JPS6057740B2 - Data transmission method using guided radio - Google Patents

Data transmission method using guided radio

Info

Publication number
JPS6057740B2
JPS6057740B2 JP53003336A JP333678A JPS6057740B2 JP S6057740 B2 JPS6057740 B2 JP S6057740B2 JP 53003336 A JP53003336 A JP 53003336A JP 333678 A JP333678 A JP 333678A JP S6057740 B2 JPS6057740 B2 JP S6057740B2
Authority
JP
Japan
Prior art keywords
data transmission
output
frequency
frequencies
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53003336A
Other languages
Japanese (ja)
Other versions
JPS5496912A (en
Inventor
孝男 癸生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP53003336A priority Critical patent/JPS6057740B2/en
Publication of JPS5496912A publication Critical patent/JPS5496912A/en
Publication of JPS6057740B2 publication Critical patent/JPS6057740B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は誘導無線方式における誘導線を他目的通信と共
用するデータ伝送方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a data transmission method in which a guiding wire in a guided radio system is shared with communication for other purposes.

一定走行路上を移動する移動体(クレーンや台車など)
の制御、移動体と地上固定局(以下地上局という)間の
情報伝送、移動体の位置検知など多目的の伝送に走行路
に沿つて敷設した誘導線を利用した誘導無線方式が用い
られている。
A moving object that moves on a fixed travel path (crane, trolley, etc.)
Guided radio systems are used for multi-purpose transmission, such as control of vehicles, information transmission between mobile bodies and fixed ground stations (hereinafter referred to as ground stations), and detection of the position of mobile bodies. .

このうち移動体の位置を検知するには走行路を複数区間
に分割し、区間毎に設けた検知器で検出するかまたはそ
の各区間に与えた番地(2進コード等)に対応した複数
の平行2線式誘導線群の交叉点設置を行い、たとえば移
動体よりの電磁波によつて各誘導線に誘導された電流の
位相検出によつて行う方法などが用いられているが、従
来はこれらの位置検知用の誘導線のデータ伝送や通話の
ための誘導線とは互に妨害を与えぬようにするためそれ
ぞれ分離して布線しているが経済的でなく高価につくこ
とが欠点である。また上記のような移動体位置検知用誘
導線を利用して地上局と移動体間のデータ伝送を行う場
合誘導線の交叉点では移動体のアンテナまたはアンテナ
コイルとその誘導線との結合損失が実用上1になるので
このような地点でのデータ伝送は満足に行われないとい
う欠点がある。本発明は上記の欠点を除いたもので、走
行路のすべての地点において十分なデータ伝送の品質が
確保され、かつ移動体の監視、制御、位置検知も共通の
誘導線で行うことができることが特徴で、以下詳細に説
明する。図1は本発明を実施した誘導無線装置の構成例
図である。
In order to detect the position of a moving object, it is possible to divide the travel route into multiple sections and use detectors installed in each section, or to detect the position of a moving object using multiple detectors corresponding to the address (binary code, etc.) assigned to each section. A method has been used in which a group of parallel two-wire guide wires is installed at a crossing point, and the phase of the current induced in each guide wire by electromagnetic waves from a moving object is detected. The guiding wire for position detection and the guiding wire for data transmission and telephone calls are wired separately to prevent interference with each other, but the drawback is that it is uneconomical and expensive. be. In addition, when transmitting data between a ground station and a mobile object using a guide wire for detecting the position of a moving object as described above, there is a coupling loss between the antenna or antenna coil of the mobile object and the guide wire at the intersection of the guide wires. 1 in practice, so there is a drawback that data transmission at such a point cannot be performed satisfactorily. The present invention eliminates the above-mentioned drawbacks, and ensures sufficient data transmission quality at all points on the travel path, and also enables monitoring, control, and position detection of moving objects using a common guide line. The features will be explained in detail below. FIG. 1 is a diagram illustrating an example of the configuration of a guided radio device embodying the present invention.

図中のA,B,C・・・・・・は移動体の走行路を任意
数に分割してそれぞれに番地コードを与えた場合の各分
割区間名で、各区間には平行2線式誘導線1を走行路に
沿つて展張敷設する。2はその終端抵抗、3は結合器、
4は受信装置で、3および4は各区間毎に設け、受信装
置4の出力は連絡線10を通じて地上局9に集められる
A, B, C... in the figure are the names of divided sections when the traveling route of a moving object is divided into an arbitrary number of sections and an address code is given to each section. The guide wire 1 is laid out and laid along the running route. 2 is the terminating resistor, 3 is the coupler,
4 is a receiving device; 3 and 4 are provided for each section; the output of the receiving device 4 is collected at a ground station 9 through a communication line 10;

5A,5B,6,7,8は移動体側の設備で、5A,5
Bはいずれもアンテナである。
5A, 5B, 6, 7, 8 are the equipment on the moving body side, 5A, 5
Both B are antennas.

これらのアンテナは誘導線1に結合しながら移動するが
、5A,5B間の距離1は誘導線の区間長Lと区分点に
おける誘導線終端間の間隔(これを区分点間隔という)
L2に対してLく1くL1の関係が成立するように移動
体の側面などに取付けておく。6は誘導無線に割当てら
れている周波数帯内にあつてその周波数の差が後に説明
するようにデータ伝送速度(ボー)の2〜3倍でありか
つ移動体の位置検知用の周波数F3とも異なる2周波数
f1およびF2の送信機(発振器)、7は変調器、8は
送出すべきデータの入力端子である。
These antennas move while being coupled to the guide wire 1, and the distance 1 between 5A and 5B is the section length L of the guide wire and the distance between the ends of the guide wire at the dividing point (this is called the dividing point interval)
It is attached to the side surface of the moving body so that the relationship L1×L1 is established with respect to L2. 6 is within the frequency band assigned to the guided radio, and as explained later, the difference in frequency is 2 to 3 times the data transmission rate (Baud) and also different from the frequency F3 for detecting the position of a mobile object. A transmitter (oscillator) with two frequencies f1 and F2, 7 a modulator, and 8 an input terminal for data to be transmitted.

