JPH02135416A - Optical isolator and semiconductor laser device therewith - Google Patents

Optical isolator and semiconductor laser device therewith

Info

Publication number
JPH02135416A
JPH02135416A JP29119788A JP29119788A JPH02135416A JP H02135416 A JPH02135416 A JP H02135416A JP 29119788 A JP29119788 A JP 29119788A JP 29119788 A JP29119788 A JP 29119788A JP H02135416 A JPH02135416 A JP H02135416A
Authority
JP
Japan
Prior art keywords
semiconductor laser
magneto
light
optical
optic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29119788A
Other languages
Japanese (ja)
Inventor
Kaoru Matsuda
薫 松田
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29119788A priority Critical patent/JPH02135416A/en
Publication of JPH02135416A publication Critical patent/JPH02135416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the number of parts required for an optical isolator by using a magneto-optical crystal formed with hologram on the surface as a Farady rotator and transforming the form of a light beam passed through the magneto-optical crystal by means of the hologram on the surface of the crystal. CONSTITUTION:Linearly polarized light passed through a polarizer 11 out of the light emitted from a semiconductor laser element 1 receives a Farady effect when the polarized light passes a magneto-optical crystal 4 and its polarizing direction is turned by 45 deg.. At this time, the light emitted from the element 1 is transformed into parallel beam of light by means of a Fresnel lens 12 and emitted through an analyzer 7, the transmitting polarizing direction of which is arranged at 45 deg. to the polarizer 11. On the other hand, in the reflected light to the element 1, the component parallel to the transmitting polarizing direction of the analyzer 7 is passed through the analyzer 7, and receives a Farady effect of 45 deg. when the component is passed through the crystal 4 in the course of the component concentrated to the element 1 by means of the lens 12. The reflected light received the 45 deg. Farady effect cannot pass through the polarizer 11, because the polarizing direction is further turned by 45 deg. due to non- reciprocity of the Farady effect.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信、光制御、光記録等に用いる光アイソレ
ータ及び光アイソレータ付き半導体レーザモジュールに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical isolator and a semiconductor laser module with an optical isolator used in optical communication, optical control, optical recording, etc.

従来の技術 半導体レーザ素子を光源として用いる光通信、光制御、
光記録等の光伝送系において、光伝送系途中の反射端か
らの反射光が半導体レーザ素子の活性層に戻ると反射戻
り光が雑音の誘引となって半導体゛レーザ素子の動作が
不安定となり、伝送品質が劣化する。そこで、反射戻り
光が半導体レーザ素子の活性層に戻ることを阻止し、安
定な光源を得るために、光源の前に光アイソレータを設
置したり、光アイソレータ付き半導体レーザモジュール
を用いたりしていた。
Conventional technology Optical communication, optical control, and optical control using semiconductor laser elements as light sources
In optical transmission systems such as optical recording, when reflected light from a reflective end in the optical transmission system returns to the active layer of a semiconductor laser element, the reflected return light induces noise, making the operation of the semiconductor laser element unstable. , transmission quality deteriorates. Therefore, in order to prevent the reflected return light from returning to the active layer of the semiconductor laser element and obtain a stable light source, an optical isolator is installed in front of the light source, or a semiconductor laser module with an optical isolator is used. .

光アイソレータの従来技術としては1988年発行のア
プライドOオブティクス(AI)I)lied  0p
tics)第27巻7号の1329ページ記載されてい
るように、光アイソレータ自身にはビーム変換機能はな
かった。
As a conventional technology for optical isolators, Applied Optical (AI) I)lied 0p published in 1988
tics) Vol. 27, No. 7, page 1329, the optical isolator itself did not have a beam conversion function.

