JP2829656B2 - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JP2829656B2
JP2829656B2 JP2003432A JP343290A JP2829656B2 JP 2829656 B2 JP2829656 B2 JP 2829656B2 JP 2003432 A JP2003432 A JP 2003432A JP 343290 A JP343290 A JP 343290A JP 2829656 B2 JP2829656 B2 JP 2829656B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
film
type semiconductor
type
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003432A
Other languages
Japanese (ja)
Other versions
JPH02275679A (en
Inventor
正博 金井
達行 青池
高一 松田
総一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US07/467,537 priority Critical patent/US5007971A/en
Publication of JPH02275679A publication Critical patent/JPH02275679A/en
Application granted granted Critical
Publication of JP2829656B2 publication Critical patent/JP2829656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、民生機器用電源及び太陽光発電による電力
供給システム用に好適な太陽電池として改善された光起
電力素子に関する。より詳細には、pinヘテロ接合を用
いた、特に短波長光に対して高効率の光電変換効率を有
する光起電力素子に関する。
Description: TECHNICAL FIELD [0001] The present invention relates to a photovoltaic element improved as a solar cell suitable for a power supply system for consumer appliances and a power supply system using solar power. More specifically, the present invention relates to a photovoltaic device using a pin heterojunction and having high photoelectric conversion efficiency particularly for short wavelength light.

〔従来技術の説明〕[Description of Prior Art]

従来、民生機器用の電源あるいは太陽光発電用太陽電
池の光起電力素子として、シリコン(Si)や、ヒ化ガリ
ウム(GaAs)等の単結晶基板中に不純物をイオン打ち込
み又は熱拡散させて形成するか、あるいはそうした単結
晶基板に不純物をドープした層をエピタキシャル成長さ
せて形成したpn接合を利用した光起電力素子が提案され
ている。しかしながら、これらの光起電力素子について
は、基板として上述のような単結晶基板を用いているこ
とから、その製造コストはいきおい高くなり、その低減
は技術的にも困難であることから一般に広く普及するに
は至っていないのが実状である。
Conventionally, as a photovoltaic element for a power supply for consumer equipment or a solar cell for photovoltaic power generation, it is formed by ion-implanting or thermally diffusing impurities into a single crystal substrate such as silicon (Si) or gallium arsenide (GaAs). Alternatively, a photovoltaic element using a pn junction formed by epitaxially growing a layer doped with an impurity on such a single crystal substrate has been proposed. However, since these photovoltaic elements use a single crystal substrate as described above as a substrate, the manufacturing cost is extremely high, and the reduction is technically difficult. The fact is that it has not been reached.

ところで、近年、非単結晶基板であるガラス、金属、
セラミックス、合成樹脂等の安価な材質の基板上に、グ
ロー放電分解法によりアモルファスシリコン(以下、
「A−Si」と称す。)半導体堆積膜を積層して形成され
るpin接合を利用した光起電力素子が提案されていて、
前述の単結晶pn接合太陽電池ほどの光電変換効率は得ら
れていないものの、製法が比較的容易であり、低コスト
であることから、電卓、腕時計等のローコスト民生機器
用の電源として広く使用されてきている。
By the way, in recent years, glass, metal,
Amorphous silicon (hereinafter, referred to as glow discharge decomposition method) is mounted on a substrate of inexpensive material such as ceramics and synthetic resin.
It is called "A-Si". ) A photovoltaic element using a pin junction formed by stacking semiconductor deposition films has been proposed.
Although the photoelectric conversion efficiency of the above-mentioned single-crystal pn junction solar cell has not been obtained, it is widely used as a power source for low-cost consumer appliances such as calculators and watches because of its relatively easy manufacturing method and low cost. Is coming.

このpin接合型の光起電力素子においては光電特性の
優れたA−Si半導体のフェルミ準位はバンドギャップ中
央からやや伝導帯寄りに位置しているため、n−i接合
界面よりも、p−i接合界面において電界強度が強く、
光はp型半導体層側より入射させるのが光電変換効率の
向上に有利であると言われている。
In this pin-junction type photovoltaic element, the Fermi level of an A-Si semiconductor having excellent photoelectric characteristics is located slightly closer to the conduction band from the center of the band gap, so that the p-type semiconductor is more p-type than the ni-junction interface. electric field strength is strong at the i-junction interface,
It is said that making light incident from the p-type semiconductor layer side is advantageous for improving the photoelectric conversion efficiency.

一方、p型半導体層中に再結合中心となる欠陥が多く
存在する場合には、p型半導体層中で吸収される光はほ
とんど光電流の発生には寄与しないので、p型半導体層
としては極力光吸収が少なく、欠陥の少ない半導体膜に
て構成されることが望ましい。しかるに、前記pin接合
型A−Si光起電力素子におけるp型半導体層に用いられ
る半導体材料としてはバンドギャップの広いアモルファ
スシリコンカーバイド(以下、「A−SiC」と称す。)
又は、バンドギャップは狭いが間接遷移型半導体材料で
あるため吸収係数が小さく、しかも100〜200Åの厚さで
は光の吸収量が少ないとされる微結晶化シリコン(以
下、「μC−Si」と称す。)が検討されている。しかし
ながら、A−SiCにおいては、膜中の炭素原子の組成比
率を増すことによってバンドギャップを広げることが可
能であるが、バンドギャップが2.1eV以上となると急激
にその膜質が低下するので太陽電池の特性向上にはおの
ずと限界が生ずる。
On the other hand, when there are many defects serving as recombination centers in the p-type semiconductor layer, light absorbed in the p-type semiconductor layer hardly contributes to generation of a photocurrent. It is desirable that the semiconductor film be formed of a semiconductor film with a minimum of light absorption and few defects. However, as a semiconductor material used for the p-type semiconductor layer in the pin junction type A-Si photovoltaic device, amorphous silicon carbide having a wide band gap (hereinafter, referred to as "A-SiC").
Alternatively, microcrystalline silicon (hereinafter referred to as “μC-Si”), which has a small band gap but a small absorption coefficient due to being an indirect transition type semiconductor material, and has a small light absorption at a thickness of 100 to 200 mm. ) Is being considered. However, in A-SiC, it is possible to widen the band gap by increasing the composition ratio of carbon atoms in the film. However, when the band gap becomes 2.1 eV or more, the film quality rapidly decreases, so that the solar cell There is naturally a limit to the improvement of the characteristics.

また、μC−Siにおいても、バンドギャップが本質的
には狭いので、光の吸収量は無視し得ない。ことに短波
長光成分の割合が多い入射光の場合には、光の吸収量は
顕著に増加する。
Also in the case of μC-Si, since the band gap is essentially narrow, the amount of light absorption cannot be ignored. In particular, in the case of incident light in which the proportion of short-wavelength light components is large, the amount of absorbed light increases significantly.

したがって、より高い光電変換効率の光起電力素子を
形成するには、前記p型半導体層側を光入射側とするな
らばバンドギャップがより広く、欠陥密度の少ない、従
来にない特性を有するp型半導体材料が早急に提供され
る必要がある。
Therefore, in order to form a photovoltaic element having higher photoelectric conversion efficiency, if the p-type semiconductor layer side is the light incident side, a p-type semiconductor having a wider band gap, a lower defect density, and an unprecedented characteristic. Type semiconductor materials need to be provided urgently.

