JPS6057678A - Fluorescent lamp battery - Google Patents

Fluorescent lamp battery

Info

Publication number
JPS6057678A
JPS6057678A JP59055177A JP5517784A JPS6057678A JP S6057678 A JPS6057678 A JP S6057678A JP 59055177 A JP59055177 A JP 59055177A JP 5517784 A JP5517784 A JP 5517784A JP S6057678 A JPS6057678 A JP S6057678A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor layer
fluorescent lamp
single crystal
crystal semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59055177A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59055177A priority Critical patent/JPS6057678A/en
Publication of JPS6057678A publication Critical patent/JPS6057678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To drive the electronic machines such as a radio and the like by a method wherein a non-single crystal semiconductor layer in which hydrogen is added is provided on the surface of a substrate, and the light of a fluorescent lamp and the like projected on the semiconductor layer is converted into photoelectricity. CONSTITUTION:A semiconductor layer 42 having the roughened surface with the unevenness of 1mm. or more, for example, of the difference in height is formed on the main surface of a substrate 41. At this time, tin oxide is formed on the upper surface of said substrate 41 using glass, for example, and a hydrogen- added non-single crystal semiconductor having a P-I-N junction is formed using a plasmic vapor-phase device. In this case, the P type non-single crystal semiconductor consists of silicon carbide, and an I type semiconductor is formed using silane. Besides, an N type non-single crystal semiconductor is formed in the prescribed thickness, and a back side electrode is formed using aluminum. As a result, the irradiating light emitted from a fluorescent lamp is converted into photoelectricity, and the power source with which an electronic clock and the like will be driven can be obtained.

Description

【発明の詳細な説明】 本発明は水素またはハロゲン元素が添加された単結晶半
導体層中に、PN接合、IIIN接合、ショットキ接合
を少なくともひとつ設け、かかる接合に白色の螢光灯等
の人工光を照射してラジオ、重子時計、その他の電子機
器を動作−ヒしめる蛍光灯電池に関する。
Detailed Description of the Invention The present invention provides at least one PN junction, IIIN junction, or Schottky junction in a single crystal semiconductor layer doped with hydrogen or a halogen element, and the junction is illuminated by artificial light such as a white fluorescent lamp. This invention relates to fluorescent lamp batteries that irradiate radios, clocks, and other electronic equipment.

本発明は特にかかる蛍光灯電池において、非単結晶半導
体を透光性基板上の酸化スズまたはITO上に設けたこ
と、さらにかかる透光性mt&はその表面に凹凸表面が
形成されていてもよいことが4.+I徴である。
The present invention particularly relates to such a fluorescent lamp battery, in which a non-single crystal semiconductor is provided on tin oxide or ITO on a transparent substrate, and furthermore, such a transparent mt& may have an uneven surface formed on its surface. 4. +I sign.

従来、光電変換装置は一般に太陽電池と称せられている
ことより明らかなごとく、太陽光を照射して電気エネル
ギーに変換することを目的としていた。加えてかかる電
力用の発電に用いられる半導体は単結晶半導体であり、
本発明の主張する水素またはハロゲン元素が添加された
非i11結晶半導体とはまった(その結晶構造も+1・
)性も異なっていた。
Conventionally, as is clear from the fact that photoelectric conversion devices are generally referred to as solar cells, their purpose has been to irradiate sunlight and convert it into electrical energy. In addition, the semiconductor used for power generation is a single crystal semiconductor,
The present invention claims that the non-i11 crystalline semiconductor to which hydrogen or halogen elements are added (its crystal structure is also +1.
) Gender was also different.

本発明は単結晶半導体を用いるのではなく、非単結晶半
導体を用いることにより、充電変換をする半導体層の厚
さを単結晶半導体の200〜400μの厚さではなく、
1μまたはそれ以下の厚さとした。さらに水素またはハ
ロケン元素を添加したため、光学的工矛ルギバンド中が
単結晶半導体(珪素)の1.1eVより太きく1.5〜
2,5eνを有している。このため、太陽のごとく赤色
が強い光ではなく短波長光に対して特に優れている。そ
の結果、本発明に示す白色螢光灯等の人工の光を用いる
発光灯電池がきわめて有効であることが判明した。
The present invention uses a non-single-crystal semiconductor instead of a single-crystal semiconductor, so that the thickness of the semiconductor layer that performs charge conversion is not 200 to 400 μm thick as that of a single-crystal semiconductor.
The thickness was 1μ or less. Furthermore, since hydrogen or halogen elements are added, the optical energy band is wider than 1.1 eV of single crystal semiconductor (silicon), and is 1.5 to 1.5 eV.
It has 2,5eν. For this reason, it is particularly good for short wavelength light, rather than strong red light like the sun. As a result, it was found that the light emitting lamp battery using artificial light such as a white fluorescent lamp according to the present invention is extremely effective.