光アイソレータ付き半導体レーザは従来より低価格化、
高信頼性、小型化などを目指し、部品点数を減らす工夫
がなされており、例えば特開昭57−173992号に
は磁気光学結晶であるY!F esO+a (Y I 
G)を球状に加工しレンズ機能を持たせたものが記載さ
れており、特開昭58−185535号には磁気光学結
晶を半導体レーザの気密封止キャップの窓材として用い
、さらには気密封止キャップの窓材として用いている磁
気光学結晶に半球レンズを一体化したものが記載されて
いる。第9図に特開昭58−185535号の気密封止
キャップの窓材として用いている磁気光学結晶に半球レ
ンズを一体化したアイソレータ付き半導体レーザの構成
図を示す。端面劣化を防ぎ、信頼性を保つために気密封
止された半導体レーザ素子1の気密封止キャップ2の窓
材に半球レンズ3を一体化した磁気光学結晶4を用い、
半導体レーザ素子1から出射した光を平行光として気密
封止キャップ2から出射し、第2のレンズ5により光フ
ァイバ6に集光する構成をとる。また、磁気光学結晶4
は45degのファラデー回転角を与える厚さであり、
気密封止キャップ2と第2のレンズ5の間には45de
gのファラデー回転角を受けた出射光が透過できる角度
に検光子7を配し、気密封止キャップ2のまわりには磁
気光学結晶4に飽和磁場を与える永久磁石8を配してい
る。
Semiconductor lasers with optical isolators are cheaper than conventional ones,
Aiming for high reliability and miniaturization, efforts have been made to reduce the number of parts. For example, in Japanese Patent Application Laid-open No. 57-173992, a magneto-optical crystal Y! F esO+a (Y I
G) is described in which it is processed into a spherical shape to have a lens function, and in JP-A-58-185535, a magneto-optic crystal is used as a window material for the hermetic sealing cap of a semiconductor laser, and furthermore, a hermetic sealing method is described. A magneto-optical crystal used as a window material for a stopper cap with a hemispherical lens integrated therein is described. FIG. 9 shows a configuration diagram of a semiconductor laser with an isolator in which a hemispherical lens is integrated with a magneto-optic crystal used as a window material of a hermetic sealing cap disclosed in Japanese Patent Application Laid-Open No. 58-185535. In order to prevent end face deterioration and maintain reliability, a magneto-optic crystal 4 with a hemispherical lens 3 integrated is used as a window material of a hermetically sealed cap 2 of a semiconductor laser device 1 which is hermetically sealed.
A configuration is adopted in which the light emitted from the semiconductor laser element 1 is converted into parallel light and emitted from the airtight sealing cap 2, and is focused onto the optical fiber 6 by the second lens 5. In addition, magneto-optic crystal 4
is the thickness that gives a Faraday rotation angle of 45 degrees,
There is a gap of 45 de between the hermetic sealing cap 2 and the second lens 5.
The analyzer 7 is arranged at an angle through which the emitted light subjected to the Faraday rotation angle of g can be transmitted, and a permanent magnet 8 is arranged around the hermetic sealing cap 2 to provide a saturation magnetic field to the magneto-optic crystal 4.

光アイソレータは以下のようにして作用する。Optical isolators work as follows.

半導体レーザ素子1からの出射光は直線偏光であり、窓
を通って気密封止キャップ2の外部へ出射される゛まで
に窓材として用いられている、永久磁石8によって磁化
された磁気光学結晶4内を透過し、そのときに直線偏光
は偏波方向を45 deg回転されて、半導体レーザ素
子1から出射した直線偏光の偏波方向に対して透過偏波
方向を45 degにして配した検光子7を透過する。
The emitted light from the semiconductor laser element 1 is linearly polarized light, and the magneto-optic crystal magnetized by the permanent magnet 8 used as the window material before being emitted to the outside of the hermetic sealing cap 2 through the window. At that time, the polarization direction of the linearly polarized light is rotated by 45 degrees, and the polarization direction of the linearly polarized light is rotated by 45 degrees with respect to the polarization direction of the linearly polarized light emitted from the semiconductor laser element 1. Transmits photon 7.

一方、光ファイバ端や光フアイバ伝送途中からの反射光
は、光ファイバ6から検光子7にむかって出射され検光
子7の透過偏波方向と平行な成分が透過し磁気光学結晶
4内を透過時に45 degのファラデー回転をうける
。45degのファラデー回転をうけた反射光はファラ
デー効果の非相反性のために偏波方向をさらに45de
gされ、つまり半導体レーザ素子1からの出射光の偏波
方向と直交する偏波方向となりレンズ2によって半導体
レーザ素子1の活性層に結合される。光ファイバ端や光
フアイバ伝送途中からの反射光は半導体レーザ素子1か
らの出射光の偏波方向と直交する偏波方向となっている
ために、半導体レーザ素子1の活性層に結合されても雑
音の誘引となることはな(、光ファイバ端や光フアイバ
伝送途中からの反射光によって半導体レーザ素子1の動
作が乱されることはない。
On the other hand, the reflected light from the end of the optical fiber or during optical fiber transmission is emitted from the optical fiber 6 toward the analyzer 7, and the component parallel to the transmitted polarization direction of the analyzer 7 is transmitted and transmitted through the magneto-optic crystal 4. It is sometimes subjected to a Faraday rotation of 45 degrees. The reflected light that has undergone 45 degrees of Faraday rotation has its polarization direction further changed by 45 degrees due to the non-reciprocity of the Faraday effect.
In other words, the polarization direction is perpendicular to the polarization direction of the emitted light from the semiconductor laser device 1, and is coupled to the active layer of the semiconductor laser device 1 by the lens 2. Since the reflected light from the end of the optical fiber or during optical fiber transmission has a polarization direction perpendicular to the polarization direction of the emitted light from the semiconductor laser device 1, even if it is coupled to the active layer of the semiconductor laser device 1, Noise is induced (and the operation of the semiconductor laser device 1 is not disturbed by reflected light from the end of the optical fiber or during optical fiber transmission).