また、n型半導体材料としてもバンドギャップが十分
に広く、欠陥密度の少ないものであれば、n型半導体層
の設けられている側を光入射側として光起電力素子を構
成し得る。さらに、pin接合型光起電力素子を積層して
形成される、いわゆるタンデム型光起電力素子、トリプ
ル型光起電力素子においては、上部の光起電力素子で吸
収しきれなかった波長成分の光を下部の光起電力素子へ
透過させて十分な光電変換効率の向上を図るにはp型半
導体層、n型半導体層のいずれもがバンドギャップが十
分に広く、欠陥密度の少ないものでなければならない。
In addition, as long as the n-type semiconductor material has a sufficiently wide band gap and a low defect density, a photovoltaic element can be configured with the side on which the n-type semiconductor layer is provided as a light incident side. Further, in a so-called tandem type photovoltaic element formed by laminating pin junction type photovoltaic elements and a triple type photovoltaic element, light having a wavelength component that cannot be absorbed by the upper photovoltaic element is used. In order to allow the p-type semiconductor layer and the n-type semiconductor layer to have a sufficiently wide band gap and a low defect density in order to transmit the No.

さらにこのp型又はn型半導体材料は非単結晶基板で
あるガラス、金属、セラミックス、合成樹脂等の上に直
接堆積できるばかりでなく、これらの非単結晶基板の上
に堆積されたi型半導体層に悪影響を与えることなく堆
積できる必要がある。
Further, the p-type or n-type semiconductor material can be directly deposited on non-single-crystal substrates such as glass, metal, ceramics, and synthetic resin, as well as i-type semiconductor deposited on these non-single-crystal substrates. It must be possible to deposit without adversely affecting the layer.

このような要求を満たすバンドギャップの広い半導体
材料としてBPが提案され評価されている。具体的には特
開昭56−116673号(以下、「資料1」という。)、特開
昭61−189629号(以下、「資料2」という。)、特開昭
61−189630号(以下、「資料3」という。)等がある。
BP has been proposed and evaluated as a semiconductor material having a wide band gap that satisfies such requirements. Specifically, JP-A-56-11667 (hereinafter referred to as "Document 1"), JP-A-61-189629 (hereinafter referred to as "Document 2"), and
No. 61-189630 (hereinafter referred to as "Document 3").

ところが、資料1ではpinヘテロ接合型非晶質薄膜太
陽電池において、p型あるいはn型の非晶質半導体層と
して非晶質ボロンフォスフォライド(a−BP)膜をグロ
ー放電分解法にて形成し、i型半導体をフッ素系非晶質
シリコンで形成してはいるものの、BP膜は非晶質構造に
限定されており、また、形成された太陽電池に関する詳
細な特性は開示されておらず、結晶質のBP膜に関しての
言及は全くない。また、i型半導体として非晶質シリコ
ンゲルマニウム(A−SiGe)に関する言及は全くない。
However, document 1 shows that in a pin heterojunction type amorphous thin film solar cell, an amorphous boron phosphate (a-BP) film is formed by a glow discharge decomposition method as a p-type or n-type amorphous semiconductor layer. Although the i-type semiconductor is formed of fluorine-based amorphous silicon, the BP film is limited to an amorphous structure, and detailed characteristics of the formed solar cell are not disclosed. There is no mention of a crystalline BP film. Further, there is no mention of amorphous silicon germanium (A-SiGe) as an i-type semiconductor.

さらには、タンデム型又はトリプル型光起電力素子に
関する言及は全くない。
Furthermore, there is no mention of tandem or triple photovoltaic devices.

資料2及び資料3は、HRCVD(Hydrogen Radical assi
sted CVD)法によりIII−V族化合物半導体膜を堆積形
成するにあたって、膜堆積速度を高めて該膜の生産性の
飛躍的向上をはかるという内容のものであり、特にBP膜
に関しての具体的開示はなされていない。
Documents 2 and 3 refer to HRCVD (Hydrogen Radical assi
When depositing a group III-V compound semiconductor film by a (sted CVD) method, the content of the film is to increase the film deposition rate to dramatically improve the productivity of the film, and specifically discloses a BP film. Has not been done.

このような背景にあって、所望の光電変換効率、特に
短波長光に対して高効率の光電変換効率が得られ、民生
機器用の電源はもとより太陽光発電による電力供給シス
テム用の太陽電池として実用に供し得る安価で且つ高い
信頼性を有する光起電力素子の早期提供が社会的要求と
してある。
Against this background, a desired photoelectric conversion efficiency, particularly a high efficiency photoelectric conversion efficiency for short-wavelength light, is obtained. As a solar cell for a power supply system using solar power as well as a power supply for consumer appliances. There is a social demand for early provision of a photovoltaic element that is practical and inexpensive and has high reliability.

〔発明の目的〕[Object of the invention]

本発明は、太陽電池等を構成する光起電力素子に係る
従来の問題点を解決し、上述の社会的要求等を満たす光
起電力素子を提供することを主たる目的とするものであ
る。
An object of the present invention is to solve the conventional problems relating to a photovoltaic element constituting a solar cell or the like and to provide a photovoltaic element satisfying the above-mentioned social demands and the like.

本発明の他の目的は、非単結晶基板であるガラス、金
属、セラミックス、合成樹脂等の安価な材質の基板上に
堆積形成した場合であっても良好なpin接合を形成し、
入射光、特にその短波長光成分を有効に光電流に変換で
きる光起電力素子を提供することにある。
Another object of the present invention is to form a good pin junction even when deposited and formed on a substrate of inexpensive material such as glass, metal, ceramics, and synthetic resin that is a non-single-crystal substrate,
It is an object of the present invention to provide a photovoltaic element capable of effectively converting incident light, particularly its short wavelength light component, into a photocurrent.

〔発明の概要、効果〕[Summary of the invention, effects]

本発明者らは、太陽電池等の光起電力素子の窓層とし
て用いるのに好適なワイドバンドギャップ半導体堆積膜
について従来の問題点を克服し、本発明の目的を達成す
べく鋭意研究を重ね、BP膜について、平均結晶粒径が特
定の範囲にあって、水素原子の特定量と必要に応じてフ
ッ素原子を含有せしめた多結晶半導体堆積膜(以下、
「BP:H(F)膜」と称する。)を形成したところ、該半
導体堆積膜は、ガラス、金属、セラミックス、合成樹脂
等の基板であっても、その表面に所望の状態で堆積する
ことができ、膜中の欠陥が極めて少なく、必要量のp型
又はn型のドーピング剤を所望状態に導入することがで
きてドーピング効率が高く、良好なp型又はn型の伝導
型を有する結晶質の膜であることの知見を下述する実験
結果から得た。
Means for Solving the Problems The present inventors have overcome the conventional problems of a wide band gap semiconductor deposited film suitable for use as a window layer of a photovoltaic element such as a solar cell, and have intensively studied to achieve the object of the present invention. , BP film, the average crystal grain size is in a specific range, a polycrystalline semiconductor deposited film containing a specific amount of hydrogen atoms and optionally fluorine atoms (hereinafter, referred to as
It is referred to as "BP: H (F) film". ), The semiconductor deposited film can be deposited in a desired state on the surface of a substrate made of glass, metal, ceramics, synthetic resin, etc., and has very few defects in the film. The following is a finding that a crystalline film having a high doping efficiency and a good p-type or n-type conductivity can be introduced into a desired state by introducing an amount of a p-type or n-type doping agent into a desired state. Obtained from experimental results.

