), 2
3... Phase shift signal demodulator, 24...
Frequency multiplier, 25, 26...・・Phase discriminator (PD)
, 27... exclusive OR circuit, 28, 29, 39...
...Square waveform converter W, 30, 31...
Conversion point pulse generator P, 32, 33, 34, 35...AND circuit, 36, 37...OR circuit, 38, 42,
43...Flip-flop, 40...Output distributor, 41...Distribution control synchronous circuit, 44...
・・Travel direction discrimination circuit, Din・Dout・・・・
7 data signal input, output, P...Failure detection output,
s...Travel direction signal. Power 18 Juice 24 Juice 54 figure m Outside the rudder 4 evil

Claims (1)

【特許請求の範囲】 1 移動体の一定走行路に沿つて敷設しその一端から第
1の搬送周波数■をもつ信号電流を流す平行2線式の第
1の誘導線、この誘導線と平行に敷設し一定間隔■毎に
交差を施し上記と同じその一端から上記第1の周波数f
_1とf_2=mf_1/(m−1)、〔ただしmは2
以上の整数〕の関係にある無変調の第2の搬送周波数■
の信号電流を流す交差形平行2線式の第2の誘導線およ
び上記第1および第2の各周波数の信号電流をそれぞれ
上記第1および第2の誘導線に供給する送信機にて構成
した地上固定側設備と、移動体に載置した走行路に沿つ
てアンテナ相互間隔L_2をL_1/2に等しく設けて
上記第1、第2の両誘導線から上記第1、第2の両周波
数の誘導電圧を取り出す第1および第2の2個のアンテ
ナと、上記第1アンテナ出力より上記第1および第2周
波数成分をまた第2アンテナ出力より第2周波数成分を
それぞれ抽出して別々に増幅し一定振幅制限を行つた後
上記第1および第2周波数の差周波数をm逓倍して周波
数をf_2に等しくした出力を基準位相信号として上記
両第2周波数成分との位相弁別をそれぞれ行つて移動体
に対する上記第2の誘導線の交差位置を第1、第2の各
アンテナ毎に検知出力しこれらの各検知出力とその交差
点毎の変換点において発生させたパルスとの組み合わせ
によつて走行方向識別出力を発生する受信機よりなる移
動側設備とを具備し、移動体側にて移動体の前、後進方
向を検知することを特徴とする移動体の前、後進検知装
置。 2 移動体の一定走行路に沿つて敷設した平行2線式の
第1の誘導線、この誘導線と平行で等間隔■の交差を施
して敷設した交差形平行2線式の第2の誘導線、移動体
に載置し上記走行路に沿つて上記各誘導線に結合すると
共にアンテナ間隔L_2をL_1/2に等しく設けた第
1、第2の2個のアンテナとその1つのアンテナに第1
の搬送周波数■の信号電流を出力しまたこのアンテナと
他のアンテナとに上記第1搬送周波数f_1に対してf
_2=mf_1/(m−1)、〔ただしmは2以上の整
数〕の関係にある無変調の第2の搬送周波数■の信号電
流を時分割出力する2周波送信機よりなる移動体側設備
、上記第1の誘導線の一端から第1搬送波■成分を抽出
し一定振幅にすると共に上記第2の誘導線の一端から第
2搬送波■成分を抽出して一定振幅とした後上記第1、
第2両搬送波の差周波数を取出しm逓倍して得た周波数
f_2の基準位相信号と、上記一定振幅の第2搬送波f
_2成分との位相弁別を行つて得られた出力から移動体
側の時分割タイミングに同期した分配タイミング信号を
取出すと共にこのタイミング信号をゲートパルスとして
上記位相弁別出力から上記2個のアンテナと第2の誘導
線との結合による各出力を交互に発生させこの各出力と
この各出力の交差点毎の変換点において発生させたパル
スとの組合わせによつて移動体走行方向識別出力を発生
させる回路とを備えた地上局設備とを具備して、地上局
にて移動体の前、後進方向を検知することを特徴とする
移動体の前、後進検知装置。
[Scope of Claims] 1. A first guide wire of a parallel two-wire system, which is laid along a fixed travel path of a moving body and carries a signal current having a first carrier frequency ■ from one end thereof, and in parallel with this guide wire. It is laid and crossed at regular intervals, and from one end of the same as above, the first frequency f is
_1 and f_2 = mf_1/(m-1), [where m is 2
An unmodulated second carrier frequency with a relationship of
a cross-type parallel two-wire second guide wire through which a signal current flows, and a transmitter that supplies signal currents of each of the first and second frequencies to the first and second guide wires, respectively. The distance between the antennas L_2 is set equal to L_1/2 along the running path mounted on the ground fixed side equipment and the moving body, and both the first and second frequencies are transmitted from the first and second guiding wires. Two antennas, a first and a second, extract the induced voltage, and the first and second frequency components are extracted from the output of the first antenna, and the second frequency component is extracted from the output of the second antenna, and amplified separately. After performing a certain amplitude limitation, the difference frequency between the first and second frequencies is multiplied by m to make the frequency equal to f_2, and the output is used as a reference phase signal to perform phase discrimination from the two second frequency components, respectively. The intersection position of the second guiding line is detected and output for each of the first and second antennas, and the driving direction is identified by a combination of each of these detection outputs and a pulse generated at the conversion point of each intersection. What is claimed is: 1. A forward and backward motion detection device for a moving object, comprising: moving side equipment consisting of a receiver that generates an output; 2. The first parallel two-wire guide line laid along the fixed travel route of the moving object, and the second parallel two-wire cross-type guide line laid parallel to this guide line with intersections at equal intervals. two antennas, a first and second antenna, mounted on a moving body and coupled to each of the guide lines along the travel path, and having an antenna spacing L_2 equal to L_1/2; 1
A signal current with a carrier frequency of f_1 is outputted to this antenna and other antennas with respect to the first carrier frequency f_1.
_2=mf_1/(m-1), [where m is an integer of 2 or more] mobile body side equipment comprising a two-frequency transmitter that time-divisionally outputs a signal current of an unmodulated second carrier frequency; A first carrier wave ■ component is extracted from one end of the first guiding wire and set to a constant amplitude, and a second carrier wave ■ component is extracted from one end of the second guiding wire and set to a constant amplitude, and then the first carrier wave
A reference phase signal of frequency f_2 obtained by extracting the difference frequency of both second carrier waves and multiplying it by m, and the second carrier wave f of the above-mentioned constant amplitude.
From the output obtained by performing phase discrimination with the two components, a distribution timing signal synchronized with the time division timing on the moving object side is extracted, and this timing signal is used as a gate pulse to connect the two antennas and the second component from the phase discrimination output. A circuit that alternately generates each output by coupling with a guide wire and generates an output for identifying the traveling direction of a moving object by combining each output with a pulse generated at a conversion point at each intersection of each output. What is claimed is: 1. A forward and backward movement detection device for a mobile object, comprising: a ground station facility equipped with the equipment;
JP6680978A 1978-06-05 1978-06-05 Moving object forward and backward detection device Expired JPS6023306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6680978A JPS6023306B2 (en) 1978-06-05 1978-06-05 Moving object forward and backward detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6680978A JPS6023306B2 (en) 1978-06-05 1978-06-05 Moving object forward and backward detection device

