JPS6057695A - Polarizing control type light source and polarizing controlling device - Google Patents

Polarizing control type light source and polarizing controlling device

Info

Publication number
JPS6057695A
JPS6057695A JP58165535A JP16553583A JPS6057695A JP S6057695 A JPS6057695 A JP S6057695A JP 58165535 A JP58165535 A JP 58165535A JP 16553583 A JP16553583 A JP 16553583A JP S6057695 A JPS6057695 A JP S6057695A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical
light source
laser element
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58165535A
Other languages
Japanese (ja)
Inventor
Kaoru Takahashi
薫 高橋
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58165535A priority Critical patent/JPS6057695A/en
Publication of JPS6057695A publication Critical patent/JPS6057695A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing

Abstract

PURPOSE:To facilitate control of the deflecting direction of the optical axis of outgoing light emitted from a semiconductor laser element and to prevent the laser resonator, etc., from being deteriorated by a method wherein a spherical magnetooptic effect plate is used as a window material for a cap, with which the semiconductor laser element is airtightly sealed. CONSTITUTION:A polarizing control type light source, which is used for optical communication, optical information processing, optical sensors, etc., is constituted of a cap 2 for airtight sealing with a built-in semiconductor laser element 1, an Sm-Co magnet 9, a Glan-Thompson prism 10 and an SELFOC lens 11. As a window material for photo emission for the cap 2, with which the semiconductor laser element 1 is airtightly sealed, is used one constituted of optical element 7 having a beam conversional function and a magnetooptic effect plate 13. The optical element 7 shall be spherical for making into such a way that the deflecting direction of the optical axis of outgoing light emitted from the laser element 1 can be easily controlled by a magnet 9. By such a constitution, the deflection of the outgoing optical axis is controlled and deterioration of the laser resonator, etc., is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明li、光通信、光情報処理、及O・光センサ等に
用いる’lI畠光割陣型光源及o: ljl記偏光1j
lJ mlを光源を用いた偏光制御装置に関する。
[Detailed Description of the Invention] Industrial Fields of Application The present invention is used in optical communications, optical information processing, optical sensors, etc.
This invention relates to a polarization control device using a lJml light source.

従来例の構成とその問題点 半導体レーザをデバイス化する場合、第1図に示すイ条
に、半ノ、17体レーザ素r−1の共振H:)而′Gの
劣化を防止し、信頼性を確保する目的から、一般的に反
則防止膜4をほどこしたサファイアカラス3等からなる
窓材を含むキャップ2により気密封止を行ない、電極5
,6をノ・−メチツクシールにより取り出す構成が用い
られている。この場合のサファイアガラス3等の窓材か
らなる気密封止キャップは半導体レーザ1から小利した
光を気密封止キャップ2の外部へ出射する役割しか持た
ない。
Conventional configuration and its problems When converting a semiconductor laser into a device, it is necessary to prevent the deterioration of the resonance H: For the purpose of ensuring safety, the electrode 5 is generally hermetically sealed with a cap 2 containing a window material made of sapphire glass 3 or the like coated with a fouling prevention film 4.
, 6 are removed using a metal seal. In this case, the hermetic sealing cap made of a window material such as sapphire glass 3 has only the role of emitting a small amount of light from the semiconductor laser 1 to the outside of the hermetic sealing cap 2.

発明の1:1的 本発明tよ、半導体レーザ素丁−の気密封止用キャップ
の窓材に磁気光学効果板を使用し、半4体レーザ素子か
らの出射光の偏光方向の制御を容易にすることによって
、偏光制御可能な光源を得ることを目的とする。
1:1 aspect of the invention According to the present invention, a magneto-optic effect plate is used as the window material of the hermetic sealing cap of the semiconductor laser chip, and the polarization direction of the emitted light from the semi-quadram laser element can be easily controlled. The purpose is to obtain a light source that can control polarization.