本発明は、該知見に基づいて本発明者らが更なる研究
を行い、前記の優れた特性を有する結晶質の膜をpin接
合を用いた光起電力素子のp型及び/又はn型半導体層
に適用し、完成するに至ったものである。
According to the present invention, the present inventors have further studied based on the above findings, and have found that a crystalline film having the above-mentioned excellent characteristics can be formed into a p-type and / or n-type semiconductor of a photovoltaic device using a pin junction. It has been applied to layers and completed.

本発明は、下記の二者の光起電力素子を包含する。 The present invention includes the following two photovoltaic elements.

(1)p型半導体層とi型半導体層とn型半導体層との
接合構造を有する光起電力素子であって、前記半導体層
のうち少なくとも前記p型半導体層又は前記n型半導体
層のいずれか一方が水素原子及び/又はフッ素原子と、
p型又はn型の価電子制御原子とを含む平均結晶粒径が
50乃至800Åである多結晶BP薄膜であり、前記水素原子
の含有量が0.5乃至7atomic%であり、且つ前記i型半導
体層が水素原子及び/又はフッ素原子を含む非単結晶シ
リコン半導体で構成されていることを特徴とする光起電
力素子、及び (2)p型半導体層とi型半導体層とn型半導体層との
接合構造を有する光起電力素子であって、前記半導体層
のうち少なくとも前記p型半導体層又は前記n型半導体
層のいずれか一方が水素原子及び/又はフッ素原子と、
p型又はn型の価電子制御原子とを含む平均結晶粒径が
50乃至800Åである多結晶BP薄膜であり、前記水素原子
の含有量が0.5乃至7atomic%であり、且つ前記i型半導
体層がゲルマニウム原子及び/又は炭素原子と、水素原
子及び/又はフッ素原子とを含む非単結晶シリコン合金
系半導体で構成されていることを特徴とする光起電力素
子。
(1) A photovoltaic device having a junction structure of a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, wherein at least one of the p-type semiconductor layer and the n-type semiconductor layer among the semiconductor layers One of which is a hydrogen atom and / or a fluorine atom,
the average crystal grain size including a p-type or n-type valence electron controlling atom is
A polycrystalline BP thin film having a thickness of 50 to 800 °, wherein the content of the hydrogen atoms is 0.5 to 7 atomic%, and the i-type semiconductor layer is formed of a non-single-crystal silicon semiconductor containing a hydrogen atom and / or a fluorine atom. (2) a photovoltaic element having a junction structure of a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, wherein at least one of the semiconductor layers Either the p-type semiconductor layer or the n-type semiconductor layer is a hydrogen atom and / or a fluorine atom,
the average crystal grain size including a p-type or n-type valence electron controlling atom is
A polycrystalline BP thin film having a thickness of 50 to 800 °, wherein the content of the hydrogen atoms is 0.5 to 7 atomic%, and the i-type semiconductor layer contains germanium atoms and / or carbon atoms, hydrogen atoms and / or fluorine atoms, A photovoltaic device comprising a non-single-crystal silicon alloy-based semiconductor containing:

本発明者らの行った実験結果につき、以下に詳述す
る。
The results of experiments performed by the present inventors will be described in detail below.

〔実験〕[Experiment]

実験A. 水素原子及び必要に応じてフッ素原子の導入されたBP:H
(F)膜の形成法についての検討 (1)HRCVD法 本方法では、B原子を含有する原料ガス、P原子を含
有する原料ガス、そして水素ガス(H2)及びフッ素原子
を含有する原料ガスを成膜空間とは異なる活性化空間に
て単独であるいは混合した状態で活性化し、生成したB
原子を含有する前駆体、P原子を含有する前駆体、そし
て水素ラジカル及びフッ素ラジカルを成膜空間内へ導入
し化学的相互反応せしめて、前記成膜空間内に加熱保持
された基板上にBP:H(F)で構成された多結晶半導体堆
積膜を形成する。
Experiment A. BP: H with a hydrogen atom and optionally a fluorine atom introduced
(F) Study on film formation method (1) HRCVD method In this method, a source gas containing B atoms, a source gas containing P atoms, and a source gas containing hydrogen gas (H 2 ) and fluorine atoms Is activated alone or in a mixed state in an activation space different from the film formation space, and B
A precursor containing atoms, a precursor containing P atoms, and hydrogen radicals and fluorine radicals are introduced into the film formation space and chemically reacted, and BP is placed on the substrate heated and held in the film formation space. : H (F) to form a polycrystalline semiconductor deposited film.

具体的に、第2図に示す堆積膜形成装置の模式的概略
図を用いて説明する。
This will be described specifically with reference to a schematic diagram of the deposited film forming apparatus shown in FIG.

201は本発明の方法を実施する手段を有する成膜室で
あり、基板203は基板保持用カセット202上に保持され、
基板搬送治具206上を移動することができる。204は熱電
対であり、基板203の温度をヒーター205で加熱保持する
時のモニター用に用いられる。212はロードロック室で
あり、基板搬送治具206が内蔵されゲートバルブ207を介
して基板を真空搬送することができる。また、222は成
膜室201で形成されるのとは異なる材料で構成される半
導体層を積層形成する場合に有効に用いられる成膜室で
あり、成膜室201に設けられたのと同様の又は他の異な
る成膜手段が設けられている(不図示)。208,209,210
は成膜用原料ガスの活性化室であり、ガス供給パイプ21
4,215,216より導入された原料ガスは、励起エネルギー
発生装置211,212,213より供給される電気、熱、光エネ
ルギー等により活性化され、ここで生成した前駆体、水
素ラジカル等は輸送管217,218,219を通って成膜室201内
へ導入されて化学的相互反応を生じ、基板203上に所望
の特性を有する半導体膜が形成される。221は排気ポン
プであり、スロットルバルブ220の開度を調整すること
によって圧力計223でモニターされる成膜室201内の圧力
が制御される。
201 is a film forming chamber having means for performing the method of the present invention, the substrate 203 is held on a substrate holding cassette 202,
It can move on the substrate transfer jig 206. A thermocouple 204 is used for monitoring when the temperature of the substrate 203 is heated and held by the heater 205. Reference numeral 212 denotes a load lock chamber, which has a built-in substrate transfer jig 206 and can vacuum transfer the substrate through a gate valve 207. Reference numeral 222 denotes a film formation chamber which is effectively used when a semiconductor layer formed of a material different from that formed in the film formation chamber 201 is stacked, and is similar to that provided in the film formation chamber 201. Or other different film forming means (not shown). 208,209,210
Is an activation chamber for the source gas for film formation, and the gas supply pipe 21
The source gas introduced from 4,215,216 is activated by electricity, heat, light energy, etc. supplied from the excitation energy generators 211,212,213, and the precursor, hydrogen radicals, etc. generated here pass through the transport pipes 217,218,219 to form a film forming chamber. When introduced into the substrate 201, a chemical interaction occurs, and a semiconductor film having desired characteristics is formed on the substrate 203. Reference numeral 221 denotes an exhaust pump, which controls the pressure in the film forming chamber 201 monitored by the pressure gauge 223 by adjusting the opening of the throttle valve 220.

まず、2インチ×2インチ、厚さ0.8mmのコーニング
社製#7059ガラス基板203を基板保持用カセット202にセ
ットし第1表に示す成膜条件でBP:H(F)膜試料No.1〜
10を作製した。
First, a Corning # 7059 glass substrate 203 having a size of 2 inches × 2 inches and a thickness of 0.8 mm was set in a substrate holding cassette 202, and BP: H (F) film sample No. 1 was formed under the film forming conditions shown in Table 1. ~
10 were produced.