Publications (2)

Publication Number Publication Date
JPS54158974A JPS54158974A (en) 1979-12-15
JPS6023306B2 true JPS6023306B2 (en) 1985-06-06

Family

ID=13326549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6680978A Expired JPS6023306B2 (en) 1978-06-05 1978-06-05 Moving object forward and backward detection device

Country Status (1)

Country Link
JP (1) JPS6023306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842973A (en) * 1981-09-08 1983-03-12 Mitsubishi Electric Corp Detector for direction of rotation

Also Published As

Publication number Publication date
JPS54158974A (en) 1979-12-15

Similar Documents

Publication Publication Date Title
US6011508A (en) Accurate position-sensing and communications for guideway operated vehicles
JPS60162317A (en) Receiver for power line communication system
JPS6023306B2 (en) Moving object forward and backward detection device
JP2002048862A (en) Detecting device for movement direction of moving body
JPS6023307B2 (en) A device that detects the moving direction of a moving object on the ground side
JPS6016643B2 (en) Moving body forward and backward movement detection device
JP3283999B2 (en) Communication device for train control
JPS606580B2 (en) Data and point information transmission device to mobile objects
JPS6016642B2 (en) Ground detection device for forward and backward movement of moving objects
JP2764266B2 (en) Information transmission equipment for floating railway
US5073903A (en) Information transmission arrangement using frequency modulation
JP3142779B2 (en) Position detection and data transmission device
JPS5941614B2 (en) Mobile object position detection device capable of data transmission
JPS5943800B2 (en) Data transmission device that can detect the position of moving objects
SU387874A1 (en) METHOD OF TRANSFERING INFORMATION TO MOBILE
JPS6057741B2 (en) Data transmission method using guided radio
JPS605002B2 (en) Self-detection device for moving object stop position
JP3200444B2 (en) Train communication equipment
JPS5839304B2 (en) Shiyariyouichikenchihoushiki
JP2721351B2 (en) Vehicle interval detection method
JPS6118988B2 (en)
JPH0433669B2 (en)
JP2000247233A (en) Train position detecting device
JPS6057740B2 (en) Data transmission method using guided radio
JPS6010650B2 (en) Ground detection device for moving object stop position