発明の構成 本発明は、半導体レーザ素子、及び気密刺止用キャップ
の窓材として磁気光学効果板と用いた気密封止用キャッ
プより構成される。また本発明は上記の構成にビーム変
換機能を有する光学素子を加えて−rttj成される。
Structure of the Invention The present invention includes a semiconductor laser element and an airtight sealing cap using a magneto-optical effect plate as a window material of the airtight sealing cap. Further, the present invention is constructed by adding an optical element having a beam conversion function to the above-mentioned configuration.

ビーム変換機能を有する光学素子とは、球レンズ、屈折
率分布、!!1リレンズ、半球レンズ、シリンダーレン
ズなどの何うか0ヒ一ム変換機能を有するものである。
Optical elements with beam conversion functions include ball lenses, refractive index distribution, and! ! It is a type of lens such as a 1-reel lens, hemispherical lens, or cylindrical lens that has a 0-hime conversion function.

実施例の説明 本発明の偏光制御型光源の構成の第1の実施例を第1図
に示す。本発明においては、半2重体レーザの気密封止
キャップの窓材を磁気光学効果板に変えたものである。
DESCRIPTION OF EMBODIMENTS A first embodiment of the configuration of a polarization-controlled light source of the present invention is shown in FIG. In the present invention, the window material of the hermetic sealing cap of the half-duplex laser is changed to a magneto-optic effect plate.

気密封土用キャップの窓材として用いる磁気光学効果板
13としては、(優性ガーネット、 II−■)j力半
導体、常磁性フ了うテー回117:ガラスなど磁気光学
効果を有するもので使用波長帯での吸収が、光源として
使用するにあたり、は磁場をかけることによってその中
を通じる光の偏波方向を回転させる性質をもつが、その
回転角θは、磁場の強さH2磁気光学効果板中の光路長
a及び磁気光学効果板固有の定a(ベルブ定数ンvを用
いて、θ−RHVで表わすことができる。
The magneto-optical effect plate 13 used as a window material for the hermetically sealed soil cap is made of a material having a magneto-optic effect such as (dominant garnet, II-■) semiconductor, paramagnetic material or glass. When absorption in a band is used as a light source, it has the property of rotating the polarization direction of light passing through it by applying a magnetic field, and the rotation angle θ is determined by the strength of the magnetic field H2 Magneto-optic effect plate It can be expressed as θ-RHV using the optical path length a in the center and a constant a (Berve constant v) specific to the magneto-optic effect plate.

半導体レーザ素子1から出射した光は気密封止用キャッ
プの窓を通して気密封止キャンプ外部に出射されるが、
この時の、外部より磁場をかけると、磁場の強さ及び磁
気光学効果板中の光路長によるたけl1iii波方向が
回転され、気密月止キャップ外Fi++に出射される。
The light emitted from the semiconductor laser element 1 is emitted to the outside of the hermetically sealed camp through the window of the hermetically sealed cap.
At this time, when a magnetic field is applied from the outside, the direction of the l1iii wave is rotated by the strength of the magnetic field and the optical path length in the magneto-optic effect plate, and is emitted to the outside of the airtight cap.

磁気光学効果板13には反則防止膜4をほどこすことに
より反則を防止する。
A fouling prevention film 4 is applied to the magneto-optic effect plate 13 to prevent fouling.

第2の実施例として、本発明の(Iiif光制却型光源
にレーザ素子からの出射光を集光する作用を付加するた
めに、磁気光学効果板13を球形にしたものを第2図に
示す。
As a second embodiment, the magneto-optic effect plate 13 is made spherical in order to add the function of condensing the emitted light from the laser element to the (Iiif light control type light source) of the present invention, as shown in FIG. show.