得られた試料の一部を切り出し、SIMS(CAMEA社製ims
−3f)により堆積膜中の水素原子及びフッ素原子含有量
を、XMA(島津製作所製 X線マイクロアナライザーEPM
−810Q)にて堆積膜中のB原子とP原子の分布状態及び
元素組成分析を、そしてX線回折装置(理学電機製RADI
IB)にて結晶配向及び平均結晶粒径を測定した。第2表
に測定結果をまとめて示す。
A part of the obtained sample was cut out and SIMS (CAMEA ims
-3f) was used to determine the content of hydrogen and fluorine atoms in the deposited film using XMA (X-ray microanalyzer EPM manufactured by Shimadzu Corporation).
-810Q) to analyze the distribution state and elemental composition of B and P atoms in the deposited film, and use an X-ray diffractometer (RADI
IB), the crystal orientation and the average crystal grain size were measured. Table 2 summarizes the measurement results.

これらの結果より、本方法においては活性化室209へ
のH2ガス導入量を変化させることによって体積膜中の水
素原子含有量及びフッ素原子含有量、更には平均結晶粒
径も制御できることがわかった。H2ガス導入量が0scc
m、0.2sccmで作製した試料No.1,2においては反応系への
水素ラジカルの供給が無いか、微量であるため含有され
る水素原子量が少なくて、フッ素原子量が多いばかりで
なく、B原子とP原子との分布も局在化していて配向性
のない構造(ランダム)であったが、試料No.3〜7にお
いてはH2ガスの導入量の増加とともにB原子とP原子と
の組成比が化学量論比を満足するようになり、特定の結
晶配向が生じ、平均結晶粒径も増大する傾向が見られ
た。また、H2ガス導入量をさらに増加して作製した試料
No.8〜10においては反応系への水素ラジカルの供給量が
過剰となるため、堆積膜のエッチング等により平均結晶
粒径の減少及び水素原子含有量の減少傾向が見られた。
このように、水素ラジカルの反応系への供給量が堆積膜
の形成時に重要な役割りを果たしていることが明らかと
なった。
From these results, it is found that in the present method, the hydrogen atom content and the fluorine atom content in the volume film, and further the average crystal grain size can be controlled by changing the amount of H 2 gas introduced into the activation chamber 209. Was. H 2 gas introduction amount 0scc
In Samples Nos. 1 and 2 prepared at m and 0.2 sccm, no hydrogen radicals were supplied to the reaction system or the amount was small, so that the amount of contained hydrogen atoms was small, the amount of fluorine atoms was large, and the number of B atoms was large. The distribution of P and P atoms was localized and the structure had no orientation (random). However, in Samples Nos. 3 to 7, the composition of B and P atoms increased with an increase in the amount of H 2 gas introduced. The ratio became to satisfy the stoichiometric ratio, a specific crystal orientation occurred, and the average crystal grain size tended to increase. Further, the sample was prepared by further increasing the H 2 gas introduction rate
In Nos. 8 to 10, the supply amount of hydrogen radicals to the reaction system was excessive, so that the average crystal grain size and the hydrogen atom content tended to decrease due to etching of the deposited film and the like.
Thus, it became clear that the supply amount of the hydrogen radical to the reaction system plays an important role in forming the deposited film.

本実験と並行して行った実験によれば、基板温度、圧
力、マイクロ波投入パワー、稀釈ガス(He)流量比、輸
送管のガス放出口と基板との距離、そして、原料ガスの
組合わせの変更等のパラメーター変化により若干の水素
原子含有量及びフッ素原子含有量、さらには平均結晶粒
径の制御が可能であったが、前述したH2ガス導入量の変
化による制御性に比較し劣っていた。
According to the experiment performed in parallel with this experiment, the substrate temperature, pressure, microwave input power, dilution gas (He) flow ratio, distance between the gas outlet of the transport pipe and the substrate, and the combination of source gas some of the hydrogen atom content and fluorine content by parameter changes such as changes of news but which was capable of controlling the average crystal grain size, inferior compared to the control due to the change of the H 2 gas introduction rate described above I was

(2)反応性スパッタリング法 本方法では、成膜室内に基板を配置し、該基板と対向
し、該基板との間に所定の空間を残す位置にカソード電
極を設置し、該カソード電極表面にターゲットたるノン
ドープの多結晶又は単結晶BPウエハー又はイオン打ち込
みによりH原子及び/又はF原子をドーズした多結晶又
は単結晶BPウエハーを配置した成膜室に、Arガスおよび
H2ガス及び/又はF2,HFガスを導入し、前記カソード電
極に高周波電圧を印加して前記空間に前記ガスプラズマ
雰囲気を形成し、ターゲットたる前記多結晶BPウエハー
等をスパッタリングし、前記ターゲットから飛び出すB
原子及びP原子と前記ガスプラズマ中に存在する原子状
の水素及び/又はフッ素を前記基板の表面近傍の空間で
化学的相互反応せしめてBP:H(F)で構成された多結晶
半導体堆積膜を加熱保持された基板上に形成する。
(2) Reactive sputtering method In this method, a substrate is placed in a film formation chamber, a cathode electrode is placed at a position facing the substrate and leaving a predetermined space between the substrate and the substrate, and a surface of the cathode electrode is placed on the surface of the cathode electrode. Ar gas and a deposition chamber in which a non-doped polycrystalline or single crystal BP wafer as a target or a polycrystalline or single crystal BP wafer in which H atoms and / or F atoms are dosed by ion implantation are arranged.
H 2 gas and / or F 2 , HF gas are introduced, a high-frequency voltage is applied to the cathode electrode to form the gas plasma atmosphere in the space, and the target, such as the polycrystalline BP wafer, is sputtered. B jumping out of
A polycrystalline semiconductor deposited film composed of BP: H (F) by chemically reacting atoms and P atoms with atomic hydrogen and / or fluorine present in the gas plasma in a space near the surface of the substrate. Is formed on the substrate held by heating.

具体的に、第3図に示す堆積膜形成装置の模式的概略
図を用いて説明する。
This will be described specifically with reference to a schematic diagram of the deposited film forming apparatus shown in FIG.

301は本発明の方法を実施する手段を有する成膜室で
あり、基板303は基板保持用カセット302上に保持され、
基板搬送治具306上を移動することができる。304は熱電
対であり、基板303の温度をヒーター305で加熱保持する
時のモニター用に用いられる。313はロードロック室で
あり、基板搬送治具306が内蔵されゲートバルブ307を介
して基板を真空搬送することができる。
Reference numeral 301 denotes a film forming chamber having means for performing the method of the present invention, and a substrate 303 is held on a substrate holding cassette 302;
It can move on the substrate transfer jig 306. A thermocouple 304 is used for monitoring when the temperature of the substrate 303 is heated and held by the heater 305. Reference numeral 313 denotes a load lock chamber, which has a built-in substrate transfer jig 306 and can vacuum transfer the substrate through a gate valve 307.

また、316は成膜室301で形成されるのとは異なる材料
で構成される半導体層を積層形成する場合に有効に用い
られる成膜室であり、成膜室301に設けられたのと同様
の又は他の異なる成膜手段が設けられている(不図
示)。
Reference numeral 316 denotes a film formation chamber which is effectively used when a semiconductor layer formed of a material different from that formed in the film formation chamber 301 is stacked, and is similar to that provided in the film formation chamber 301. Or other different film forming means (not shown).