なおこれらの設備は後記のように移動体の位置検知に共
用され、送信機6からはFl,f2以外の周波数の出力
も要求されるが、まずデータ伝送の場合に限つてその動
作を説明する。データ伝送の場合には移動体の送信機6
のf1波およびF2波出力はいずれも変調器7からの入
力データ位相同期状態で変調されたものがそれぞれアン
テナ5Aおよびアンテナ5Bに供給される。
These facilities are also used for detecting the position of a moving object, as described later, and the transmitter 6 is also required to output frequencies other than Fl and f2, but first we will explain its operation only in the case of data transmission. . In the case of data transmission, the mobile transmitter 6
The f1 wave and F2 wave outputs are both modulated in a phase-synchronized state with the input data from the modulator 7 and are supplied to the antenna 5A and the antenna 5B, respectively.

変調器7はデータ送出のための変調器であつて、8より
の入力信号によつてオンオフキーイング(00K)、周
波数偏移キーイング(FSK)、位相偏移キーイング(
PSK)のいずれか定められた方式でFl,f2を変調
する。また各区間毎の受信機4の内部にはこれらのデー
タ伝送信号の復調器を設け、その受信出力は移動体が1
台なら並列合成して他上局の出力11に送り出される。
図2はFl,f2両波にFSK変調を用いた場合の復調
器の構成例ブロック図で、21はBPF(帯域濾波器)
、22は増幅器、23はりミッタ(振幅制限器)、24
は検波器すなわちこの場合は周波数弁別器、25は検波
後の差周波数除去のためのLPF(低域濾波器)、26
は方形波に変換するためのシユミツト回路である。とこ
ろでデータ送出側の2つの周波数波Fl,f2はFSK
を用いた場合に次のような関係がある。いまデータ伝送
速度を200ボ゛−とすればデータの基本波は100H
zとなる。従つてLPF25の遮断周波数を100Hz
に選ぶことができかつその減衰特性を200Hzにおい
て十分大きな減衰を与えるように製作すれば、f1とF
2の周波数差を200Hzにとればよいことになるから
偏移周波数幅を周波数偏差200Hzの2倍の値にとれ
ばf1とF2が占める所要帯域幅は最小になる。さてこ
のようにFSK変調されたf1波とF2波は図1の受信
機4で受信され図2の21に入力する。このBPF2l
で所要の帯域に制限された後22で増幅され23で振幅
を制限されて周波数弁別器24に入力する。図3はこの
周波数弁別器24の特性図て、Fl,f2間の中央周波
数をこの弁別特性の中央周波数に選定する。このときた
とえばf1−F2=200Hzの場合f1波は−100
Hz1+300Hz,.f2波は−300Hz1+10
0Hzが上記から偏移周波数となりかつデータ位相同期
されているので同一極性の入力であつてFl,f2の検
波出力は合成され次のLPF25においてデータの基本
波を出力するがf1とF2の差周波数成分は除去される
。そしてデータ基本波はシユミツト回路26で方形波に
変換されデータ送信側と同じデータに復元出力される。
次にFl,f2両波に差動位相変調(DPSK)を施す
場合には、f1とF2の周波数差をデータの伝送速度に
合わせてn/Tの値に選ぶ。
Modulator 7 is a modulator for data transmission, and performs on-off keying (00K), frequency shift keying (FSK), and phase shift keying (00K) according to the input signal from 8.
(PSK), Fl and f2 are modulated using any predetermined method. In addition, a demodulator for these data transmission signals is provided inside the receiver 4 for each section, and the received output is
If this is the case, the signals are combined in parallel and sent to output 11 of another upper station.
Figure 2 is a block diagram of a demodulator configuration example when FSK modulation is used for both Fl and f2 waves, and 21 is a BPF (bandpass filter).
, 22 is an amplifier, 23 is a beam emitter (amplitude limiter), 24 is
is a detector, that is, a frequency discriminator in this case, 25 is an LPF (low pass filter) for removing the difference frequency after detection, and 26 is a frequency discriminator.
is a Schmitt circuit for converting to a square wave. By the way, the two frequency waves Fl and f2 on the data sending side are FSK.
When using , the following relationship exists. If the data transmission speed is now 200 volts, the fundamental wave of data is 100H.
It becomes z. Therefore, the cutoff frequency of LPF25 is set to 100Hz.
If the attenuation characteristics can be selected to give a sufficiently large attenuation at 200Hz, then f1 and F
Since it is sufficient to set the frequency difference of 2 to 200 Hz, if the shift frequency width is set to twice the value of the frequency deviation of 200 Hz, the required bandwidth occupied by f1 and F2 will be minimized. Now, the FSK-modulated f1 wave and F2 wave are received by the receiver 4 in FIG. 1 and input to 21 in FIG. 2. This BPF2l
After being limited to a required band at , it is amplified at 22 , its amplitude is limited at 23 , and then input to a frequency discriminator 24 . FIG. 3 shows the characteristics of this frequency discriminator 24, and the center frequency between Fl and f2 is selected as the center frequency of this discrimination characteristic. At this time, for example, if f1-F2=200Hz, the f1 wave is -100
Hz1+300Hz,. f2 wave is -300Hz1+10
Since 0Hz is a deviation frequency from the above and the data phase is synchronized, the inputs have the same polarity, and the detection outputs of Fl and f2 are combined and the next LPF 25 outputs the fundamental wave of data, but the difference frequency between f1 and F2 components are removed. The data fundamental wave is then converted into a square wave by the Schmitt circuit 26, and restored and output as the same data as on the data transmitting side.
Next, when applying differential phase keying (DPSK) to both the Fl and f2 waves, the frequency difference between fl and F2 is selected to a value of n/T in accordance with the data transmission speed.