第3の実施例として、同じく本発明の偏光fljIJ 
l1lil型光源に集光作用をもたせるために、気密封
土用キャップ2の窓材に磁気光学効果板13と共にビー
ム変換機能1(了する光学素子7を用いたものを第3図
に示す。磁気光学効果板13とビーム変換機能7をイ:
fする光学素子とは、−例としてこの場合屈折率が11
%気光学効果板13とビーム変換機能ケ有する光学素子
のいずれにも近く、使用波長での吸収の少ない接着剤を
用いて接着しているが、その1mの方法ヶ用いてもよい
。例えば気密封止用ガラスなどである。
As a third embodiment, polarized light fljIJ of the present invention
In order to provide a light focusing effect to the l1lil type light source, an optical element 7 having a beam conversion function 1 is used in the window material of the hermetically sealed earth cap 2 together with a magneto-optic effect plate 13, as shown in FIG. Optical effect plate 13 and beam conversion function 7:
An optical element with a refractive index of 11 is an example of an optical element with a refractive index of 11.
It is close to both the optical effect plate 13 and the optical element having the beam conversion function, and is bonded using an adhesive that has little absorption at the wavelength used, but the 1 m method may also be used. For example, it is glass for hermetic sealing.

第4の実施り1jとして、上記第3の実施ρり中のビー
ム変侠殴能をイーTする光学素子7全窓拐に使わずに、
気密刊止月1キャップ2中の半導体レーザ素子1と磁気
光学効果板13による窓の間においたもの全第4図に示
す。
As a fourth implementation 1j, without using the beam eccentricity in the third implementation described above for the full window of the optical element 7 for E-T,
FIG. 4 shows the entire structure placed between the semiconductor laser element 1 in the airtight cover 1 and the window formed by the magneto-optic effect plate 13.

第5の実施例である第5図は、磁気光学効果板として単
位磁」易当り単位光路長当りの回転角の少さな物質例え
は、常磁性ファラデーガラスを用いた」局舎に、光路長
を長くとることにより偏波方向の回転角を大きくする構
成を用いたものである。
FIG. 5, which is a fifth embodiment, shows a material using a material with a small rotation angle per unit optical path length per unit magnetic field as a magneto-optical effect plate, for example a paramagnetic Faraday glass. This uses a configuration in which the rotation angle of the polarization direction is increased by increasing the length.

気密封止用キャップ2の光出射の窓を、半導体レーザ素
子1の発光面に対して傾け、気密封止用キャップ2の窓
の磁気光学効果板13に反射防止膜4a、+bと全反射
膜8全形成する。この構成では、半導体レーザ素子1か
らili !、## した光9aが反′射防止膜4d全
透過し、磁気光学効果板13に入り、一方の端面の全反
則膜8で反Q1されて磁気光学効果板13内ケ通過し、
以後同様に磁気光学効果板13の端面の全便!R+IS
′!sて反則をくり返し、磁気光学効果板13の出射側
のMiii面の反射防止膜4b盆通って、出射光9bは
気浴封止キャップ2の外部へ出射される。
The light emitting window of the hermetic sealing cap 2 is tilted with respect to the light emitting surface of the semiconductor laser element 1, and the antireflection films 4a, +b and the total reflection film are applied to the magneto-optic effect plate 13 of the window of the hermetic sealing cap 2. 8 Complete formation. In this configuration, from the semiconductor laser element 1 to ili! , ## The light 9a completely passes through the anti-reflection film 4d, enters the magneto-optic effect plate 13, is reflected by the anti-reflection film 8 on one end face, and passes through the inside of the magneto-optic effect plate 13.
After that, all the end faces of the magneto-optic effect plate 13 will be covered in the same way! R+IS
′! The outgoing light 9b passes through the anti-reflection film 4b on the Miii surface on the outgoing side of the magneto-optic effect plate 13 and is emitted to the outside of the gas bath sealing cap 2.