312はカソード電極であり、たとえば多結晶BPウエハ
ーがターゲット317として貼合わされている。また、前
記カソード電極312にはマッチングボックス311を介して
高周波電源310より高周波電力が供給され、ガス導入管3
08より導入されたAr,H2,F2,HF等のスパッタ用ガスがプ
ラズマ化される。このプラズマ中に発生したイオン種に
より、前記ターゲット317からB原子及びP原子がスパ
ッタされ、前記プラズマ中に存在する原子状の水素及び
/又はフッ素と化学的相互反応を起こし、基板303上に
所望の特性を有する多結晶半導体膜であるBP:H(F)膜
が形成される。315は排気ポンプであり、スロットルバ
ルブ314の開度を調整することによって圧力計309でモニ
ターされる成膜室301内の圧力が制御される。
Reference numeral 312 denotes a cathode electrode on which, for example, a polycrystalline BP wafer is bonded as a target 317. Further, high-frequency power is supplied to the cathode electrode 312 from a high-frequency power supply 310 via a matching box 311, and the gas introduction pipe 3
The sputtering gas such as Ar, H 2 , F 2 , HF introduced from 08 is turned into plasma. By the ion species generated in the plasma, B atoms and P atoms are sputtered from the target 317, causing a chemical interaction with atomic hydrogen and / or fluorine present in the plasma, and causing a desired reaction on the substrate 303. A BP: H (F) film, which is a polycrystalline semiconductor film having the following characteristics, is formed. An exhaust pump 315 controls the pressure in the film forming chamber 301 monitored by the pressure gauge 309 by adjusting the opening of the throttle valve 314.

まず、2インチ×2インチ、厚さ0.8mmのコーニング
社製#7059ガラス基板303を基板保持用カセット302にセ
ットし、第3表に示す成膜条件でBP:H(F)膜試料No.1
1〜20を作製した。得られた試料の一部を切り出し、前
述の(1)の方法で行ったのと同様の評価、測定を行っ
た結果を第4表に示す。
First, a Corning # 7059 glass substrate 303 of 2 inches × 2 inches and a thickness of 0.8 mm was set in the substrate holding cassette 302, and BP: H (F) film sample No. 1
1 to 20 were prepared. A part of the obtained sample was cut out, and the results of the same evaluation and measurement as performed by the method (1) described above are shown in Table 4.

これらの結果より、本方法においては、成膜室301へ
のH2ガス及び/又はHFガス導入量を変化させることによ
って堆積膜中の水素原子含有量及び/又はフッ素原子含
有量、さらには平均結晶粒径も制御できることがわかっ
た。H2ガス及びHFガスの導入を行わないで作製した試料
No.11及びH2ガスを1sccm、HFガスを1sccm導入して作製
した試料No.12においては、プラズマ中に水素ラジカル
及びフッ素ラジカルが存在しないか、あるいは両者が極
く微量しか存在しないため、B原子とP原子との組成比
が化学量論比を満足せず、また分布状態も局在化してい
て不均一であり、結晶配向性もランダムであったり、平
均結晶粒径も小さいものであったが、試料No.13〜18に
おいてはH2ガス及びHFガスの導入量の増加とともにB原
子とP原子との組成比が化学量論比を満足し、分布状態
も改善され、平均結晶粒径も増大し、適当量の水素原子
及びフッ素原子が含有される傾向が見られた。さらに、
HFガスとH2ガスをともに流量を増加させた試料No.19,20
においてはプラズマ中に存在する水素ラジカル及びフッ
素ラジカルが過剰となるため、平均結晶粒径の減少や水
素原子含有量、フッ素原子含有量の増大傾向が見られ
た。
From these results, in this method, by changing the amount of H 2 gas and / or HF gas introduced into the film formation chamber 301, the hydrogen atom content and / or the fluorine atom content in the deposited film, and furthermore, the average It was found that the crystal grain size can also be controlled. Sample prepared without introducing H 2 gas and HF gas
In No. 11 and sample No. 12 prepared by introducing 1 sccm of H 2 gas and 1 sccm of HF gas, hydrogen radicals and fluorine radicals are not present in the plasma, or both are present in a very small amount, The composition ratio between B atoms and P atoms does not satisfy the stoichiometric ratio, the distribution state is localized and non-uniform, the crystal orientation is random, and the average crystal grain size is small. However, in Samples Nos. 13 to 18, the composition ratio of B atoms and P atoms satisfied the stoichiometric ratio with an increase in the introduction amount of the H 2 gas and the HF gas, the distribution state was improved, and the average crystallinity was improved. The particle size also increased, and a tendency was observed to contain appropriate amounts of hydrogen atoms and fluorine atoms. further,
Samples increased both flow rate of HF gas and H 2 gas No.19,20
In the case of, the hydrogen radicals and fluorine radicals existing in the plasma became excessive, so that the average crystal grain size decreased and the hydrogen atom content and the fluorine atom content tended to increase.

本実験と並行して行った実験によれば、基板温度、圧
力、高周波電力、スパッタガス(Ar)流量、ターゲット
と基板との距離、そしてターゲット材料等のパラメータ
ー変化により若干の水素原子含有量及びフッ素原子含有
量、さらには平均結晶粒径の制御が可能であったが、前
述したH2ガス及び/又はF2ガス、HFガス導入量の変化に
よる制御性に比較して劣っていた。
According to the experiment performed in parallel with this experiment, the hydrogen atom content and the slight amount were changed due to changes in parameters such as substrate temperature, pressure, high-frequency power, sputter gas (Ar) flow rate, distance between target and substrate, and target material. Although the control of the fluorine atom content and the average crystal grain size were possible, the controllability was inferior to the controllability by the change of the introduction amount of the H 2 gas and / or the F 2 gas and the HF gas described above.

以上より、反応系に存在する水素ラジカル、フッ素ラ
ジカルの量が堆積膜の形成時に重要な役割りを果たして
いることが明らかとなった。
From the above, it became clear that the amounts of hydrogen radicals and fluorine radicals existing in the reaction system play an important role in forming the deposited film.

(3)プラズマCVD法 本方法では、基板の配置された成膜室の反応空間で混
合がなされるように、B原子を含有する原料ガス、P原
子を含有する原料ガス、H2ガス及び/又はHFガス、F2
スを導入し、前記成膜室内に設置されたカソード電極に
高周波電力を印加して前記反応空間にグロー放電による
プラズマを形成せしめて、そこに導入された前記ガスを
分解、重合、ラジカル化、イオン化等させて化学的相互
反応せしめて、前記成膜室内に加熱保持された基板上に
BP:H(F)で構成された半導体堆積膜を形成する。
(3) Plasma CVD Method In this method, a source gas containing B atoms, a source gas containing P atoms, a H 2 gas and / or a H 2 gas, so that mixing is performed in a reaction space of a film formation chamber in which a substrate is placed. Alternatively, HF gas or F 2 gas is introduced, high-frequency power is applied to a cathode electrode installed in the film formation chamber to form plasma by glow discharge in the reaction space, and the gas introduced therein is decomposed. , Polymerization, radicalization, ionization, etc. to cause a chemical interaction, on the substrate heated and held in the film forming chamber
A semiconductor deposited film composed of BP: H (F) is formed.

具体的に、第4図に示す堆積膜形成装置の模式的概略
図を用いて説明する。
This will be specifically described with reference to a schematic diagram of the deposited film forming apparatus shown in FIG.