こ)でTは伝送速度(ボー)の逆数、nは整数でn/T
=n×伝送速度(ボー)になる。これは復調回路に積分
一放電濾波器を使用したときT時間積分後のn/Tの差
周波数出力が零になるためである。.図1についていえ
ば変調器7に2相DPSK変調器を使用して送信機6か
ら変調されたf1波とF2波を伝送速度200ボーの場
合、上の式から200Hzの周波数差に選定して同一デ
ータをアンテナ5A,5Bにそれぞれ送出する。これは
移動体の存在区.間の誘導線に受信され結合器3を経て
受信機4内に設けられ図4にその構成例を示す2g)P
SK復調器によつて復調する。図4において41はf1
とF2を通過させるBPFl42は増幅器、43はりミ
ッタ、44は1ビット時間遅延させる遅延回一路、45
は位相弁別器(PD)、46はLPF(低域濾波器)、
47は方形波変換器である。受信信号はまずBPF4l
において帯域制限された後42,43において増幅一振
幅制限されてPD45の1つの入力と遅延回路44にそ
れぞれ入力し、44からは1ビット時間長遅れたものが
PD45のもう一方に入力する。PD45ではDPSK
方式であるから先行ビットの信号位相と後続ビットの信
号位相差をビット毎に検出し、たとえば同相なら0、逆
相ならmlこ対応させた符号に変換出力するため、この
出力はLPF46においてデータの基本波と差周波を分
離し基本波のみ方形変換器47に入力させ、その出力に
送信側と同じ符号のデータ)を復元させる。上記の説明
は濾波器を用いた場合であるがその代りに上記の積分一
放電濾波器を用いても同じである。さて受信側は以上の
ように動作するが移動体の送信アンテナ5Aおよび5B
の走行路従つて誘導線に沿つた間隔1は誘導線の区間長
L1と区分点間間隔L2の間に!くl<!の関係にある
から、アンテナの一方が区分点にあつても他方のアンテ
ナは誘導線と十分結合しているので復元データの品質が
劣化することはない。
In this), T is the reciprocal of the transmission rate (baud), and n is an integer, n/T.
= n x transmission speed (Baud). This is because when an integral-discharge filter is used in the demodulation circuit, the n/T difference frequency output after T time integration becomes zero. .. Regarding Fig. 1, if a two-phase DPSK modulator is used as the modulator 7, and the transmission rate of the f1 wave and F2 wave modulated from the transmitter 6 is 200 baud, a frequency difference of 200 Hz is selected from the above formula. The same data is sent to antennas 5A and 5B, respectively. This is the area where moving objects exist. (2g)
It is demodulated by an SK demodulator. In Figure 4, 41 is f1
42 is an amplifier, 43 is a beam transmitter, 44 is a delay circuit for delaying 1 bit time, 45
is a phase discriminator (PD), 46 is an LPF (low pass filter),
47 is a square wave converter. The received signal is first BPF4l
After being band-limited at 42 and 43, the signal is amplified and amplitude-limited and input to one input of the PD 45 and the delay circuit 44, respectively, and from 44, the signal delayed by 1 bit time is input to the other side of the PD 45. DPSK in PD45
Since this is a system, the difference in the signal phase of the preceding bit and the signal phase of the succeeding bit is detected bit by bit, and the output is converted into a code corresponding to 0 if the phase is the same, and ml if the phase is reversed, so this output is processed by the LPF 46. The fundamental wave and the difference frequency are separated, and only the fundamental wave is inputted to the rectangular converter 47, and the output thereof is restored with data having the same code as that on the transmitting side. Although the above explanation is for the case where a filter is used, the same effect can be obtained even if the above-mentioned integral-discharge filter is used instead. Now, the receiving side operates as described above, but the transmitting antennas 5A and 5B of the mobile object
Therefore, the interval 1 along the guide line is between the section length L1 of the guide line and the interval L2 between the dividing points! Kur<! Because of this relationship, even if one of the antennas is at the division point, the quality of the restored data will not deteriorate because the other antenna is sufficiently coupled to the guide line.

また両アンテナが誘導線の同一区間に結合しているとき
はFl,f2の差周波数は検波後濾波器によつて除去さ
れるからこれも復元データの品質を劣化することはない
。ここで図1の誘導線方式によつて移動体の位置を地上
局にて検知する方法の1つを説明する。
Furthermore, when both antennas are coupled to the same section of the guide line, the difference frequency between Fl and f2 is removed by a filter after detection, so that the quality of restored data will not deteriorate. Here, one method of detecting the position of a moving object at a ground station using the guide line method shown in FIG. 1 will be explained.

まず移動体にその固有番号を2進コードで与えておき、
移動体に設けた送信機からアンテナ5Aまたは5Bを共
用するかまたは別に設けた送信アンテナ(送信機と送信
アンテナは図示省略)を通じてF3波を送出する。F3
はデータ伝送を行うf1およびF2両波と異る周波数を
有し、移動体載置のデータ受信復調器のBPF(帯域枦
波器)21と41の帯域外で上記固有番号で変調(たと
えばFSK)しておく。他方地上局側の誘導線1の各分
割区間には結合器3を経てF3波の受信機(図示してな
いが結合器3を共用する。
First, give the mobile object its unique number in binary code,
The F3 wave is transmitted from a transmitter provided on the mobile body, either by sharing the antenna 5A or 5B, or through a separately provided transmitting antenna (the transmitter and transmitting antenna are not shown). F3
has a frequency different from the f1 and F2 waves that transmit data, and is modulated with the above-mentioned unique number (for example, FSK ). On the other hand, each divided section of the guide line 1 on the ground station side receives an F3 wave receiver (not shown, but the coupler 3 is shared) via a coupler 3.