なお、磁気光学効果板13のlf+Ai lfi’lの
全反射]模8は、磁気光学効果板13に直接に:(着し
てもよいが、他に、別の1勿質例えばカラスなとに蒸X
jされた全反則)]テを全反射ノ摸11ilJを磁気光
学効果板13に接して接着するなど光が全反則すれは別
の方法でもよい。
Note that the total reflection of lf+Ai lfi'l of the magneto-optic effect plate 13] pattern 8 may be attached directly to the magneto-optic effect plate 13; Steam X
Other methods may be used to prevent the light from being totally reflected, such as bonding the total reflection sample 11ilJ in contact with the magneto-optic effect plate 13.

第6の実施例として、不発明の1llj光制fI11j
型光ユjiを用いた偏光側脚装置の例として光通信用光
アイソレータ付光源の構成を第6+Aに示す。光アイソ
レータとは、半導体レーザ素子からの出射光が伝送回路
途中で反射した半導体レーザ素子へのもどり光が、半導
体レーザ素子の動作を不安定にするため、そJ7.全防
止するため、半導体レーザ素子からの、J」副光は通過
するが、半導体レーザ素子へ、のもどり光は阻止する装
置である。半導体レーザ素子1の気密封止キャップ2の
光出射用窓の磁気光学効果板13としてここでは一例と
して、磁性ガーネットを用いた。磁性ガーネットはフェ
リ磁性体であり、あるj1琺ノ易の強さ以上では磁」易
を強くしてもfit位光D’り長当りの偏波方向の回転
角か一定になる領域飽和磁場を有する。光出射用窓3に
用いた磁性ガーネットの厚さは、飽4’lJ磁場中にi
I’jいた時に垂直に入った光の1構波方向が45°回
転される厚さにする。光出射窓をとり囲む様に円筒形の
Sm−Co11並石9ヶ配置し、光小利窓拐の磁性ガー
ネット13には飽刈j磁場がかかる様にする。
As a sixth embodiment, the uninvented 1llj light control fI11j
The configuration of a light source with an optical isolator for optical communication is shown in No. 6+A as an example of a polarization side leg device using a type optical module. An optical isolator is an optical isolator because the light emitted from the semiconductor laser element is reflected in the middle of the transmission circuit and returns to the semiconductor laser element, making the operation of the semiconductor laser element unstable. In order to completely prevent this, the device allows the J'' sub-light from the semiconductor laser element to pass through, but prevents the light from returning to the semiconductor laser element. As an example, magnetic garnet was used here as the magneto-optic effect plate 13 of the light exit window of the hermetic sealing cap 2 of the semiconductor laser device 1. Magnetic garnet is a ferrimagnetic material, and above a certain strength, even if the magnetic strength is increased, the rotation angle of the polarization direction per length of light D' remains constant at a saturation magnetic field. have The thickness of the magnetic garnet used for the light exit window 3 is such that
The thickness is set so that one component direction of light that enters vertically when I'j is rotated by 45 degrees. Nine cylindrical Sm-Co 11 stones are arranged to surround the light exit window, and a magnetic field is applied to the magnetic garnet 13 surrounding the light exit window.

そして、光出射窓の半導体レーザ素子配置と反対11!
IIには、反引防止j摸4金はどこしたグラントムソン
プリズム10を、半導体レーザ素子からの出射直後の光
の偏波方向とは46°の位置すなわち光出射窓を通過し
てきた光が通過する位置に配置する。グラントムソンプ
リズム10の偏光:l1ll XI型光源と反対イ1.
jUにグラントムソンプリズム1ltllのj’+6i
 ]1iiに反射防止膜4をほどこしたセルフォックレ
ンズ11とファイバ12とからなるファイバコリメータ
ーを配置する。
And 11 opposite to the semiconductor laser element arrangement of the light exit window!
In II, the Glan-Thompson prism 10 with anti-repulsion mechanism is located at a position 46° from the polarization direction of the light immediately after being emitted from the semiconductor laser element, that is, the light that has passed through the light exit window passes through it. Place it in the desired position. Polarization of Glan-Thompson prism 10: l1ll Opposite to type XI light source a1.
j'+6i of Grant Thompson prism 1ltll to jU
] A fiber collimator consisting of a SELFOC lens 11 coated with an antireflection film 4 and a fiber 12 is arranged at 1ii.