さらに本発明は1μまたはそれ以下の薄さの半導体を基
板」二特に好ましくは凹凸表向を有する基板上に形成す
るため、キャリアガスをまったく用いぬ、また実質的に
用いぬ程度とした反応系を利用している。この代表的な
ものが減圧気相法である。
Further, in order to form a semiconductor having a thickness of 1 μm or less on a substrate, particularly preferably a substrate having an uneven surface, the present invention provides a reaction system that does not use carrier gas at all or substantially does not use carrier gas. is used. A typical example of this is the reduced pressure gas phase method.

しかし減圧気相法は単に反応容器内を減圧下としたこと
のみを特徴としている。このため減圧の程度を強< 1
mm1+g程度とすると、反応生成物の基板上への被膜
成長速度が著しく少なくなる。本発明は反応容器内の圧
力を0.01〜10torrとし、加えて容器内は実質
的に反応性気体のめ、またはそれと添加物のみとしたこ
とを特徴としている。加えて半導体被膜での半導体特性
をさらに強くするため、水素またハロゲン元素を0.1
−200 Tニル%半導体被股中に添加したことを第2
の特徴としζいる。
However, the reduced pressure gas phase method is characterized only by keeping the inside of the reaction vessel under reduced pressure. For this reason, the degree of depressurization should be increased to < 1
If it is about mm1+g, the rate of film growth of the reaction product on the substrate will be significantly reduced. The present invention is characterized in that the pressure inside the reaction vessel is set to 0.01 to 10 torr, and in addition, the inside of the vessel is substantially filled only with reactive gas or reactive gas and additives. In addition, in order to further strengthen the semiconductor properties of the semiconductor film, 0.1% of hydrogen or halogen element is added.
-200 Tnyl% was added into the semiconductor coating.
It is a characteristic of ζ.

本発明は光電変換素子を非単結晶半導体で作製すること
を特長としており、かかる非単結晶半20体は多少の局
部応力を加えても信頼性」二の異常またはストレス敏感
性を有していないという実験事実、および少なくとも本
発明方法を用いる限りにおいて、被形成面を有する基板
は必ずしも5I・川面である必要をめられていないとい
う事実に基一つく。
The present invention is characterized in that the photoelectric conversion element is fabricated from a non-single crystal semiconductor, and such a non-single crystal semiconductor exhibits unreliability or stress sensitivity even if some local stress is applied. This is based on the experimental fact that there is no such thing, and the fact that, at least as long as the method of the present invention is used, the substrate having the surface to be formed does not necessarily have to be a 5I/water surface.

以下にその実施例を図面に従つ−C説明する。The embodiment will be described below with reference to the drawings.

第1図は本発明の発光灯電池に用いる場合の193作原
理を示したものである。
FIG. 1 shows the principle of 193 operation when used in the light emitting lamp battery of the present invention.

即ち第1図(八)は半導体層(1)の透光性基板例えば
ガラス、サファイア(3)上に導電性被膜(2)例えば
酸化スズ(Sn(1) )、ITOを形成し、さらにこ
の上側に水素またはノ\1:Jケン元素が添加された半
導体層(1)を形成したものである。この半導体層は、
MIN (金属−真性半導体−N型半導体)のショット
キ接合の構造であっても、f)IN(P型半導体−真性
半導体−N型半導体)接合構造またはPN接合であって
も、さらにまたはこれらを多重にした接合であってもよ
い。それは本発明の目的を満たし、即ち、最も光−電気
変換効率(η)が大きく、がっ製造のしやすさとの兼ね
合いで決めればよい。
That is, in FIG. 1 (8), a conductive film (2) such as tin oxide (Sn(1)) or ITO is formed on a transparent substrate (3) of a semiconductor layer (1) such as glass or sapphire, and then this film is further coated. A semiconductor layer (1) doped with hydrogen or an element is formed on the upper side. This semiconductor layer is
Whether it is a MIN (metal-intrinsic semiconductor-N-type semiconductor) Schottky junction structure, f) IN (P-type semiconductor-intrinsic semiconductor-N-type semiconductor) junction structure or a PN junction structure, Multiple junctions may also be used. It satisfies the purpose of the present invention, that is, it has the highest light-to-electrical conversion efficiency (η), and may be determined based on the ease of manufacturing.