401は本発明の方法を実施する手段を有する成膜室で
あり、基板403は基板保持用カセット402上に保持され、
基板搬送治具406上を移動することができる。404は熱電
対であり、基板403の温度をヒーター405で加熱保持する
時のモニター用に用いられる。413はロードロック室で
あり、基板搬送治具406が内蔵されゲートバルブ407を介
して基板を真空搬送することができる。また、416は成
膜室401で形成されるのとは異なる材料で構成される半
導体層を積層形成する場合に有効に用いられる成膜室で
あり、成膜室401に設けられたのと同様の又は他の異な
る成膜手段が設けられている(不図示)。
Reference numeral 401 denotes a film forming chamber having means for performing the method of the present invention, and a substrate 403 is held on a substrate holding cassette 402;
It can move on the substrate transfer jig 406. A thermocouple 404 is used for monitoring when the temperature of the substrate 403 is heated and held by the heater 405. Reference numeral 413 denotes a load lock chamber, which has a built-in substrate transfer jig 406 and can vacuum transfer the substrate via a gate valve 407. Reference numeral 416 denotes a film formation chamber which is effectively used when a semiconductor layer formed using a material different from that formed in the film formation chamber 401 is stacked, and is similar to that provided in the film formation chamber 401. Or other different film forming means (not shown).

412はカソード電極であり、マッチングボックス411を
介して高周波電源410より高周波電力が供給され、ガス
導入管408,409より導入された原料ガスはプラズマ化さ
れる。該プラズマ中で生成した前駆体、水素ラジカル、
フッ素ラジカル、及び各種イオン等が化学的相互反応を
起こしながら基板403上に到達し所望の特性を有する半
導体膜であるBP:H(F)膜が形成される。415は排気ポ
ンプであり、スロットルバルブ414の開度を調整するこ
とによって圧力計417でモニターされる成膜室401内の圧
力が制御される。
A cathode electrode 412 is supplied with high-frequency power from a high-frequency power supply 410 via a matching box 411, and the source gas introduced from the gas introduction pipes 408, 409 is turned into plasma. Precursors generated in the plasma, hydrogen radicals,
Fluorine radicals, various ions and the like reach the substrate 403 while undergoing a chemical interaction to form a BP: H (F) film, which is a semiconductor film having desired characteristics. Reference numeral 415 denotes an exhaust pump, which controls the pressure in the film forming chamber 401 monitored by the pressure gauge 417 by adjusting the opening of the throttle valve 414.

まず、2インチ×2インチ、厚さ0.8mmのコーニング
社製#7059ガラス基板403を基板保持用カセット402にセ
ットし第5表に示す成膜条件でBP:H(F)膜試料No.21
〜30を作製した。
First, a Corning # 7059 glass substrate 403 having a size of 2 inches × 2 inches and a thickness of 0.8 mm was set in a substrate holding cassette 402, and BP: H (F) film sample No. 21 was formed under the film forming conditions shown in Table 5.
~ 30 were made.

原料ガス(A),(B),(C)は不図示のボンベか
ら、ガス導入管408又は409を介して成膜室401内へ導入
した。
The source gases (A), (B) and (C) were introduced into the film forming chamber 401 from a cylinder (not shown) via the gas introduction pipe 408 or 409.

得られた試料の一部を切り出し、前述の(1)の方法
で行ったのと同様の測定、評価を行った結果を第6表に
示す。
A part of the obtained sample was cut out and measured and evaluated in the same manner as in the above-mentioned method (1). The results are shown in Table 6.

これらの結果より、本方法においては、成膜室401へ
の原料ガス(C)としてのH2ガス及び/又はHFガス導入
量を変化させることによって堆積膜中の水素原子含有量
及び/又はフッ素原子含有量、さらには平均結晶粒径も
制御できることがわかった。試料No.21〜23においてはH
2ガス及びHFガスの導入が行われないか、もしくは少な
くとも一方が導入されてもその流量が少量であるため、
形成される堆積膜は非晶質構造であるばかりでなく、−
CH3(メチル基)の残存による影響でB原子とP原子の
分布が不均一になっているのと同時に、−CH3基に起因
する水素原子含有量が多くなっている。試料No.24〜28
においてはH2ガス及び/又はHFガスの増加にともない結
晶配向性が現れ、B原子とP原子との組成比が化学量論
比を満足し、分布状態も改善され、平均結晶粒径も増大
し、適当量の水素原子及びフッ素原子が含有される傾向
が見られた。さらに、H2ガス流量を増加させた試料No.2
9,30においてはプラズマ中に存在する水素ラジカルが過
剰となるため、平均結晶粒径の減少傾向が見られた。
From these results, in the present method, the hydrogen atom content and / or the fluorine content in the deposited film is changed by changing the introduction amount of the H 2 gas and / or the HF gas as the source gas (C) into the film formation chamber 401. It has been found that the atomic content and also the average crystal grain size can be controlled. In Sample Nos. 21 to 23, H
Since the introduction of 2 gas and HF gas is not performed, or even if at least one is introduced, the flow rate is small,
The deposited film formed not only has an amorphous structure,
The distribution of B atoms and P atoms is not uniform due to the influence of the remaining CH 3 (methyl group), and the hydrogen atom content due to the —CH 3 group is large. Sample No. 24-28
In, the crystal orientation appears as the H 2 gas and / or HF gas increases, the composition ratio of B atoms and P atoms satisfies the stoichiometric ratio, the distribution state is improved, and the average crystal grain size increases. However, there was a tendency that appropriate amounts of hydrogen atoms and fluorine atoms were contained. Sample No. 2 with an increased H 2 gas flow rate
At 9,30, the average crystal grain size tended to decrease due to excess hydrogen radicals in the plasma.

本実験と並行して行った実験によれば、基板温度、圧
力、高周波電力、原料ガス(A),(B),(C)の流
量比及び種類、電極間距離等のパラメーター変化により
若干の水素原子含有量及び/又はフッ素原子含有量、さ
らには平均結晶粒径の制御が可能であったが、前述した
H2ガス及び/又はHFガス導入量の変化による制御性に比
較し劣っていた。
According to the experiment performed in parallel with this experiment, slight changes in parameters such as the substrate temperature, pressure, high-frequency power, flow ratio and type of source gases (A), (B), and (C), distance between electrodes, etc. Although it was possible to control the hydrogen atom content and / or the fluorine atom content, and further the average crystal grain size,
It was inferior to the controllability by the change of the H 2 gas and / or HF gas introduction amount.

以上より、反応系に存在する水素ラジカル、フッ素ラ
ジカルの量が堆積膜の形成時に重要な役割を果たしてい
ることが明らかとなった。
From the above, it became clear that the amounts of hydrogen radicals and fluorine radicals existing in the reaction system play an important role in forming the deposited film.