半導体レーザ素子から出射した光は、半球形レンズ7で
コリメートされ磁性ガーネット13ケ通過する時uii
i波方回か45°回転さノ′シ、クラントムノンプリズ
ム10を通過して、セルフォックレンズ11で集光され
光ファイバ12に4ひかれる。
The light emitted from the semiconductor laser element is collimated by the hemispherical lens 7 and passes through 13 magnetic garnets.
The i-wave is rotated by 45° in the direction of the i-wave, passes through a Clantomnon prism 10, is focused by a Selfoc lens 11, and is connected to an optical fiber 12.

一方、反射した半導体レーザ素子1へのもどり光ハ、セ
ルフォックレンズ11てコリメートさl+、、半導体レ
ーザ素子1からの1“」−四・1光と偏波面が45゜の
1す′1き忙もつもどり光だけかクラントムソンプリズ
ム1o i 、+、+fl過することができ、’It好
1<J三ガーネノF13蛍通過するとき磁1/1−ガー
イノトのもつ非相反性より、さらに45°、つ丑り出q
]先に対して900偏波方向が回転される。半球レンズ
7で小児され、半導体レーザ素子1へもとり光か入って
も、偏波方向が出射光ともどり光には直光しているため
、もどり光は半導体レーザ素子1の動作を不安定にする
ことd:ない。ここに示した例えば光通信用光アイソレ
ータ付光源であるが、光通信用に限らず、又、偏光:1
ilj(11型光源の構造も例に渇けたものに限らず、
さらに磁気光学効果板は磁性ガーネットに限らない。又
、Sm−Co磁石、グラントムノンプリズム、ファイバ
コリメータは、例に示したものでなくても同様の役1リ
リをはだすものならよく、さらにはアイソレータの構造
も例に掲げたものに限らない。
On the other hand, the reflected light returning to the semiconductor laser element 1 is collimated by the SELFOC lens 11, and the polarization plane is 45 degrees from the 1''-4.1 light from the semiconductor laser element 1. Only the returning light can pass through the Clan-Thompson prism 1o i , +, +fl, and when it passes through the firefly, it is further 45 degrees due to the non-reciprocity of the magnetic 1/1-gain. , Tsuguri Deq
] The polarization direction is rotated by 900 relative to the previous one. Even if some light enters the semiconductor laser element 1 due to the hemispherical lens 7, the polarization direction returns to the output light and the light is directed directly, so the returned light makes the operation of the semiconductor laser element 1 unstable. To do d: None. For example, the light source with an optical isolator for optical communication shown here is not limited to use for optical communication.
ilj (The structure of the 11-inch light source is not limited to the typical one,
Furthermore, the magneto-optic effect plate is not limited to magnetic garnet. In addition, the Sm-Co magnet, Glantomon prism, and fiber collimator do not need to be those shown in the example, as long as they provide the same function, and the structure of the isolator is also limited to those shown in the example. do not have.

第7の実施例すなわち偏光flr!I岬装置の再装置例
として、光磁気スイッチの11°9成を第7図に示す。
The seventh embodiment, polarization flr! As an example of reinstalling the I-Misaki device, FIG. 7 shows an 11°9 configuration of a magneto-optical switch.