第1図はこの半導体層(1)の上側に電極(4)を設け
ている。光は(5)で左側より入射させている。この図
面は透光性基板を用いているが、本発明はかかる発光灯
電池(白色の螢光灯等の人工の光を電気に変換すること
によりラジオ、電子時計その他の電子機器を動作せしめ
る電池)である。
In FIG. 1, an electrode (4) is provided on the upper side of this semiconductor layer (1). Light is incident from the left side in (5). Although this drawing uses a light-transmitting substrate, the present invention relates to such a light-emitting lamp battery (a battery that operates radios, electronic clocks, and other electronic devices by converting artificial light such as white fluorescent lamps into electricity). ).

かかるセルまたは電池特に発光灯電池にあっては、平坦
電池は必ずしも好ましい形であるとはいえず、第1図(
A)の構造を利用した本発明構造即ち第3図(A)がそ
の形状を考えた時きわめて商品価値が高いことがゎがる
。それはラジオ、7Ii子時計等の外形ケースを作製し
た後、R核的なストレスはケースである基板が保護し、
がっ光−電気変換はその容器の一部またはすべての而を
受光面とすることができるからである。
For such cells or batteries, particularly for luminescent lamp batteries, a flat battery is not necessarily of a preferred form, as shown in Figure 1 (
Considering the shape of the structure of the present invention that utilizes the structure of A), that is, the structure of FIG. 3(A), it is expected that the commercial value is extremely high. After creating the outer case of a radio, 7Ii child watch, etc., the R-core stress is protected by the board that is the case.
This is because a part or all of the container can be used as a light-receiving surface in photo-electrical conversion.

第1図(B)は、基板(3)上に下側電極(2)。FIG. 1(B) shows a lower electrode (2) on a substrate (3).

半導体層(1)、上側電極(4)を設+)でいる。上側
電極はクシ型、魚骨型等をさせるごとにより光の吸収と
電気的導電率の向上を計った。
A semiconductor layer (1) and an upper electrode (4) are provided. The upper electrode was shaped like a comb or a fish bone to improve light absorption and electrical conductivity.

第1図(B)は例えば電燈のかさ等に用いることが可能
である。その−例を第3図(B)に示しである。これは
電燈、螢光灯の保護ケースの一部に光電変換電池を設け
たもの、例えば電燈の上側ケースの内側に設けたもので
ある。かかる場合中央部に穴をあけておく必要がある。
The structure shown in FIG. 1(B) can be used, for example, as a lampshade. An example thereof is shown in FIG. 3(B). This is a device in which a photoelectric conversion cell is provided as part of the protective case of an electric light or fluorescent lamp, for example, provided inside the upper case of the electric light. In this case, it is necessary to make a hole in the center.

またかかる使用法により100νとは異なった電圧をf
f?i車に引き出すことができる。このためトランス等
を用いることなく低電圧を発生さ一部、ラジオ、カリ・
トユレイタ等の充電器として利用することも可能であり
、またかかる電気を用いて連続光とは異なる光例えば赤
、緑等の特定波長の光を発光ざ−Uる光光素了に電気的
に連結してもよい。
Also, due to this usage, a voltage different from 100ν can be applied to f.
f? You can pull it out to your i-car. For this reason, low voltage can be generated without using a transformer etc. Some radios, potash etc.
It can also be used as a charger for a toyulator, etc., and it can also be used as an electric light source to emit light of a specific wavelength, such as red or green, using such electricity. May be connected.

第1図(A)及び(B)の半導体層の構造は、不発門人
の出願による特願昭53−−086867、特願昭53
−086868 (昭和53年7月17日出1頭)の「
光電変換半導体装置およびその作製方法」に記載された
ものと同様である。
The structure of the semiconductor layer in FIGS. 1(A) and 1(B) is disclosed in Japanese Patent Application No. 53-086867, filed by a fudo-pupil.
-086868 (1 horse released on July 17, 1978)
This is the same as that described in "Photoelectric Conversion Semiconductor Device and Method for Manufacturing the Same".