たとえば上記FSK(周波数偏移変調波)の復調器と受
信レベル検出器を備えている。)が設けられ、各受信機
の出力は地上局内にある移動体の存在区間と固有番号を
判定する移動体位置判定器(図示省略)に送出されるが
、各受信機内の受信レベル検出器では復調(検波)した
レベルが一定レベル以上の場合にのみ復調出力を上記移
動体位置判定器に送出する。この一定レベルとは移動体
の存在する分割区間の受信機検波出力の最低値より低く
選んでおく。このようにして移動体存在区間の受信機の
みから移動体の固有番号を示す信号が移動体位置判定器
に入力し、ここで移動体の存在区間と固有番号を検出す
ることができる。以上のようにデータ伝送と移動体の位
置検知は同一誘導線を共用して行うことができる。次に
分割区間毎に割当てた番地コードのビット数に等しい組
数の交叉形平行2線式誘導線を並列に走行路に沿つて連
続布設し、各組の誘導線にはその割当てられたビットの
符号の1から0に合わせて区間区分点に交叉を施して、
誘導線に流れる電流が交叉点の前後にて位相が反転する
ことを利用して移動体の位置を検出する構成方法がある
For example, it includes a demodulator for the FSK (frequency shift keyed wave) and a reception level detector. ), and the output of each receiver is sent to a mobile object position determiner (not shown) in the ground station that determines the existence zone and unique number of the mobile object, but the reception level detector in each receiver Only when the demodulated (detected) level is above a certain level, the demodulated output is sent to the mobile body position determiner. This constant level is selected to be lower than the lowest value of the receiver detection output in the divided section where the moving object is present. In this way, a signal indicating the unique number of the mobile body is inputted to the mobile body position determiner only from the receiver in the mobile body presence zone, and the mobile body presence zone and unique number can be detected here. As described above, data transmission and position detection of a moving body can be performed by sharing the same guiding wire. Next, a number of sets of intersecting parallel two-wire guide wires equal to the number of bits of the address code assigned to each divided section are continuously laid in parallel along the running route, and each set of guide wires has the number of bits assigned to it. Intersect the interval division points according to the sign of 1 to 0,
There is a configuration method that detects the position of a moving object by utilizing the fact that the phase of the current flowing through the guide wire is reversed before and after the intersection point.

たとえば図5はその構成例図で、グレイコードのうちの
1ビットを割当てられた平行2線式誘導線51を区間区
分点にコードに合わせた交叉を施し、移動体側には前記
f1およびF2と異るF3とF,=2f3の2周波の送
信機を設け、誘導線51に結合する送信アンテナ5Aま
たは5Bをこの送信用に共用するかまたは別に設けた送
信アンテナからF3波とF4波を送出する。(F3,f
4用送信機および送信アンテナは図示してない。)他方
地上側では誘導線51の結合器からF3波およびF,波
を取出し、これによつて受信機53と並列またはこれに
含まれる移動体位置検知装置によつて移動体の位置を検
出することができる。
For example, FIG. 5 is a diagram showing an example of its configuration, in which a parallel two-wire guide wire 51 to which one bit of the Gray code is assigned is crossed according to the code at the section division point, and the above-mentioned f1 and F2 are connected to the moving body side. A transmitter with two different frequencies, F3 and F, = 2f3, is provided, and the transmitting antenna 5A or 5B coupled to the guide wire 51 is shared for this transmission, or the F3 wave and F4 wave are transmitted from a separately provided transmitting antenna. do. (F3, f
4 transmitter and transmitting antenna are not shown. ) On the other hand, on the ground side, the F3 wave and the F wave are taken out from the coupler of the guide wire 51, and the position of the moving object is thereby detected by a moving object position detection device parallel to or included in the receiver 53. be able to.

なおこのような交叉形平行2線誘導線を用いた移動体位
置検知装置については本発明者提案の特開昭54−14
766号公報、特開昭54−185的号公報、特開昭5
4−47676号公報等に詳細に説明してあるので以下
には概略を説明する。上記のように取り出されたF3波
およびF,波はそれぞれを分離するp波器によつて抽出
される。
Note that a mobile object position detection device using such intersecting parallel two-wire guide wires is disclosed in Japanese Patent Application Laid-Open No. 54-14 proposed by the present inventor.
Publication No. 766, Japanese Patent Application Laid-open No. 185-1985, Japanese Patent Application Publication No. 1983
Since it has been explained in detail in JP-A No. 4-47676, an outline will be explained below. The F3 wave and F, wave taken out as described above are extracted by a p wave generator which separates them.