発明が解決しようとする課題 しかしながら、従来の光アイソレータはビーム変換機能
がないため、半導体レーザの前に光アイソレータを置い
て光学系を構成する場合、半導体レーザから出射した広
がったビームを集光するためのレンズが不可欠であり、
部品点数が多くなるという問題点があった。また、通常
レンズは半導体レーザと光アイソレータの間に必要とな
り、レンズ端面からの反射光が半導体レーザに戻ること
を阻止する工夫が必要であった。
Problems to be Solved by the Invention However, conventional optical isolators do not have a beam conversion function, so when an optical isolator is placed in front of a semiconductor laser to form an optical system, it is difficult to condense the spread beam emitted from the semiconductor laser. lenses are essential for
There was a problem that the number of parts increased. Further, a lens is usually required between the semiconductor laser and the optical isolator, and a device must be devised to prevent the reflected light from the end face of the lens from returning to the semiconductor laser.

光アイソレータ付き半導体レーザ装置に関しては、従来
技術の例で説明したような方法で部品点数の低減が図ら
れているが、半導体レーザ素子の気密封止キャップの窓
に半球レンズなどの屈折を利用した屈折型のレンズを一
体化するという方法では、屈折型レンズの大きさが所望
のビーム形状変換により律則されてしまうために気密封
止キャップ内部が広くなる、気密封止キャップの窓の面
積が大きくなるなど信頼性、作製しやすさ、使いやすさ
等の面から実用的ではなかった。
Regarding semiconductor laser devices with optical isolators, the number of parts has been reduced by the method explained in the example of the conventional technology, but it is possible to reduce the number of parts by using refraction such as a hemispherical lens in the window of the hermetic sealing cap of the semiconductor laser element. In the method of integrating a refractive lens, the size of the refractive lens is determined by the desired beam shape conversion, so the inside of the hermetic sealing cap becomes wider, and the area of the window of the hermetic sealing cap increases. It was not practical in terms of reliability, ease of manufacture, ease of use, etc. due to its large size.

課題を解決するための手段 本発明は上記問題点を解決し、容易にビーム変換機能を
合わせ持った光アイソレータを実現すべく、表面にホロ
グラムを形成した磁気光学結晶を光アイソレータのファ
ラデー回転子として用い、前記磁気光学結晶表面のホロ
グラムにより、前記磁気光学結晶内を通過する光のビー
ム形状を変換することを特徴とする光アイソレータを提
供するものである。また、本発明は上記問題点を解決し
、作製が容易で実用的な部品点数の少ない光アイソレー
タ付き半導体レーザ装置を実現すべく、表面にホログラ
ムを形成した磁気光学結晶を気密封止キャップの窓材と
して用いたことを特徴とする光アイソレータ付き半導体
レーザ装置を提供するものである。
Means for Solving the Problems The present invention solves the above problems and uses a magneto-optic crystal with a hologram formed on the surface as a Faraday rotator of the optical isolator in order to easily realize an optical isolator that also has a beam conversion function. The present invention provides an optical isolator characterized in that the beam shape of light passing through the magneto-optic crystal is changed by a hologram on the surface of the magneto-optic crystal. In addition, the present invention solves the above problems and realizes a semiconductor laser device with an optical isolator that is easy to manufacture and has a small number of practical parts. The present invention provides a semiconductor laser device with an optical isolator, which is characterized in that it is used as a material.

作用 本発明の光アイソレータを用いれば光アイソレータ自身
の形状や大きさを変化することなく、ビーム変換機能を
付加することができ、光学系の部品点数を低減でき、ま
たレンズ端面がらの反射戻り光が半導体レーザへ戻るこ
とを阻止する必要が無くなり、実用上有効である。本発
明の光アイソレータ付き半導体レーザ装置を用いれば、
作製が容易で、小型で、高信頼性等の実用性に富んだ部
品点数の少ない光アイソレータ付き半導体レーザ装置が
容易に得られる。
Function: By using the optical isolator of the present invention, a beam conversion function can be added without changing the shape or size of the optical isolator itself, the number of parts in the optical system can be reduced, and the return light from the lens end face can be reduced. There is no need to prevent the laser from returning to the semiconductor laser, which is practically effective. If the semiconductor laser device with an optical isolator of the present invention is used,
A semiconductor laser device with an optical isolator that is easy to manufacture, small in size, highly reliable, highly practical, and has a small number of parts can be easily obtained.