第3の実施ρりとしてとり上げた偏光制御型光源を用い
その小利窓の外部にグラントムソンプリズム10を、半
導体レーザ素子1の出側光の偏波方向と90°の位置に
配置する。偏光制御型光源の磁気光学効果板13は列と
して磁性ガーネットを用い、j!fさは刊和磁場下で偏
波方向が90°回転するj!?、さにする。外7Xls
から飽和磁場をかけない時、半導体レーザ素子1より出
射した光は半球形レンズ7で集光され光出射窓より出帽
されるが、グラントムソンプリズム10と偏光方間が直
交し・通過することはできない。一方、外i71!かl
−)飽)111磁」易をかけると、半導体レーザ素子1
からの出側光が、光出射窓の磁性ガーネット13を通過
するとき、偏波方向が90°回Il伝されるため、グラ
ントムソンプリズム10?通過することかできる。偏光
子として用いるもの(dクラントムソンプリズム10に
限らず、誘電体多層)莫ケ直辰、磁気光学効果板に蒸着
するなど別の方法を用いてもよい。
Using the polarization-controlled light source taken up as the third embodiment, a Glan-Thompson prism 10 is placed outside the small interest window at a position 90° with respect to the polarization direction of the output light of the semiconductor laser device 1. The magneto-optic effect plate 13 of the polarization control type light source uses magnetic garnet as a row, and j! The polarization direction is rotated by 90 degrees under the magnetic field. ? , make it. Outside 7XLs
When no saturation magnetic field is applied from the semiconductor laser element 1, the light emitted from the semiconductor laser element 1 is focused by the hemispherical lens 7 and exits from the light exit window, but the direction of polarization is perpendicular to the Glan-Thompson prism 10 and passes through. I can't. On the other hand, outside i71! Cal
-) 111 magnetic field x
When the outgoing light from the Glan-Thompson prism 10 passes through the magnetic garnet 13 of the light exit window, the polarization direction is transmitted 90° Il times. It is possible to pass. Other methods such as vapor deposition on a magneto-optical effect plate may be used for the polarizer (not limited to the Clan-Thompson prism 10, but also a dielectric multilayer).

発明の効果 本発明の11n1光刊tfflI型光源を用いることに
より、半導体レーザ素子の共倣器面−rjの劣化を防止
し、信1t(I性t11凱呆すると共に、半導体レーザ
素子からの出側光の偏波方向を制御することが容易にな
り、さらにl−1:偏光i17υ御装置の+’R成か容
易になる。
Effects of the Invention By using the 11n1 optical type tfflI light source of the present invention, it is possible to prevent the deterioration of the mirror surface -rj of the semiconductor laser device, reduce the optical irradiance (t11), and reduce the output from the semiconductor laser device. It becomes easy to control the polarization direction of the side light, and furthermore, the +'R configuration of the l-1: polarization i17υ control device becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気密封止キャップを蜜月した半導体レーザ装置
の外観及び内部溝成1/J、第2図〜第5図は不発明の
偏光′1II11師型光源の各実施例の内部h1η成(
Δ、第6図は本発明の偏光制御装置のd″;1のシリと
しての光アイソレータ付光源の内部構成図、第7図は不
発「JJの偏光制御11装置の第2の例としての光スィ
ッチの内部構成図である。 1・・・・・半導体レーザ素子、2・・・・・・気密封
止キャップ、7・・・・・ビーム変換機能を何する光学
素子、9・・・・Sm−Co磁石、10・・・・・・グ
ラントムソンプリズム、11・・・セルフォックレンズ
、12・・・・・光ファイバ、13−・・・・磁気光学
効果板。 代到1人の氏名 弁理士 中 尾 敏 男 ほか1名第
1図 第 2 図 第4図 第3図 第6図 第7図
Fig. 1 shows the external appearance and internal groove formation 1/J of a semiconductor laser device with a hermetic sealing cap, and Figs. 2 to 5 show the internal h1η formation (
Δ, Fig. 6 is an internal configuration diagram of a light source with an optical isolator as a series of d''; It is an internal configuration diagram of the switch. 1... Semiconductor laser element, 2... Airtight sealing cap, 7... Optical element for what beam conversion function, 9... Sm-Co magnet, 10--Glan-Thompson prism, 11--Selfoc lens, 12--optical fiber, 13--magneto-optic effect plate. Name of one person Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 4 Figure 3 Figure 6 Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1) 半導体レーザ素子の気密封土用キャンプの窓材
として磁気光学効果板を用いたことを特徴とする偏光制
御型光源。
(1) A polarization-controlled light source characterized in that a magneto-optic effect plate is used as a window material for a hermetically sealed camp for a semiconductor laser device.
(2)窓洟として球形の磁気光学効果板を用いたことを
特徴とする特許請求の範囲第1項記載の偏光制御型光源
(2) A polarization-controlled light source according to claim 1, characterized in that a spherical magneto-optic effect plate is used as the window.
(3)半導体レーザ素子の気密封止用キャップの窓材と
して磁気光学効果板及びビーム変換機能を有する光学素
子を用いることを特徴とする偏光制御型光源。
(3) A polarization control type light source characterized in that a magneto-optic effect plate and an optical element having a beam conversion function are used as a window material of a cap for hermetically sealing a semiconductor laser element.
(4)半導体レーザ素子の気密封止用キャップの窓材上
して偏光制御型光源、前記偏光制御型光源の磁気光学効
果を磁化するための磁場発生源、及び偏光分離機能、ビ
ーム変換機能、光源波機能を有する光学素子金用いたこ
とを特徴とする偏光制御装置。
(4) A polarization-controlled light source, a magnetic field generation source for magnetizing the magneto-optic effect of the polarization-controlled light source, a polarization separation function, a beam conversion function, A polarization control device characterized by using a gold optical element having a light source wave function.
JP58165535A 1983-09-08 1983-09-08 Polarizing control type light source and polarizing controlling device Pending JPS6057695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165535A JPS6057695A (en) 1983-09-08 1983-09-08 Polarizing control type light source and polarizing controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165535A JPS6057695A (en) 1983-09-08 1983-09-08 Polarizing control type light source and polarizing controlling device