このうちF3波を2逓倍器で逓倍した2f,を次段の位
相弁別器に基準位相波として入力させる。にれらの結合
器、F3,f4各枦波器、2逓倍器、位相弁別器は図示
してない。)この基準位相波は各誘導線の交叉があれば
交叉点の前後でF3波入力は180交位相が変化するが
、これを2逓倍した2f3波は連続位相となる(2逓倍
をたとえば全波整流によつて行う場合を考えれば容易に
理解されよう)から基準位相に用いられる。位相弁別器
のもう1つの入力は枦波器よりF4波であるが、誘導線
の交叉点の前後でF4波も位相が180、変化すること
から位相弁別器の出力も正負の反転を生ずる。このよう
にして各誘導線51にF4波の位相弁別器出力が得られ
るから移動体の存在位置を示す1ビットコードがそれぞ
れ得られる。次に上記のように移動体位置検知に用いる
複数の交叉形平行2線式誘導線群中の1誘導線をデータ
伝送に共用する場合を説明する。図5aはその実施例構
成図で、図中図1と同記号のものは同一機能をもつてい
る。
Of these, 2f, which is obtained by multiplying the F3 wave by a doubler, is inputted to the next stage phase discriminator as a reference phase wave. These couplers, F3 and f4 waveform generators, doubler, and phase discriminator are not shown. ) If there is a crossover of each guide line, the F3 wave input will have a 180 phase change before and after the intersection, but the 2f3 wave obtained by doubling this will have a continuous phase (doubling is, for example, a full wave). This can be easily understood if we consider the case where rectification is used), so it is used as a reference phase. Another input to the phase discriminator is the F4 wave from the wave detector, but since the phase of the F4 wave also changes by 180 degrees before and after the intersection of the guide lines, the output of the phase discriminator also causes a positive/negative inversion. In this way, since the phase discriminator output of the F4 wave is obtained for each guide line 51, a 1-bit code indicating the location of the moving object is obtained. Next, a case will be described in which one of the plurality of intersecting parallel two-wire guide wires used for detecting the position of a moving body is shared for data transmission as described above. FIG. 5a is a diagram showing the configuration of this embodiment, in which the same symbols as in FIG. 1 have the same functions.

また51は平行2線式交叉形誘導線の一つ、52は結合
器Cl53は受信機(Rx)、54は復元データ出力端
子(DOut)である。図5bは誘導線51と移動体ア
ンテナ間の結合の変化すなわち誘導線への誘起電圧のレ
ベルeを示し、実線と破線はアンテナ5Aからのf1波
とアンテナ5BからのF2波それぞれによるレベルの零
点はlだけの距離の差があることを示している。従つて
この場合においてもレベルまたは結合損失の正常区間L
″1と結合損失異常区間L″2とlの間にL″2〈l<
L″1が成立するようにIを選べば図1の場合と全く同
様にデータ伝送が行われる。図面の簡単な説明図1は本
発明を実施した誘導無線装置の構成例図、図2は図1中
の受信機に設けた周波数偏移(FSK)変調波の復調器
の構成図、図3は図2中・の周波数弁別器の特性図、図
4は2相差動位相変調(DPSK)波の復調器の構成図
、図5は交叉式誘導線を用いた場合のデータ通信方法の
説明図である。
Further, 51 is one of the parallel two-wire intersecting guide wires, 52 is a coupler Cl53 as a receiver (Rx), and 54 is a restored data output terminal (DOut). FIG. 5b shows the change in the coupling between the guide wire 51 and the mobile antenna, that is, the level e of the induced voltage in the guide wire, and the solid line and the broken line are the zero points of the level due to the f1 wave from the antenna 5A and the F2 wave from the antenna 5B, respectively. indicates that there is a distance difference of l. Therefore, in this case as well, the normal interval L of the level or coupling loss
Between ``1 and coupling loss abnormal section L''2 and l, L''2<l<
If I is selected so that L″1 holds true, data transmission will be performed in exactly the same way as in the case of FIG. 1.BRIEF DESCRIPTION OF THE DRAWINGS FIG. The configuration diagram of the frequency shift (FSK) modulated wave demodulator installed in the receiver in Figure 1, Figure 3 is the characteristic diagram of the frequency discriminator in Figure 2, and Figure 4 is the two-phase differential phase keying (DPSK). FIG. 5 is a block diagram of a wave demodulator, and is an explanatory diagram of a data communication method using crossed guiding wires.

A,B,C・・・・・・走行路の分割区間、1,51・
・・・・・誘導線、3,52・・・・・・結合器、4,
53・・・・・・受信機、5A,5B・・・・・・移動
体アンテナ、6・・・・・・2周波Fl,f2等の送信
機、7・・・・・・データ変調器、9・・・・・・地上
局装置、10・・・・・連絡線、21,41・・・・・
帯域濾波器、22,42・・・・・・増幅器、273,
43・・・・・りミッタ(振幅制限器)、24・・・周
波数弁別器、25,46・・・・・・低域濾波器、26
,47・・・・・・方形波変換器、44・・・・・遅延
回路、45・・・・・位相弁別器。
A, B, C... Divided sections of the running road, 1, 51.
...Guiding wire, 3,52...Coupler, 4,
53... Receiver, 5A, 5B... Mobile antenna, 6... Transmitter of two frequencies Fl, f2, etc., 7... Data modulator , 9... Ground station equipment, 10... Contact line, 21, 41...
Bandpass filter, 22, 42...Amplifier, 273,
43... Limiter (amplitude limiter), 24... Frequency discriminator, 25, 46... Low pass filter, 26
, 47... Square wave converter, 44... Delay circuit, 45... Phase discriminator.

Claims (1)