第2図は本発明の少なくとも一部が凹凸状をした基板に
半導体層を設けた蛍光灯電池を作製するための装置であ
る。図面に従ってその実施例を説明する。図面において
凹凸型をした基板(21)はホルダー(22)上に設置
され、かつ不要部を(23)により遮蔽している。この
基板を反応炉(24)内に設置した。反応性気体はく2
8)がシランのごとき珪化物気体、(29)はメタンの
如き炭化物気体、(30)はジボランのごときP型の導
電型を呈し得る不純物、(31)はフメスヒン、アルソ
ンのごときN型の導電性を呈する不純物を導入する。(
35)は反応の前後に反応炉内をパージする不活性気体
である。これらは入り口(27)よりマイクロ波を用い
た励起系(エキサイタ>(26)を経て、反応炉(24
)に導入される。マイクロ波は1〜10GIlz例えば
2.46GHzの周波数を用い、反応性気体の化学的活
性化、分解または反応をさせ、プラズマ状態を呈してい
る。珪素中に炭素が混入し、炭化珪素5ixC+−×(
0≦x〈1)が形成された場合は、コニ不ルギギャソプ
は1.5eVより大きり1.7〜3.5 eVの間の任
意の値をXの値を変えることにより得ることができる。
FIG. 2 shows an apparatus for manufacturing a fluorescent lamp battery according to the present invention in which a semiconductor layer is provided on a substrate at least partially having an uneven shape. The embodiment will be explained according to the drawings. In the drawing, a substrate (21) having an uneven shape is placed on a holder (22), and unnecessary parts are shielded by (23). This substrate was placed in a reactor (24). Reactive gas foil 2
8) is a silicide gas such as silane, (29) is a carbide gas such as methane, (30) is an impurity that can exhibit P-type conductivity such as diborane, and (31) is N-type conductivity such as Humeshin and Arson. Introducing impurities that exhibit properties. (
35) is an inert gas that purges the inside of the reactor before and after the reaction. From the entrance (27), they pass through an excitation system (exciter) using microwaves (26) and then into a reactor (24).
) will be introduced. Microwaves use a frequency of 1 to 10 GIlz, for example 2.46 GHz, to chemically activate, decompose or react a reactive gas, resulting in a plasma state. Carbon is mixed into silicon, and silicon carbide 5ixC+-×(
When 0≦x<1) is formed, the Konifurugi gasop can be obtained by changing the value of X to any value greater than 1.5 eV and between 1.7 and 3.5 eV.

反応性気体はかかるエキサイタにて励起、分解または反
応するため、反応炉内では被形成面は必ずしも平坦であ
る必要がないことは実験的にわかった。さらにこのエキ
サイタ(26と反応炉(24)は0.01〜1OtOr
rに減圧され、活性状態の反応生成物は1〜10 M 
It zの周波数の高周波エネルギ(25)によりさら
に活性になって凹凸状の基板面に付着し被膜化する。減
圧の程度は真空ポンプ(34)とその前段の二−ドルノ
\ルブ(33)により一定圧力に設定することはIjJ
能である。
Since the reactive gas is excited, decomposed, or reacted in such an exciter, it has been experimentally found that the surface to be formed does not necessarily have to be flat in the reactor. Furthermore, this exciter (26) and the reactor (24) are 0.01 to 1 OtOr.
The reaction product in the active state is reduced to 1-10 M
It is further activated by high frequency energy (25) at a frequency of It z and adheres to the uneven substrate surface to form a film. The degree of pressure reduction can be set to a constant pressure using the vacuum pump (34) and the two-door valve (33) in front of it.
It is Noh.

反応性気体は珪化物としてシランを用いたが、ジクロー
ルシラン(S iHLc It)、トリクロールシラン
(SillCI7)、四塩化珪素(StCI、 )であ
ってもよく、炭化物としてメタン(C11,)のめでは
なくプロノマン(C,)l、)等その他の炭化水素であ
ってもよい。
Although silane was used as the silicide, the reactive gas may also be dichlorosilane (S iHLc It), trichlorosilane (SillCI7), silicon tetrachloride (StCI), or methane (C11, ) as the carbide. Other hydrocarbons such as pronoman (C, )l, ) may be used instead of mercury.