実施例 本発明の光アイソレータの実施例の構成図を第1図に示
す。偏光子11、透過偏光方向を偏光子11の透過偏光
方向と45 degの角度で配置した検光子7、磁気光
学結晶4に外部飽和磁場を印加するための永久磁石8、
及び表面にホログラム機能すなわちフレネルレンズ12
を形成した磁気光学結晶4より構成される。磁気光学結
晶4としては厚さ約201z mの(B i LuGd
)sFesO+2をMg−Zr−Ca置換GdaGas
O+*基板上に液相エピタキシャル成長したものを用い
た。フレネルレンズ12は磁気光学結晶4上にSiO2
をRFスパッタで堆積し、その上にレジストを塗布しフ
ォトリングラフィでフレネルレンズ12のパターンニン
グを行い、レジストをマスクとしてドライエツチングを
行い、レジストのパターンをSiO2に転写することに
より形成した。本実施例ではフレネルレンズ12は磁気
光学結晶4の表面の光出射側に形成したが、本発明にお
いてはフレネルレンズ12は磁気光学結晶4の表面の光
入射側に形成してもよい。また、本発明においては、フ
レネルレンズの形成方法も実施例と異なる方法、たとえ
ば電子ビーム露光装置を用いるなど、であってもよい。
Embodiment A block diagram of an embodiment of the optical isolator of the present invention is shown in FIG. a polarizer 11, an analyzer 7 whose transmission polarization direction is arranged at an angle of 45 degrees with the transmission polarization direction of the polarizer 11, a permanent magnet 8 for applying an external saturation magnetic field to the magneto-optic crystal 4,
and a hologram function, that is, a Fresnel lens 12 on the surface.
It is composed of a magneto-optic crystal 4 formed with. As the magneto-optic crystal 4, a (B i LuGd
) sFesO+2 replaced with Mg-Zr-Ca GdaGas
Liquid phase epitaxial growth on an O+* substrate was used. The Fresnel lens 12 is made of SiO2 on the magneto-optic crystal 4.
was deposited by RF sputtering, a resist was applied thereon, a Fresnel lens 12 was patterned by photolithography, dry etching was performed using the resist as a mask, and the resist pattern was transferred to SiO2. In this embodiment, the Fresnel lens 12 is formed on the light exit side of the surface of the magneto-optic crystal 4, but in the present invention, the Fresnel lens 12 may be formed on the light incidence side of the surface of the magneto-optic crystal 4. Further, in the present invention, the method for forming the Fresnel lens may be different from that in the embodiments, such as using an electron beam exposure device.

半導体レーザ素子1と磁気光学結晶4の距離が約3.5
mmのときフレネルレンズ12の最外周のピッチを約3
.5μmにするとビーム径が約2mmの平行光が得られ
た。50はベース基体、60はリードである。
The distance between the semiconductor laser element 1 and the magneto-optic crystal 4 is approximately 3.5
mm, the pitch of the outermost circumference of the Fresnel lens 12 is approximately 3
.. When the diameter was 5 μm, parallel light with a beam diameter of about 2 mm was obtained. 50 is a base substrate, and 60 is a lead.

第1の実施例の光アイソレータは以下のようにして作用
する。半導体レーザ素子1からの出射光のうち偏光子1
1を透過した直線偏光は、磁気光学結晶4通過時にファ
ラデー効果をうけ偏波方向を45deg回転される。こ
のとき、フレネルレンズ12によって半導体レーザ素子
1から出射した広がり光は平行光に変換される。そして
、透過偏光方向を偏光子11に対して45degに配置
した検光子7を透過して出射する。一方、半導体レーザ
lへの反射光は、検光子7の透過偏波方向と平行な成分
が透過し、フレネルレンズ12によって半導体レーザ素
子1に集光される途中で、磁気光学結晶4内を透過時に
45 degのファラデー回転をうける。45degの
ファラデー回転をうけた反射光はファラデー効果の非相
反性のために偏波方向をさらに45degされ、つまり
偏光子11の透過偏波方向と直交する偏波方向となるた
め、偏光子11を透過することはできない。
The optical isolator of the first embodiment operates as follows. Of the light emitted from the semiconductor laser element 1, the polarizer 1
The linearly polarized light transmitted through magneto-optic crystal 4 is subjected to the Faraday effect and its polarization direction is rotated by 45 degrees when it passes through magneto-optic crystal 4 . At this time, the spread light emitted from the semiconductor laser element 1 is converted into parallel light by the Fresnel lens 12. Then, the light passes through the analyzer 7 whose transmission polarization direction is arranged at 45 degrees with respect to the polarizer 11 and is emitted. On the other hand, in the reflected light to the semiconductor laser l, a component parallel to the transmission polarization direction of the analyzer 7 is transmitted, and on the way to being focused on the semiconductor laser element 1 by the Fresnel lens 12, it is transmitted through the magneto-optic crystal 4. It is sometimes subjected to a Faraday rotation of 45 degrees. The reflected light that has undergone 45 degrees of Faraday rotation has its polarization direction further changed by 45 degrees due to the non-reciprocity of the Faraday effect, that is, the polarization direction is orthogonal to the transmitted polarization direction of the polarizer 11. It cannot be penetrated.