【特許請求の範囲】 1 移動体の一定走行路を任意複数区間に分割し、その
区間ごとに前記走行路に沿つて移動体位置検知用平行2
線式誘導線を展張して移動体の位置検知を行うように構
成した誘導線設備1〜3を共用して移動体より地上側へ
情報伝送を行う誘導無線によるデータ伝送方法であつて
、移動体には前記誘導線に誘導結合し情報信号波を送出
する2基1組のアンテナ(5Aと5B)を前記誘導線に
沿つた相互のアンテナ間隔1を前記誘導線設備の区間長
L_1より小さく、かつ区分点間隔L_2より大きく設
定して載置し、また情報伝送用データ信号(Din)を
入力して変調波を出力する変調器7とその出力波を入力
してデータ伝送速度(ボー)の2〜3倍の周波数差を有
する2つの周波数(f_1とf_2)の送信波を出力す
る送信機6より成り前記2基1組のアンテナのそれぞれ
に前記送信波中の異なる周波数の1波ずつを割当て送出
する送信設備を載置して、前記情報伝送用データ信号(
Din)による同時変調の前記2つの送信波(f_1と
f_2)を前記2つのアンテナ(5Aと5B)から別々
に前記誘導線に送出し、地上側には前記共用の各区間誘
導線から前記2つの送信波を共通に受信して復調する各
区間毎の受信機4と、これらの各受信機の出力を集合し
て1つのデータ信号(Dout)を出力する地上局装置
9とより成る地上側受信設備を設けて前記移動体よりの
情報を受信出力することを特徴とする誘導無線によるデ
ータ伝送方法。 2 移動体位置検知用平行2線式誘導線は移動体走行路
の分割区間ごとに区分して布設した誘導線1としその各
区間の誘導線の両端はそれぞれ終端抵抗2と結合器3に
て終端し前記各結合器には前記地上側受信設備の受信機
4をそれぞれ接続したことを特徴とする特許請求の範囲
第1項記載の誘導無線によるデータ伝送方法。 3 データ信号を周波数偏移変調によつて伝送する場合
は、その偏移周波数Δfを2つの周波数(f_1とf_
2)の差周波数以上とすることを特徴とする特許請求の
範囲第1項記載の誘導無線によるデータ伝送方法。 4 データ信号を周波数偏移変調によつて伝送する場合
において、受信側の受信設備は2つの伝送周波数(f_
1とf_2)の差周波数と偏移周波数Δfおよびデータ
伝送速度(ボー)によつて定まる帯域幅を所要帯域幅と
する受信機および復調器よりなり、前記復調器は前記所
要帯域幅を抽出する濾波器21と、その出力の増幅器2
2と、その出力を一定レベルに制限する振幅制限器23
と、その変調波を復調する周波数弁別器24と、その出
力中の2周波数(f_1とf_2)の差周波数成分を除
去する低域濾波器25およびその出力の方形波変換器2
6で構成したことを特徴とする特許請求の範囲第1項記
載の誘導無線によるデータ伝送方法。 5 データ信号を位相偏移変調によつて伝送する場合は
2つの伝送周波数f_1とf_2の差周波数Hzをデー
タ伝送速度(ボー)の2倍とすることを特徴とする特許
請求の範囲第1項記載の誘導無線によるデータ伝送方法
。 6 データ信号を位相偏移変調によつて伝送する場合に
おいて、受信側の受信設備は2つの伝送周波数(f_1
とf_2)の差周波数とデータ伝送速度(ボー)によつ
て定まる帯域幅を所要帯域幅とする受信機および復調器
よりなり、前記復調器は前記所要帯域を抽出する濾波器
41と、その出力の増幅器42とその出力を一定レベル
に制限する振幅制限器43と、その出力を1ビット時間
遅延させる遅延回路44と、前記振幅制限器と前記遅延
回路の両出力間の位相差を弁別する位相弁別器45と、
その出力中の伝送2周波(f_1とf_2)の差周波数
成分を除去する低域濾波器46およびその出力の方形波
変換器47とを具備したことを特徴とする特許請求の範
囲第1項記載の誘導無線によるデータ伝送方法。 7 移動体の一定走行路を任意複数区間に分割し、その
区間ごとに一連のグレイコードによる番地コードを連続
して付与し、その番地コードのビット数に等しい複数の
平行2線式誘導線に区間区分点に合わせて番地コードに
よる交叉を施したものを前記走行路に沿つて展張し、こ
れによつて移動体の位置検知を行うように構成した誘導
線設備の任意の1誘導線を共用して移動体より地上側へ
情報伝送を行う誘導無線によるデータ伝送方法であつて
、移動体には前記共用の誘導線に誘導結合し情報信号波
を送出する2基1組のアンテナ(5Aと5B)を設けて
その誘導線に沿つた2つのアンテナ間隔1を前記誘導線
とアンテナ間の結合損失が小さくほぼ一定な正常区間L
′_1より小さく、かつ結合損失が増大する異常区間L
′_2より大きく設定し、また情報伝送用データ信号(
Din)を入力して変調波を出力する変調器7とその出
力波を入力してデータ伝送速度(ボー)の2〜3倍の周
波数差を有する2つの周波数(f_1とf_2)の送信
波を出力する送信機6により成り前記2基1組のアンテ
ナのそれぞれに前記送信波中の異なる周波数の1波ずつ
を割当て送出する送信設備を載置して、前記情報伝送用
データ信号(Din)による同時変調の前記2つの送信
波(f_1とf_2)を前記2つのアンテナ(5Aと5
B)から別々に前記誘導線に送出し、地上側では前記共
用の誘導線から前記2つの送信波(f_1とf_2)を
共通に受信復調する受信機53を設けて移動体よりのデ
ータ信号(Dout)を受信出力することを特徴とする
誘導無線によるデータ伝送方法。 8 移動体位置検知用平行2線式誘導線は移動体走行路
の分割区間ごとに一連のグレイコードによる番地コード
を連続して与付してその番地コードのビット数に等しい
複数を前記走行路に沿つて布設しこれら各誘導線には走
行路分割区分点において前記番地コードに合わせてビッ
ト毎に交叉を施し、その各誘導線の両端を抵抗および結
合器にてそれぞれ終端してこれらの結合器の1つに地上
側受信機53を接続したことを特徴とする特許請求の範
囲第7項記載の誘導無線によるデータ伝送方式。 9 データ信号を周波数偏移変調によつて伝送する場合
は、その偏移周波数Δfを2つの周波数f_1とf_2
の差周波数以上とすることを特徴とする特許請求の範囲
第7項記載の誘導無線によるデータ伝送方法。 10 データ信号を周波数偏移変調によつて伝送する場
合において、受信側の受信機53は2つの伝送周波数(
f_1とf_2)の差周波数と偏移周波数Δfおよびデ
ータ伝送速度(ボー)によつて定まる帯域幅を所要帯域
幅とする受信部および復調器よりなり、前記復調器は前
記所要帯域幅を抽出する濾波器21と、その出力の増幅
器22と、その出力を一定レベルに制限する振幅制限器
23と、その変調波を復調する周波数弁別器24と、そ
の出力中の2周波数(f_1とf_2)の差周波数成分
を除去する低域濾波器25およびその出力の方形波変換
器26で構成したことを特徴とする特許請求の範囲第7
項記載の誘導無線によるデータ伝送方法。 11 データ信号に位相偏移変調によつて伝送する場合
は2つの伝送周波数f_1とf_2の差周波数(Hz)
をデータ伝送速度(ボー)の2倍とすることを特徴とす
る特許請求の範囲第7項記載の誘導無線によるデータ伝
送方法。 12 データ信号を位相偏移変調によつて伝送する場合
において、受信側の受信機53は2つの伝送周波数(f
_1とf_2)の差周波数とデータ伝送速度(ボー)に
よつて定まる帯域幅を所要帯域幅とする受信部および復
調器よりなり、前記復調器は前記所要帯域を抽出する濾
波器41と、その出力の増幅器42とその出力を一定レ
ベルに制限する振幅制限器43と、その出力を1ビット
時間遅延させる遅延回路44と、前記振幅制限器と前記
遅延回路の両出力間の位相差を弁別する位相弁別器45
と、その出力中の伝送2周波(f_1とf_2)の差周
波数成分を除去する低域濾波器46およびその出力の方
形波変換器47とを具備したことを特徴とする特許請求
の範囲第7項記載の誘導無線によるデータ伝送方法。
[Scope of Claims] 1. A fixed running path of a moving object is divided into a plurality of arbitrary sections, and a parallel 2-way sensor for detecting the moving object position is installed along the running path for each section.
A data transmission method using guided radio in which information is transmitted from a moving body to the ground side by sharing guide wire equipment 1 to 3 configured to detect the position of a moving body by extending a wire guided wire. A pair of antennas (5A and 5B) that are inductively coupled to the guide wire and send out information signal waves are installed on the body so that the mutual antenna spacing 1 along the guide wire is smaller than the section length L_1 of the guide wire equipment. , and is mounted with the dividing point interval set larger than L_2, and the modulator 7 inputs the data signal for information transmission (Din) and outputs a modulated wave, and the output wave is inputted to set the data transmission rate (Baud). It consists of a transmitter 6 that outputs transmission waves of two frequencies (f_1 and f_2) having a frequency difference of 2 to 3 times that of A transmission equipment for allocating and transmitting the information transmission data signal (
The two transmission waves (f_1 and f_2) simultaneously modulated by the antennas (5A and 5B) are sent to the guide wire separately from the two antennas (5A and 5B). The ground side consists of a receiver 4 for each section that commonly receives and demodulates two transmitted waves, and a ground station device 9 that collects the outputs of these receivers and outputs one data signal (Dout). A data transmission method using guided radio, characterized in that receiving equipment is provided to receive and output information from the mobile object. 2 The parallel two-wire guide wire for detecting the position of a moving object is a guide wire 1 that is laid separately for each divided section of the moving object running path, and both ends of the guide wire of each section are connected with a terminating resistor 2 and a coupler 3. 2. The data transmission method using guided radio according to claim 1, wherein a receiver 4 of said ground-side receiving equipment is connected to each of said couplers. 3 When transmitting a data signal by frequency shift keying, the shift frequency Δf is divided into two frequencies (f_1 and f_
2) The data transmission method using guided radio according to claim 1, wherein the difference frequency is higher than or equal to the difference frequency of (2). 4 When transmitting a data signal by frequency shift keying, the receiving equipment on the receiving side uses two transmission frequencies (f_
1 and f_2), a shift frequency Δf, and a data transmission rate (Baud). The demodulator extracts the required bandwidth. Filter 21 and its output amplifier 2
2, and an amplitude limiter 23 that limits its output to a constant level.
, a frequency discriminator 24 that demodulates the modulated wave, a low-pass filter 25 that removes the difference frequency component between two frequencies (f_1 and f_2) in its output, and a square wave converter 2 of its output.