またこの炭化物を用いなくてもこのかわりに窒化物とし
てアンモニア(NH3)、ヒドラジン(Nzl14)を
用いてもよい。パージ用の不活性気体(35)は一般に
価格面より安価な窒素を用いたが、半導体層を基板上に
形成してしまった後、さらにこの半導体中の活性水素を
添加することにより半導体層中の不対結合手を中和、除
去するためこの(35)より水素(llz)を導入して
もよい。かくのごとき水素の誘導アニールにより半導体
層中には10〜50原子%の水素が添加できた。この水
素の代わりにハロゲン元素を添加しても不対結合手の中
和・除去に効果があった。この誘導アニールは、温度は
珪素にあっては250℃以下、炭化珪素にあっては35
0℃以下であることが好ましく、これらの温度以上では
添加された水素が再放出され、Si H結合、(、−H
結合がとれてしまう傾向があった。
Moreover, even if this carbide is not used, ammonia (NH3) or hydrazine (Nzl14) may be used as a nitride instead. Nitrogen is generally used as the inert gas (35) for purging, which is cheaper than nitrogen, but after the semiconductor layer has been formed on the substrate, by adding active hydrogen in the semiconductor, Hydrogen (llz) may be introduced from this (35) in order to neutralize and remove the dangling bond. By such hydrogen induction annealing, 10 to 50 atomic % of hydrogen could be added into the semiconductor layer. Adding a halogen element instead of hydrogen was effective in neutralizing and removing dangling bonds. This induction annealing is performed at a temperature of 250°C or less for silicon and 35°C for silicon carbide.
The temperature is preferably below 0°C; above these temperatures, the added hydrogen is re-released, forming SiH bonds, (, -H
There was a tendency for the bond to come undone.

反応炉中の温度は室aL〜350℃を用いた。もちろん
室温〜500℃であってもよい。しかし基板に対する温
度制御が材料制限をもたらすため室温〜300℃が実用
的に好ましかった。
The temperature in the reactor was from chamber aL to 350°C. Of course, the temperature may be from room temperature to 500°C. However, since controlling the temperature of the substrate brings about material limitations, a temperature of room temperature to 300° C. is practically preferred.

反応生成物は反応炉内の圧力との関係で決められるが、
被膜の厚さはそれ以上の厚い層にまで均質に形成するこ
とができた。半導体被膜の成長速度は、10人/分〜1
μ/分であり、それは圧力を0.01〜1Qtorrと
変えることにより、またエキサイタのマイクロ波エネル
ギまたは反応炉の高周波エネルギをJli1節すること
により実施できた。
The reaction products are determined in relation to the pressure inside the reactor, but
The film could be formed evenly thicker than that. The growth rate of the semiconductor film is 10 people/min to 1
μ/min, which could be performed by varying the pressure from 0.01 to 1 Qtorr and by adjusting the microwave energy of the exciter or the high frequency energy of the reactor by Jli1.

本発明方法で重要な特徴は第1に反応炉が減圧であるた
め反応性気体または反応生成物の平均自由工程が大きく
、そのため凹部の内部にまでも十分に飛翔し得ること、
また反応炉に前置してエキサイタを設けたため、反応性
気体が互いに完全に混合し、化学量論的に均質な反応生
成物ができること、また第2にその反応性気体またはエ
ネルギ的にきわめて高く励起された状態であるため、基
板の凹凸が0.1〜1μのごとき細かいあらさのめなら
ず10μまたはそれ以上特に容器状をしていてもあらゆ
る部分の表面に均一に被膜化すること、さらに第3に基
板そのものを抵抗加熱等で加熱させるため基板の表面の
温度に対しての被膜化の温度は鈍感であり、かつ基板の
温度が室温〜200℃または350℃であるため基板の
各部の表面の温度が不均一になりにくく、その結果、被
膜の膜厚の不均一さを助長しない。第4に第2図は横型
反応炉で示したが、これば縦型であってもまたは基板を
移動し得る可動式の連続炉であっても作製可能であり、
換言すれば反応性気体の入り口側に被膜が多量に形成さ
れ、その裏面には少しも形成させないことが可能である
The important features of the method of the present invention are, firstly, because the reactor is under reduced pressure, the mean free path of the reactive gas or reaction product is large, so that it can sufficiently fly even into the interior of the recess;
In addition, because the exciter was installed in front of the reactor, the reactive gases were completely mixed with each other, resulting in a stoichiometrically homogeneous reaction product. Because it is in an excited state, the surface of the substrate can be coated uniformly on all parts of the surface, even if the substrate has a fine roughness of 0.1 to 1μ, usually 10μ or more, especially if it is shaped like a container. Thirdly, since the substrate itself is heated by resistance heating etc., the coating temperature is insensitive to the temperature of the surface of the substrate, and since the temperature of the substrate is between room temperature and 200℃ or 350℃, each part of the substrate The temperature of the surface is less likely to become non-uniform, and as a result, non-uniformity of the film thickness is not promoted. Fourth, although FIG. 2 shows a horizontal reactor, it is also possible to create a vertical reactor or a movable continuous reactor in which the substrate can be moved.
In other words, it is possible to form a large amount of film on the inlet side of the reactive gas, but not at all on the back side.