実験B. 堆積膜中の平均結晶粒径の大きさ及び水素原子含有量及
び必要に応じて含有されるフッ素原子含有量と堆積膜の
諸特性との関係についての検討 まず、堆積膜の光照射による特性劣化評価を行うため
に、前述の(1)の方法で作製した試料No.1〜30の一部
を切り出して、各々にCrのくし形電極を蒸着し、8時間
のAM−1光(100mW/cm2)照射前後の電気伝導率σの変
化率Δσ(Δσ=σe/σi、σi:初期値、σe:8時間後
の値)を測定し、Δσ≧0.95の試料については○、0.95
<Δσ≦0.9の試料については△、Δσ<0.9の試料につ
いては×という評価を行い第7表に示した。次に、堆積
膜中に含まれる不純物の評価を行うために、試料No.1〜
30の一部を切り出して、クライオスタット中にセットし
7.7Kの温度でUVランプ光(1KW)を照射してフォトルミ
ネッセンスを測定した。評価法としては、試料No.11か
ら現れるスペクトルの強度IRに対する他の試料からのス
ペクトル強度ISの比ΔI(ΔI=IS/IR)及び本数を基
準とし、ΔI≦0.3の試料については○、0.3<ΔI≦0.
7の試料については△、ΔI>0.7の試料については×と
いう評価を行い、第7表に示した。次に、堆積膜の表面
平滑性の評価を行うためにやはり試料No.1〜30の一部を
切り出して、FE−SEM(電界放射型走査電子顕微鏡:日
立製作所製S−900)にて表面凹凸の微細構造の観察を
行い、結晶粒径の均一性が良く、表面荒れ、ピンホール
等の無い試料については○、結晶粒が観察されなかった
り、分布が不均一であったり、表面荒れ、ピンホール等
の観察された試料については×という評価を行い第7表
に示した。さらに、これらの結果を◎,○,△,×の4
段階に総合評価し第7表にまとめて示した。
Experiment B. Examination of the relationship between the size of the average crystal grain size in the deposited film, the content of hydrogen atoms, and the content of fluorine atoms as required, and various properties of the deposited film First, light irradiation of the deposited film In order to evaluate the characteristic deterioration by the method, a part of the sample Nos. 1 to 30 prepared by the method (1) described above was cut out, and a comb-shaped electrode of Cr was deposited on each of them, and the AM-1 light was irradiated for 8 hours. (100 mW / cm 2) change rate .DELTA..sigma electrical conductivity before and after the irradiation sigma was measured (Δσ = σ e / σ i , σ i:: an initial value, sigma e values after 8 hours), a sample of .DELTA..sigma ≧ 0.95 About ○, 0.95
Samples with <Δσ ≦ 0.9 were evaluated as Δ, and samples with Δσ <0.9 were evaluated as ×, and the results are shown in Table 7. Next, in order to evaluate impurities contained in the deposited film, sample Nos. 1 to
Cut out a portion of 30 and place it in the cryostat
Photoluminescence was measured by irradiating a UV lamp (1 KW) at a temperature of 7.7 K. The evaluation method is based on the ratio ΔI (ΔI = I S / I R ) of the spectrum intensity I S from another sample to the spectrum intensity I R emerging from the sample No. 11 and the number of the samples. Is ○, 0.3 <ΔI ≦ 0.
The sample of 7 was evaluated as 試 料, and the sample with ΔI> 0.7 was evaluated as ×, and the results are shown in Table 7. Next, in order to evaluate the surface smoothness of the deposited film, a part of the sample Nos. 1 to 30 was also cut out, and the surface was scanned with an FE-SEM (field emission scanning electron microscope: S-900 manufactured by Hitachi, Ltd.). Observation of the fine structure of the irregularities, the uniformity of the crystal grain size is good, the surface is rough, for samples without pinholes, ○, crystal grains are not observed, the distribution is uneven, the surface is rough, Samples having observed pinholes and the like were evaluated as x, and the results are shown in Table 7. Furthermore, these results were compared with ◎, ○, △, ×
The results were comprehensively evaluated in stages, and are summarized in Table 7.

以上より、○以上の評価を得た堆積膜試料が、少なく
とも太陽電池等のデバイスに好適に用い得る諸特性を有
すると判断され、これらの堆積膜の物性値を測定したと
ころ、水素原子含有量が0.5atomic%〜7atomic%、必要
に応じて含有されるフッ素含有量が0atomic%〜3atomic
%、平均結晶粒径は50Å〜800Åの範囲にあることが判
明し、これ等の数値範囲内に前記物性値を設定、制御す
ることが所望の特性を有する電子デバイスを構成する堆
積膜を形成する上で必要な条件であることが判った。
From the above, it was determined that the deposited film sample having a rating of ○ or more had at least various properties suitable for use in devices such as solar cells, and the physical property values of these deposited films were measured. Is 0.5 atomic% to 7 atomic%, and the fluorine content is 0 atomic% to 3 atomic if necessary.
%, The average crystal grain size was found to be in the range of 50 ° to 800 °, and it was found that setting and controlling the physical property values within these numerical ranges formed a deposited film constituting an electronic device having desired characteristics. It turns out that this is a necessary condition for performing.

実験C. BP:H(F)膜の価電子制御に関する検討 (1)n型ドーピング 前述のA−(1)での第1表に示した成膜条件におい
て、n型の価電子制御原子であるSe原子を含む原料ガス
としてのSe(CH32(以降、DMSeと略す。)をハブリン
グ装置に詰め、Heをキャリアーガスとしてバブリングし
2.4×10-10mol/minの流量で原料ガス(A)とともに活
性化室208へ導入した以外は全く同様の方法で試料No.31
〜40を作製した。
Experiment C. Study on Valence Electron Control of BP: H (F) Film (1) N-type Doping Under the film formation conditions shown in Table 1 in A- (1), n-type valence electron control atoms were used. Se (CH 3 ) 2 (hereinafter abbreviated as DMSe) as a source gas containing a certain Se atom is packed in a hub ring device, and He is bubbled as a carrier gas.
Sample No. 31 was prepared in exactly the same manner except that it was introduced into the activation chamber 208 together with the raw material gas (A) at a flow rate of 2.4 × 10 −10 mol / min.
~ 40 were made.

また、前述のA−(2)の第3表に示した成膜条件に
おいて、DMSeをHeガスをキャリアーガスとしてバブリン
グし4.8×10-11mol/minの流量でスパッタ用ガスととも
に成膜室301へ導入した以外は全く同様の方法で試料No.
41〜50を作製した。
Under the film forming conditions shown in Table 3 of A- (2), DMSe was bubbled using He gas as a carrier gas, and the film forming chamber 301 was sputtered with a sputtering gas at a flow rate of 4.8 × 10 −11 mol / min. Sample no.
41-50 were made.

さらに、前述のA−(3)の第5表に示した成膜条件
においてDMSeをHeガスをキャリアーガスとしてバブリン
グし1.2×10-10mol/minの流量で原料ガス(A)ととも
に成膜室401へ導入した以外は全く同様の方法で試料No.
51〜60を作製した。
Further, under the film forming conditions shown in Table 5 of A- (3) above, DMSe was bubbled using He gas as a carrier gas, and a film forming chamber was formed together with the raw material gas (A) at a flow rate of 1.2 × 10 −10 mol / min. Sample No.
51 to 60 were prepared.

このようにして作製された試料No.31〜60についてA
及びBの項で実施したのと同様の測定、評価を行ったの
と同時に、熱起電力測定法により伝導型を評価した。そ
の結果、Bの項で○以上の総合評価を得た試料No.4〜1
0、No.13〜18、No.25〜29の成膜条件に対応する試料No.
34〜40、No.43〜48、No.55〜59では、いずれの評価項目
においても、ほとんど変化は認められず、特に水素原子
含有量、フッ素原子含有量、平均結晶粒径、導電率変
化、フォトルミネッセンスについては良好な再現性を示
し、伝導型はn型を示した。
Samples Nos. 31 to 60 produced in this manner
In addition to the same measurements and evaluations as those performed in the sections B and B, the conductivity type was evaluated by a thermoelectromotive force measurement method. As a result, Sample Nos. 4-1 to 1 obtained a comprehensive evaluation of
Sample No. corresponding to the film forming conditions of No. 0, No. 13 to 18, and No. 25 to 29
For 34 to 40, No. 43 to 48, and No. 55 to 59, almost no change was observed in any of the evaluation items, and in particular, hydrogen atom content, fluorine atom content, average crystal grain size, change in conductivity. And the photoluminescence showed good reproducibility, and the conductivity type showed n-type.