第2図に本発明の第2の実施例としての光アイソレータ
付き半導体レーザ装置の構成図を示す。
FIG. 2 shows a configuration diagram of a semiconductor laser device with an optical isolator as a second embodiment of the present invention.

半導体レーザ素子1の気密封止キャップ2の窓の窓材に
、表面にホログラムの一例としてフレネルレンズ11を
形成した磁気光学結晶4を用いた。
A magneto-optic crystal 4 having a Fresnel lens 11 formed thereon as an example of a hologram was used as a window material for the window of the hermetic sealing cap 2 of the semiconductor laser device 1.

磁気光学結晶4としては、厚さ約200μmの(B i
 LuGd)aF eso+2をMg−Zr−Ca置換
Gd5GasO+z基板上に液相エピタキシャル成長し
たものを用い、フレネルレンズ12は磁気光学結晶4上
にS i 02をRFスパッタで堆積し、その上にレジ
ストを塗布しフォトリソグラフィでフレネルレンズ12
のパターンニングを行い、レジストをマスクとしてドラ
イエツチングを行い、レジストのパターンをSiO2に
転写することにより形成したものを用いた。第2の実施
例ではフレネルレンズ12は磁気光学結晶4の表面の光
出射側に形成したが、本発明においては第3図に第3の
実施例として示すように、フレネルレンズ12は磁気光
学結晶4の表面の光入射側に形成してもよいし、第4図
で第4の実施例として示したように気密封止キャップ2
の光出射窓を半導体レーザ素子1の共振器面に対して傾
けてもよい。また、本発明は気密封止キャップや半導体
レーザ素子の実装の形状は問題ではなく、第5図に第5
の実施例として示したようにフラットパッケージにおい
て気密封止しにくいファイバ固定箇所から半導体レーザ
素子1を気密封止するための板状の気密封止キャップ2
の窓材として表面にフレネルレンズ12を形成した磁気
光学結晶4を用いても良い。さらに、本発明の光アイソ
レータ及び半導体レーザ装置に用いるホログラムの機能
は第1から第5の実施例で示したような集光機能を持つ
ものだけでなく、第6図に第6の実施例として示すよう
なビーム形状を平行光に変換するものであってもよ(、
第7図に第7の実施例として示すように出射ビームの形
状をビーム9のごとく2つ以上に分割してもよい。また
、本発明の光アイソレータ付き半導体レーザ装置の用途
は通信用に限ったわけではなく、光記録、光計測等の光
源を構成してもよい。
The magneto-optic crystal 4 is made of (B i
The Fresnel lens 12 is made by depositing S i 02 on the magneto-optic crystal 4 by RF sputtering, and applying a resist on top of it. Fresnel lens 12 using photolithography
A patterning process was performed, dry etching was performed using the resist as a mask, and the resist pattern was transferred onto SiO2. In the second embodiment, the Fresnel lens 12 was formed on the light exit side of the surface of the magneto-optic crystal 4, but in the present invention, as shown in FIG. 3 as a third embodiment, the Fresnel lens 12 is formed on the magneto-optic crystal 4. Alternatively, the hermetic sealing cap 2 may be formed on the light incident side of the surface of the cap 2 as shown in FIG. 4 as a fourth embodiment.
The light exit window may be tilted with respect to the cavity surface of the semiconductor laser device 1. Furthermore, in the present invention, the shape of the hermetic sealing cap and the mounting shape of the semiconductor laser element does not matter;
As shown in the embodiment, a plate-shaped hermetic sealing cap 2 is used to hermetically seal the semiconductor laser device 1 from a fiber fixing location that is difficult to hermetically seal in a flat package.
A magneto-optic crystal 4 having a Fresnel lens 12 formed on its surface may be used as the window material. Furthermore, the function of the hologram used in the optical isolator and semiconductor laser device of the present invention is not limited to the light focusing function as shown in the first to fifth embodiments, but also the function of the hologram as shown in the sixth embodiment shown in FIG. It is also possible to convert the beam shape to parallel light as shown (,
As shown in FIG. 7 as a seventh embodiment, the shape of the emitted beam may be divided into two or more beams 9. Further, the application of the semiconductor laser device with an optical isolator of the present invention is not limited to communications, but may also constitute a light source for optical recording, optical measurement, etc.