これらの多(の特長を実験的に得たために本発明構想の
半導体装置が発明されたものである。もちろん本発明で
いう均一度とは膜厚のばらつきが一般に±5%以内であ
り、電気的特性が被膜の不均一さを考慮しなくてよい程
度であることを意味する。
The semiconductor device of the present invention was invented by experimentally obtaining many of these features.Of course, the uniformity in the present invention means that the variation in film thickness is generally within ±5%, and the electrical This means that the optical characteristics are such that it is not necessary to consider the non-uniformity of the coating.

以上のごとく、減圧気相法またはプラズマ気相法は反応
炉中の圧力により反応炉内にグロー放電が発生しグロー
放電法ということもできる。
As mentioned above, the reduced pressure vapor phase method or the plasma vapor phase method can also be called a glow discharge method in which glow discharge occurs in the reactor due to the pressure in the reactor.

第3図は本発明の半導体装置の実施例である。FIG. 3 shows an embodiment of the semiconductor device of the present invention.

(A>、(B)は第1図の(A)、<B)において示し
た通りであり、(43)より光が照射されている。
(A>, (B) are as shown in (A), <B) of FIG. 1, and light is irradiated from (43).

第3図(B)は基板(41)の−上面の高低差(44)
が1μ以上例えば1 ntm以上を有している。
Figure 3 (B) shows the height difference (44) between the -top surface of the substrate (41).
has a diameter of 1 μ or more, for example, 1 ntm or more.

かかる凹凸の表面上に半導体層(42)を形成さゼたも
のである。
A semiconductor layer (42) is formed on such an uneven surface.

第3図(C)、< D )は容器状をしており、その一
部には穴があいた構造である。室内の置き時、111等
がその一例である。
The container shown in FIG. 3 (C) and <D) is shaped like a container and has a hole in a part thereof. An example is 111 when placed indoors.

以下に本発明の螢光灯電池の具体例を示し、本発明を補
充する。
Specific examples of the fluorescent lamp battery of the present invention will be shown below to supplement the present invention.

具体例1 基板としてガラス′(厚さ1.1mm )を用いて、こ
の上面に酸化スズを形成せしめ、さらに第2図に示した
プラズマ気相装置によりPIN接合を有する水素が添加
された非単結晶半導体を形成した。この時P型の非単結
晶半導体は炭化珪素(jVさ150人)とした。さらに
I型半導体はギヤリアガスをまったく用いず100%の
濃度のシランを用いて厚さは0.7μとした。さらにN
型の非単結晶半導体はPH3/SiH,= 1%として
、500人の厚さに積層した。裏面電極はアルミニュー
ムとした。非単結晶半導体の形成における反応条件は、
基板温度210℃、高周波出力3.5M)lz、圧力Q
、1torr 、被膜成長速度90人/分であった。得
られた特性は、白色螢光打丁300Lxの照射にて、開
放電圧0.6v、短絡電流20μ八15曲線因子0.4
8、変換効率3.7%であった。
Concrete Example 1 A glass substrate (thickness 1.1 mm) was used, and tin oxide was formed on the upper surface of the glass substrate, and a hydrogen-doped non-monomer with a PIN junction was formed using a plasma vapor phase apparatus as shown in FIG. A crystalline semiconductor was formed. At this time, the P-type non-single crystal semiconductor was silicon carbide (jV 150). Furthermore, the I-type semiconductor was made to have a thickness of 0.7 μm using silane at a concentration of 100% without using any gear gas. Further N
The non-single crystal semiconductors were stacked to a thickness of 500 nm with PH3/SiH, = 1%. The back electrode was made of aluminum. The reaction conditions for forming a non-single crystal semiconductor are:
Substrate temperature 210℃, high frequency output 3.5M)lz, pressure Q
, 1 torr, and a film growth rate of 90 people/min. The obtained characteristics are: open circuit voltage 0.6 V, short circuit current 20 μ8, 15 fill factor 0.4 when irradiated with 300 Lx of white fluorescent light.
8. Conversion efficiency was 3.7%.