6. A data transmission method using guided radio according to claim 1, characterized in that the method comprises: 5. Claim 1, characterized in that when a data signal is transmitted by phase shift keying, the difference frequency Hz between two transmission frequencies f_1 and f_2 is twice the data transmission rate (Baud). The data transmission method using guided radio described above. 6 When transmitting a data signal by phase shift keying, the receiving equipment on the receiving side uses two transmission frequencies (f_1
and f_2) and a data transmission rate (baud) as the required bandwidth, and the demodulator includes a filter 41 for extracting the required band, and a filter 41 for extracting the required band, and its output. an amplifier 42, an amplitude limiter 43 that limits its output to a constant level, a delay circuit 44 that delays its output by one bit time, and a phase that discriminates the phase difference between the outputs of the amplitude limiter and the delay circuit. a discriminator 45;
Claim 1, characterized in that the device comprises a low-pass filter 46 for removing a difference frequency component between two transmission frequencies (f_1 and f_2) in its output, and a square wave converter 47 for its output. A data transmission method using guided radio. 7. Divide a certain traveling route of a moving object into arbitrary sections, assign a series of gray code address codes to each section consecutively, and divide it into a plurality of parallel two-wire guide lines equal to the number of bits of the address code. Any one guide line of the guide line equipment configured to detect the position of a moving object by extending along the travel route and crossing with address codes according to the section division points is shared. This is a data transmission method using guided radio in which information is transmitted from a moving body to the ground side, and the moving body is equipped with a set of two antennas (5A and 5A and 5B), and the interval 1 between the two antennas along the guide line is defined as a normal section L where the coupling loss between the guide line and the antenna is small and almost constant.
Abnormal section L that is smaller than '_1 and where the coupling loss increases
'_2, and the data signal for information transmission (
The modulator 7 inputs a signal (Din) and outputs a modulated wave, and the modulator 7 inputs the output wave to generate transmission waves of two frequencies (f_1 and f_2) with a frequency difference of 2 to 3 times the data transmission rate (Baud). It consists of a transmitter 6 that outputs, and is equipped with a transmission equipment that allocates and transmits one wave of a different frequency among the transmission waves to each of the two sets of antennas, and transmits the information transmission data signal (Din). The two simultaneously modulated transmission waves (f_1 and f_2) are transmitted to the two antennas (5A and 5A).
A receiver 53 is installed on the ground side to commonly receive and demodulate the two transmitted waves (f_1 and f_2) from the shared guide line. 1. A data transmission method using guided radio, characterized by receiving and outputting a signal (Dout). 8 The parallel two-wire guide wire for detecting the position of a moving object is a system in which a series of gray code address codes are consecutively assigned to each divided section of the moving object's travel path, and a plurality of numbers equal to the number of bits of the address code are assigned to the traveling path. Each of these guide wires is crossed bit by bit according to the address code at the dividing point of the running route, and both ends of each guide wire are terminated with a resistor and a coupler to connect them. 8. A data transmission system using guided radio according to claim 7, characterized in that a ground-side receiver 53 is connected to one of the receivers. 9 When transmitting a data signal by frequency shift keying, the shift frequency Δf is divided into two frequencies f_1 and f_2.
8. The data transmission method using guided radio according to claim 7, wherein the difference frequency is greater than or equal to the difference frequency. 10 When transmitting a data signal by frequency shift keying, the receiver 53 on the receiving side has two transmission frequencies (
f_1 and f_2)), the frequency difference Δf, and the data transmission rate (Baud). The demodulator extracts the required bandwidth. A filter 21, an amplifier 22 for its output, an amplitude limiter 23 for limiting its output to a constant level, a frequency discriminator 24 for demodulating its modulated wave, and a Claim 7, comprising a low-pass filter 25 for removing a difference frequency component and a square wave converter 26 for its output.
The data transmission method using guided radio as described in . 11 When transmitting data signals by phase shift keying, the difference frequency (Hz) between two transmission frequencies f_1 and f_2
8. The method for transmitting data using guided radio according to claim 7, wherein the data transmission rate is twice the data transmission rate (baud). 12 When transmitting a data signal by phase shift keying, the receiver 53 on the receiving side has two transmission frequencies (f
The demodulator includes a receiving section and a demodulator whose required bandwidth is determined by the difference frequency between the frequencies (_1 and f_2) and the data transmission rate (baud), and the demodulator includes a filter 41 for extracting the required band, and a filter 41 for extracting the required band. An output amplifier 42, an amplitude limiter 43 that limits its output to a constant level, a delay circuit 44 that delays its output by 1 bit time, and a phase difference between the outputs of the amplitude limiter and the delay circuit is discriminated. Phase discriminator 45
, a low-pass filter 46 for removing a difference frequency component between two transmission frequencies (f_1 and f_2) in its output, and a square wave converter 47 for its output. The data transmission method using guided radio as described in .
JP53003336A 1978-01-18 1978-01-18 Data transmission method using guided radio Expired JPS6057740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53003336A JPS6057740B2 (en) 1978-01-18 1978-01-18 Data transmission method using guided radio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53003336A JPS6057740B2 (en) 1978-01-18 1978-01-18 Data transmission method using guided radio