第8図に本発明の第8の実施例として本発明の光アイソ
レータ付き半導体レーザ装置を用いて光記録の光源を構
成したものを示した。本発明においては、フレネルレン
ズの形成方法も実施例と異なる方法、たとえば電子ビー
ム露光装置を用いるなど、であってもよい。
FIG. 8 shows an eighth embodiment of the present invention in which a light source for optical recording is constructed using the semiconductor laser device with an optical isolator of the present invention. In the present invention, the method for forming the Fresnel lens may be different from that in the embodiments, such as using an electron beam exposure device.

本発明の光アイソレータ付き半導体レーザ装置の作用を
第2の実施例を用いて説明する。半導体レーザ素子1か
らの出射光は直線偏光であり、磁気光学結晶4よりなる
窓を通って気密封止キャップ2の外部へ出射するときに
半導体レーザ素子1からの出射光である直線偏光はファ
ラデー効果をうけ偏波方向を45deg回転される。ま
た、この時、半導体レーザ素子1より出射した広がった
ビーム形状は、磁気光学結晶4表面に形成したフレネル
レンズ12により、光ファイバ6端面に収束するビーム
形状に変換される。そして、磁気光学結晶4よりなる窓
を透過した直線偏光は、気密封止キャップ2と光ファイ
バ6の間に配置した、半導体レーザ素子1から出射した
直線偏光の偏波方向に対して透過偏波方向を45deg
にして配した検光子7を透過することができ、光ファイ
バ6に集光される。一方、光ファイバ8端面や光フアイ
バ伝送途中からの反射光は、光ファイバ6から検光子7
にむかって出射され検光子7の透過偏波方向と平行な成
分が透過し、磁気光学結晶4表面のフレネルレンズ12
によって半導体レーザ素子1に集光される途中で、磁気
光学結晶4内を透過時に45degのファラデー回転を
うける。45 degのファラデー回転をうけた反射光
はファラデー効果の非相反性のために偏波方向をさらに
45degされ、つまり半導体レーザ素子1からの出射
光の偏波方向と直交する偏波方向となり半導体レーザ素
子1の活性層に結合される。また、磁気光学結晶4より
なる窓より後にあるモジュール内部の光学部品端面から
の反射光は、磁気光学結晶4よりなる窓透過直後の偏波
方向を保っており、再び磁気光学結晶4内を透過時に4
5degのファラデー回転をうける。45degのファ
ラデー回転をうけた反射光はファラデー効果の非相反性
のために偏波方向をさらに45degされ、つまり半導
体レーザ素子1からの出射光の偏波方向と直交する偏波
方向となりフレネルレンズ12によって半導体レーザ素
子1の活性層に結合される。前記の光ファイバ端や光フ
アイバ伝送途中からの反射戻り光や磁気光学結晶4より
なる窓より後にあるモジュール内部の光学部品端面から
の反射戻り光は半導体レーザ素子1からの出射光の偏波
方向と直交する偏波方向となっているために、半導体レ
ーザ素子1の活性層に結合されても雑音の誘引となるこ
とはなく、磁気光学結晶4よりなる窓より後にあるモジ
ュール内部の光学部品端面光やファイバ端や光フアイバ
伝送途中からの反射光によって半導体レーザ素子1の動
作が乱されることはない。動作の安定な半導体レーザ装
置が少ない部品点数で容易に構成できた。
The operation of the semiconductor laser device with an optical isolator of the present invention will be explained using a second embodiment. The emitted light from the semiconductor laser element 1 is linearly polarized light, and when it passes through the window made of the magneto-optic crystal 4 and is emitted to the outside of the hermetic sealing cap 2, the linearly polarized light emitted from the semiconductor laser element 1 becomes a Faraday light. Due to this effect, the polarization direction is rotated by 45 degrees. Further, at this time, the spread beam shape emitted from the semiconductor laser element 1 is converted by the Fresnel lens 12 formed on the surface of the magneto-optic crystal 4 into a beam shape converging on the end face of the optical fiber 6. The linearly polarized light transmitted through the window made of the magneto-optic crystal 4 is transmitted polarized with respect to the polarization direction of the linearly polarized light emitted from the semiconductor laser element 1 disposed between the hermetic sealing cap 2 and the optical fiber 6. 45deg direction
The light can be transmitted through an analyzer 7 arranged in the same manner as shown in FIG. On the other hand, the reflected light from the end face of the optical fiber 8 or the middle of the optical fiber transmission is transmitted from the optical fiber 6 to the analyzer 7.
A component parallel to the transmitted polarization direction of the analyzer 7 is transmitted toward the Fresnel lens 12 on the surface of the magneto-optic crystal 4.
While the light is being focused on the semiconductor laser device 1, it is subjected to a Faraday rotation of 45 degrees while passing through the magneto-optic crystal 4. The reflected light that has undergone Faraday rotation of 45 degrees has its polarization direction further changed by 45 degrees due to the non-reciprocity of the Faraday effect, that is, the polarization direction is orthogonal to the polarization direction of the emitted light from the semiconductor laser element 1, and the semiconductor laser It is coupled to the active layer of device 1. In addition, the reflected light from the end face of the optical component inside the module behind the window made of magneto-optic crystal 4 maintains the polarization direction immediately after passing through the window made of magneto-optic crystal 4, and passes through magneto-optic crystal 4 again. sometimes 4
It is subjected to 5 degrees of Faraday rotation. The reflected light that has been subjected to 45 degrees of Faraday rotation has its polarization direction further changed by 45 degrees due to the non-reciprocity of the Faraday effect, that is, the polarization direction is perpendicular to the polarization direction of the emitted light from the semiconductor laser element 1, and the Fresnel lens 12 is coupled to the active layer of the semiconductor laser device 1 by. The reflected return light from the end of the optical fiber, the optical fiber transmission midway, and the reflected return light from the end face of the optical component inside the module located after the window made of the magneto-optic crystal 4 are in the polarization direction of the light emitted from the semiconductor laser element 1. Because the polarization direction is perpendicular to the 100% polarization direction, even if it is coupled to the active layer of the semiconductor laser device 1, it will not induce noise, and the end face of the optical component inside the module behind the window made of the magneto-optic crystal 4. The operation of the semiconductor laser device 1 is not disturbed by light or reflected light from the fiber end or during optical fiber transmission. A semiconductor laser device with stable operation can be easily constructed with a small number of parts.