本発明において基板はガラス、セラミックス、金属板等
の固い材料であるものがその代表的な例である。しかし
ポリイミド樹脂等の可曲性基板であってもよいことはい
うまでもない。また弾力性を有する基板であってもよい
In the present invention, the substrate is typically made of a hard material such as glass, ceramics, or a metal plate. However, it goes without saying that a flexible substrate such as polyimide resin may also be used. Alternatively, the substrate may have elasticity.

なお本発明で意味する非単結晶半導体材料は単に珪素、
炭化珪素のみではなく、その他の化合物半導体であって
もよい。
Note that the non-single-crystal semiconductor material meant in the present invention simply refers to silicon,
Not only silicon carbide but also other compound semiconductors may be used.

本発明の特徴は凹凸の基板表面の一部または全部に非単
結晶半導体の層を設け、かかる層を用いて光電変換素子
を設けたもので、100vの商用電圧源より1.5〜6
vの所定の低電圧を!−ランスを用いずに発生させるこ
とができた。さらにそれを利用面に例えば凹状のケース
の内側に密着して光電変換素子を設けることを特徴とし
ている。
The feature of the present invention is that a layer of a non-single crystal semiconductor is provided on a part or all of the uneven substrate surface, and a photoelectric conversion element is provided using such a layer.
A predetermined low voltage of v! - It could be generated without using a lance. Furthermore, it is characterized in that a photoelectric conversion element is provided in close contact with the inside of a concave case on its usage surface, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための光電変換装置の実施例
である。 第2図は本発明の半導体装置の作製方法を示−J反応系
である。 第3図は本発明の螢光灯電池の実施例である。
FIG. 1 shows an embodiment of a photoelectric conversion device for carrying out the present invention. FIG. 2 shows a method for manufacturing a semiconductor device of the present invention using a -J reaction system. FIG. 3 shows an embodiment of the fluorescent lamp cell of the present invention.

Claims (1)

【特許請求の範囲】 1、基板上の被形成面上に水素またはハロゲン元素が添
加された非単結晶半導体層を設け、該半導体層に照射さ
れた白色の螢光灯等の人工の光を電気に変換し、ラジオ
、重子時計、その他の電子機器に前記半導体層に設けら
れた電極を接続して動作せしめることを特徴とした蛍光
灯電池。 2、特許請求の範囲第1項において、非単結晶半導体層
は透光性基板上に酸化スズまたはITOのごとき導電性
被膜を設け、この上面にショットキ接合、PIN接合、
PN接合またはこれらを多重にした接合を設けたことを
特徴とした蛍光灯電池。
[Claims] 1. A non-single-crystal semiconductor layer doped with hydrogen or a halogen element is provided on the formation surface of the substrate, and the semiconductor layer is irradiated with artificial light such as a white fluorescent lamp. 1. A fluorescent lamp battery, which converts it into electricity and operates it by connecting an electrode provided on the semiconductor layer to a radio, a heavy-duty watch, or other electronic equipment. 2. In claim 1, the non-single crystal semiconductor layer is provided with a conductive film such as tin oxide or ITO on a transparent substrate, and a Schottky junction, PIN junction,
A fluorescent lamp battery characterized by having a PN junction or a multiplexed junction.
JP59055177A 1984-03-21 1984-03-21 Fluorescent lamp battery Pending JPS6057678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055177A JPS6057678A (en) 1984-03-21 1984-03-21 Fluorescent lamp battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055177A JPS6057678A (en) 1984-03-21 1984-03-21 Fluorescent lamp battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2217479A Division JPS55115376A (en) 1979-02-26 1979-02-26 Semiconductor device and manufacturing thereof

Publications (1)