Publications (1)

Publication Number Publication Date
JPS6057695A true JPS6057695A (en) 1985-04-03

Family

ID=15814229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165535A Pending JPS6057695A (en) 1983-09-08 1983-09-08 Polarizing control type light source and polarizing controlling device

Country Status (1)

Country Link
JP (1) JPS6057695A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783080A (en) * 1980-11-10 1982-05-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser module device
JPS57173992A (en) * 1981-04-17 1982-10-26 Nippon Telegr & Teleph Corp <Ntt> Coupling device for semiconductor laser to optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783080A (en) * 1980-11-10 1982-05-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser module device
JPS57173992A (en) * 1981-04-17 1982-10-26 Nippon Telegr & Teleph Corp <Ntt> Coupling device for semiconductor laser to optical fiber

Similar Documents

Publication Publication Date Title
EP0610440B1 (en) An improved optical isolator
US4375910A (en) Optical isolator
EP0158475B1 (en) Semiconductor laser apparatus with isolator
JPS6118481Y2 (en)
JP2000510965A (en) Opto-isolator
JPS6057695A (en) Polarizing control type light source and polarizing controlling device
JPH01241502A (en) Polarizing element for optical isolator
GB2143337A (en) Optical isolator
JPS6145219A (en) Optical isolator
JPS6257012B2 (en)
US20060139727A1 (en) Hybrid fiber polarization dependent isolator, and laser module incorporating the same
JPH02135416A (en) Optical isolator and semiconductor laser device therewith
JPS6365419A (en) Semiconductor laser device with optical isolator
JPS59119315A (en) Optical isolator
CA1147998A (en) Optical isolator
JPS6384185A (en) Semiconductor laser module with optical isolator
JPH10142558A (en) Optical isolator and its production
JPH0143873Y2 (en)
JPS6030734Y2 (en) High reverse loss compact optical isolator
JPH09145929A (en) Optical fiber element with optical isolator
JPS60238813A (en) Optical isolator
JPS60227222A (en) Optical isolator
JPS6057694A (en) Semiconductor laser
JPH05127123A (en) Optical isolator
JPH01175786A (en) Semiconductor laser device with built-in optical isolator