発明の効果 本発明の光アイソレータを用いることにより、容易にビ
ーム変換機能を持たせることができ、光アイソレータを
必要とする光学系の部品点数を低減し、取り扱いが容易
になった。また、本発明の光アイソレータ付き半導体レ
ーザ装置を用いれば、モジュールの部品点数が少なくな
り、作製が容易となり、安価になり、小型化することが
でき、実用的になった。そのうえ、本発明の光アイソレ
ータ付き半導体レーザ装置はレンズ機能を一体化する際
に1 接着剤等を用いていないため、信頼性が高く、寿
命試験において雰囲気温度70 ”C)光出力5mW一
定で駆動したとき400000時間以上の寿命が保証で
きた。
Effects of the Invention By using the optical isolator of the present invention, a beam conversion function can be easily provided, the number of parts of an optical system that requires the optical isolator is reduced, and handling becomes easy. Further, by using the semiconductor laser device with an optical isolator of the present invention, the number of parts of the module is reduced, the manufacturing becomes easy, the cost becomes low, the device can be miniaturized, and it becomes practical. In addition, the semiconductor laser device with an optical isolator of the present invention does not use any adhesive or the like when integrating the lens function, so it is highly reliable and is driven at a constant optical output of 5mW at an ambient temperature of 70"C in a lifetime test. At that time, we were able to guarantee a lifespan of over 400,000 hours.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の光アイソレータの構成
図、第2図は本発明の第2の実施例の光アイソレータ付
き半導体レーザ装置を通信用の光源として用いた場合の
構成断面歯、第3図、第4図は本発明の第3、第4の実
施例を説明するための第3、第4の実施例の気密封止キ
ャップ部分の拡大断面図、第5図は本発明の第5の実施
例の光アイソレータ付き半導体レーザ装置としてフラッ
トパッケージに実装された場合の構成図、第6図、第7
図は本発明の第8、第7の実施例として磁気光学結晶表
面に形成したホログラムにより変換されたビーム形状を
説明するための断面図、斜視図、第8図は本発明の第8
の実施例として光アイソレータ付き半導体レーザ装置を
記録用の光源として用いた場合の構成図、第9図は本発
明の従来技術の光アイソレータ付き半導体レーザ装置の
構成断面図で゛ある。 1・・・半導体レーザ素子、4I・・磁気光学結晶、7
・・・検光子、8・・・永久磁石、11・”!光子、1
2・・・フレネルレンズ。 代理人の氏名 弁理士 栗野重孝 ほか1名第2図 第 図 第 図 4磁気光学時品 第 図 第 図 第 図 第 図
FIG. 1 is a block diagram of an optical isolator according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a semiconductor laser device with an optical isolator according to a second embodiment of the present invention when used as a light source for communication. FIGS. 3 and 4 are enlarged sectional views of the hermetic sealing cap portions of the third and fourth embodiments of the present invention, and FIG. 5 is an illustration of the present invention. FIGS. 6 and 7 are configuration diagrams of a semiconductor laser device with an optical isolator according to a fifth embodiment of the invention when it is mounted in a flat package.
The figures are cross-sectional and perspective views for explaining the beam shape converted by the hologram formed on the surface of the magneto-optic crystal as eighth and seventh embodiments of the present invention.
FIG. 9 is a configuration diagram of a semiconductor laser device with an optical isolator according to the prior art of the present invention, in which a semiconductor laser device with an optical isolator is used as a recording light source. 1... Semiconductor laser element, 4I... Magneto-optic crystal, 7
...Analyzer, 8...Permanent magnet, 11."! Photon, 1
2...Fresnel lens. Name of agent: Patent attorney Shigetaka Kurino and one other person Figure 2 Figure 4 Magneto-optical equipment Figure Figure Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)表面にホログラムを形成した磁気光学結晶をファ
ラデー回転子として用い、前記磁気光学結晶表面のホロ
グラムにより、前記磁気光学結晶内を通過する光のビー
ム形状を変換することを特徴とする光アイソレータ。
(1) An optical isolator characterized in that a magneto-optic crystal with a hologram formed on its surface is used as a Faraday rotator, and the beam shape of light passing through the magneto-optic crystal is converted by the hologram on the surface of the magneto-optic crystal. .
(2)表面にホログラムを形成した磁気光学結晶を気密
封止キャップの窓材として用いたことを特徴とする光ア
イソレータ付き半導体レーザ装置。
(2) A semiconductor laser device with an optical isolator, characterized in that a magneto-optical crystal with a hologram formed on its surface is used as a window material of an airtight sealing cap.
JP29119788A 1988-11-17 1988-11-17 Optical isolator and semiconductor laser device therewith Pending JPH02135416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29119788A JPH02135416A (en) 1988-11-17 1988-11-17 Optical isolator and semiconductor laser device therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29119788A JPH02135416A (en) 1988-11-17 1988-11-17 Optical isolator and semiconductor laser device therewith