Publication Number Publication Date
JPS6057678A true JPS6057678A (en) 1985-04-03

Family

ID=12991439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055177A Pending JPS6057678A (en) 1984-03-21 1984-03-21 Fluorescent lamp battery

Country Status (1)

Country Link
JP (1) JPS6057678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344540U (en) * 1986-09-08 1988-03-25

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128777B1 (en) * 1969-01-23 1976-08-21
JPS5337718A (en) * 1976-09-21 1978-04-07 Asahi Glass Co Ltd Laminated glass with heating wire incorporated therein
JPS5342693A (en) * 1976-09-29 1978-04-18 Rca Corp Semiconductor device including amorphous silicone layer
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS5347333B2 (en) * 1972-04-06 1978-12-20
JPS5425187A (en) * 1977-07-28 1979-02-24 Rca Corp Photoelectric semiconductor
JPS55115376A (en) * 1979-02-26 1980-09-05 Shunpei Yamazaki Semiconductor device and manufacturing thereof
JPS56152276A (en) * 1980-04-25 1981-11-25 Teijin Ltd Solar cell made of amorphous silicon thin film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128777B1 (en) * 1969-01-23 1976-08-21
JPS5347333B2 (en) * 1972-04-06 1978-12-20
JPS5337718A (en) * 1976-09-21 1978-04-07 Asahi Glass Co Ltd Laminated glass with heating wire incorporated therein
JPS5342693A (en) * 1976-09-29 1978-04-18 Rca Corp Semiconductor device including amorphous silicone layer
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS5425187A (en) * 1977-07-28 1979-02-24 Rca Corp Photoelectric semiconductor
JPS55115376A (en) * 1979-02-26 1980-09-05 Shunpei Yamazaki Semiconductor device and manufacturing thereof
JPS56152276A (en) * 1980-04-25 1981-11-25 Teijin Ltd Solar cell made of amorphous silicon thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344540U (en) * 1986-09-08 1988-03-25

Similar Documents

Publication Publication Date Title
US4959106A (en) Photovoltaic element with a semiconductor layer comprising non-single crystal material containing at least ZN, SE and H in an amount of 1 to 4 atomic %
JP3571785B2 (en) Method and apparatus for forming deposited film
AU610231B2 (en) Pin junction photovoltaic element having I-type semiconductor layer comprising non-single crystal material containing at least Zn, Se and H in an amount of 1 to 40 atomic per cent
US5024706A (en) Pin heterojunction photovoltaic elements with polycrystal AlP(H,F) semiconductor film
US5007971A (en) Pin heterojunction photovoltaic elements with polycrystal BP(H,F) semiconductor film
ES532535A0 (en) PROCEDURE FOR DEPOSITING AN ELECTRICALLY INSULATING TRANSPARENT MATERIAL ON A PHOTOVOLTAIC DEVICE
US4926229A (en) Pin junction photovoltaic element with P or N-type semiconductor layer comprising non-single crystal material containing Zn, Se, H in an amount of 1 to 4 atomic % and a dopant and I-type semiconductor layer comprising non-single crystal Si(H,F) material
US6503771B1 (en) Semiconductor photoelectrically sensitive device
US5002617A (en) Pin heterojunction photovoltaic elements with polycrystal AlAs(H,F) semiconductor film
AU629187B2 (en) Pin junction photovoltaic element with P or N-type semiconductor layer comprising a non-single crystal material containing Zn,Se,Te,H in an amount of 1 to 4 atomic per cent and a dopant and I-type semiconductor layer comprising non-single crystal SI(H,F) material
JP2001111074A (en) Semiconductor element and solar battery
JP2000208800A (en) Solar cell, self-power supplying display element using the same and manufacture of solar the cell
US6432521B1 (en) Group III-V compound semiconductor, and semiconductor device using the compound semiconductor
JPS6057678A (en) Fluorescent lamp battery
AU614724B2 (en) Process for the passivation of electrically conductive material in a plasma
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
JP2573146B2 (en) Method for manufacturing photoelectric conversion semiconductor device
JP3181121B2 (en) Deposition film formation method
JPS57187973A (en) Solar cell
JP2810529B2 (en) Method and apparatus for forming deposited film
JP3061811B2 (en) Fabrication method of non-single crystal thin film
JPS6057679A (en) Semiconductor device
JP2757896B2 (en) Photovoltaic device
JP2829656B2 (en) Photovoltaic element
JPH04192373A (en) Photovoltaic element