Publications (2)

Publication Number Publication Date
JPS5496912A JPS5496912A (en) 1979-07-31
JPS6057740B2 true JPS6057740B2 (en) 1985-12-17

Family

ID=11554502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53003336A Expired JPS6057740B2 (en) 1978-01-18 1978-01-18 Data transmission method using guided radio

Country Status (1)

Country Link
JP (1) JPS6057740B2 (en)

Also Published As

Publication number Publication date
JPS5496912A (en) 1979-07-31

Similar Documents

Publication Publication Date Title
US4081748A (en) Frequency/space diversity data transmission system
US5185591A (en) Power distribution line communication system for and method of reducing effects of signal cancellation
RU2214049C2 (en) Data transmission and reception method, system, and receiver
CA1310725C (en) Propagation time detecting system with use of detected phase difference of transmitted and received subcarrier
JPS6057740B2 (en) Data transmission method using guided radio
JPS6057741B2 (en) Data transmission method using guided radio
GB1449953A (en) Communications system and method for transmitting over a limited bandwidth transmission link
JP3246947B2 (en) Communication device for train control
Waller et al. A method for differentiating between frequency and phase modulated signals
US3517129A (en) Data transmission subset
JPH0644731B2 (en) Diversity transmission / reception method in broadcasting format data communication
JP3142779B2 (en) Position detection and data transmission device
JPS606580B2 (en) Data and point information transmission device to mobile objects
JP2000134269A5 (en)
JPS606581B2 (en) mobile communication device
EP2100792A1 (en) Detection system and method for railway track circuits using BPSK modulated coding
JPS6025354A (en) Radio communication system
JP4785938B2 (en) Ground / vehicle information transmission apparatus and ground / vehicle information transmission method
JP3197915B2 (en) Train communication equipment
GB2073552A (en) Telecommunication system
JPH0638596B2 (en) Digital communication system
JP2764266B2 (en) Information transmission equipment for floating railway
JP3193340B2 (en) Train position detection device
JP3118073B2 (en) Communication device for train control
JPH05330427A (en) Ground and on-vehicle information transmitter