Publications (1)

Publication Number Publication Date
JPH02135416A true JPH02135416A (en) 1990-05-24

Family

ID=17765716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29119788A Pending JPH02135416A (en) 1988-11-17 1988-11-17 Optical isolator and semiconductor laser device therewith

Country Status (1)

Country Link
JP (1) JPH02135416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232763B1 (en) 1993-03-29 2001-05-15 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
JP2013536451A (en) * 2010-07-06 2013-09-19 シーリアル テクノロジーズ ソシエテ アノニム Holographic display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232763B1 (en) 1993-03-29 2001-05-15 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
EP1176427A2 (en) * 1993-03-29 2002-01-30 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
EP1176427A3 (en) * 1993-03-29 2002-07-03 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
JP2013536451A (en) * 2010-07-06 2013-09-19 シーリアル テクノロジーズ ソシエテ アノニム Holographic display

Similar Documents

Publication Publication Date Title
US5790299A (en) Optical isolator employing a cadmium-zinc-tellurium composition
EP0158475B1 (en) Semiconductor laser apparatus with isolator
CN214097865U (en) Polarization-independent optical isolator core, optical fiber isolator and semiconductor laser assembly
KR100287596B1 (en) Photo Isolator
JP2000510965A (en) Opto-isolator
JPH02135416A (en) Optical isolator and semiconductor laser device therewith
GB2143337A (en) Optical isolator
JPH077156B2 (en) Optical isolator
JPS62298195A (en) Laser diode
JPH10142558A (en) Optical isolator and its production
JP2831158B2 (en) Optical isolator
JP2508228B2 (en) Optical module unit
JP2001013379A (en) Optical module
JPS6057695A (en) Polarizing control type light source and polarizing controlling device
JP3278999B2 (en) Optical isolator
JPS6030734Y2 (en) High reverse loss compact optical isolator
JPS6230607B2 (en)
JPS62196620A (en) Laser module
JPH0293409A (en) Optical isolator
JPH0749468A (en) Optical isolator
JPS6057694A (en) Semiconductor laser
JP2794132B2 (en) Optical isolator
JPH03135512A (en) Faraday rotator
JPH01131517A (en) Optical isolator
CA1147998A (en) Optical isolator