したがって、本発明においては、水素原子含有量が0.
5atomic%〜7atomic%、フッ素原子含有量が0atomic%
〜3atomic%、平均結晶粒径が50Å〜800Åの範囲に制御
されていることで良好なn型のドーピングが行われるこ
とが判った。
Therefore, in the present invention, the hydrogen atom content is 0.
5 atomic%-7 atomic%, fluorine atom content is 0 atomic%
It has been found that good n-type doping can be performed by controlling the average crystal grain size to within the range of 50 to 800 at%.

(2)p型ドーピング 前述のA−(1)での第1表に示した成膜条件におい
て、p型の価電子制御原子であるZn原子を含む原料ガス
としてのZn(CH32(以降DMZnと略す。)を、バブリン
グ装置に詰め、Heをキャリアーガスとしてバブリングし
4.3×10-10mol/minの流量で原料ガス(A)とともに活
性化室208へ導入した以外は全く同様の方法で試料No.61
〜70を作製した。
(2) P-type doping Under the film forming conditions shown in Table 1 in A- (1) above, Zn (CH 3 ) 2 (Zn (CH 3 ) 2 (raw material gas containing Zn atom which is a p-type valence electron controlling atom) Hereafter abbreviated as DMZn) in a bubbling device, and bubbling with He as a carrier gas.
Sample No. 61 was prepared in exactly the same manner except that it was introduced into the activation chamber 208 together with the raw material gas (A) at a flow rate of 4.3 × 10 −10 mol / min.
~ 70 were made.

また、前述のA−(2)の第3表に示した成膜条件に
おいて、DMZnをHeガスをキャリアーガスとしてバブリン
グし、6.8×10-11mol/minの流量でスパッタ用ガスとと
もに成膜室301へ導入した以外は全く同様の方法で試料N
o.71〜80を作製した。
Under the film forming conditions shown in Table 3 of A- (2) above, DMZn was bubbled using He gas as a carrier gas, and a film forming chamber was formed together with a sputtering gas at a flow rate of 6.8 × 10 −11 mol / min. Sample N was prepared in exactly the same way except that it was introduced into 301.
o.71 to 80 were prepared.

さらに、前述のA−(3)の第5表に示した成膜条件
において、DMZnをHeガスをキャリアーガスとしてバブリ
ングし、2.4×10-10mol/minの流量で原料ガス(A)と
ともに成膜室401へ導入した以外は全く同様の方法で試
料No.81〜90を作製した。
Further, under the film forming conditions shown in Table 5 of A- (3) above, DMZn was bubbled using He gas as a carrier gas, and the raw material gas (A) was formed at a flow rate of 2.4 × 10 −10 mol / min. Samples Nos. 81 to 90 were prepared in exactly the same manner except that the sample No. was introduced into the membrane chamber 401.

このようにして作製された試料No.61〜90についてA
及びBの項で実施したのと同様の測定、評価を行ったの
と同時に、熱起電力測定法により伝導型を評価した。そ
の結果、Bの項で○以上の総合評価を得た試料No.4〜1
0、No.13〜18、No.25〜29の成膜条件に対応する試料No.
64〜70、No.73〜78、No.85〜89では、いずれの評価項目
においても、ほとんど変化は認められず、特に水素原子
含有量、フッ素原子含有量、平均結晶粒径、導電率変
化、フォトルミネッセンスについては良好な再現性を示
し、伝導型はp型を示した。
Sample Nos. 61 to 90 produced in this manner
In addition to the same measurements and evaluations as those performed in the sections B and B, the conductivity type was evaluated by a thermoelectromotive force measurement method. As a result, Sample Nos. 4-1 to 1 obtained a comprehensive evaluation of
Sample No. corresponding to the film forming conditions of No. 0, No. 13 to 18, and No. 25 to 29
In 64 to 70, No. 73 to 78, and No. 85 to 89, almost no change was observed in any of the evaluation items, in particular, hydrogen atom content, fluorine atom content, average crystal grain size, change in conductivity. And the photoluminescence showed good reproducibility, and the conductivity type was p-type.

したがって、本発明においては、水素原子含有量が0.
5atomic%〜7atomic%、フッ素原子含有量が0atomic%
〜3atomic%、平均結晶粒径が50Å〜800Åの範囲に制御
されていることで良好なp型のドーピングが行われるこ
とが判った。
Therefore, in the present invention, the hydrogen atom content is 0.
5 atomic%-7 atomic%, fluorine atom content is 0 atomic%
It has been found that good p-type doping can be performed by controlling the average crystal grain size within the range of 50 to 800 at 3 atomic%.

実験結果のまとめ 以上の結果から、以下のことが理解された。すなわ
ち、堆積膜の形成過程において、適当量の水素ラジカル
を存在させることによって、堆積される膜の結晶配向性
が向上し、平均結晶粒径も増大する。また、必要に応じ
てフッ素ラジカルを存在させることでも前記膜形成反応
が促進される。さらに、B原子とP原子との膜中での分
布状態も改善されて均一となり、特定の原子がクラスタ
ー化することがなくなっている。そして、前記水素ラジ
カル及び/又はフッ素ラジカルは膜形成に作用するばか
りではなく、堆積膜中にも然るべき量が未結合手をター
ミネイトするように含有され、膜の諸特性の向上にも重
要な役割りを果たすこととなる。たとえば、光強度の強
い光を長時間照射行った場合には、水素原子及びフッ素
原子が全く含まれないか、含まれていても微量、もしく
は過剰量含まれている膜においては、不安定な結合手の
解離、加水分解等外的要因による副反応が促進され、膜
構造、組成の変化、水素原子及び/又はフッ素原子の脱
離による未結合手の増加等により、初期の膜構造状態の
変化、すなわち劣化が生じてしまう。一方、水素原子が
0.5atomic%〜7atomic%、フッ素原子が0atomic%〜3at
omic%の量、堆積膜中に含有される場合には、これらの
原子は結晶粒中に存在するであろう未結合手をターミネ
イトしたり、結晶粒界に多く存在するといわれる未結合
手をターミネイトすることでいわゆる結晶欠陥準位密度
を低減すると同時に構造的に発生する応力の緩和がなさ
れ、電気的、光学的、機械的にも優れた膜となる。した
がって、このようにノンドープで安定して良質の膜が形
成される故、p型およびn型ドーピングも容易に、確実
に達成されることとなる。
Summary of Experimental Results From the above results, the following was understood. That is, in the process of forming the deposited film, the presence of an appropriate amount of hydrogen radicals improves the crystal orientation of the deposited film and increases the average crystal grain size. In addition, the presence of fluorine radicals as required promotes the film formation reaction. Furthermore, the distribution state of B atoms and P atoms in the film is also improved and uniform, and specific atoms are not clustered. The hydrogen radicals and / or fluorine radicals not only act on the film formation, but also contain an appropriate amount in the deposited film so as to terminate dangling bonds, and play an important role in improving various characteristics of the film. Will be fulfilled. For example, when irradiation with strong light is performed for a long time, a film containing no hydrogen atoms or fluorine atoms at all, or a very small amount or even an excessive amount of hydrogen atoms and fluorine atoms is unstable. Side reactions due to external factors such as bond dissociation and hydrolysis are promoted, and changes in the film structure and composition, the increase in dangling bonds due to the elimination of hydrogen atoms and / or fluorine atoms, etc. cause the initial film structure state to change. A change, that is, deterioration occurs. On the other hand, a hydrogen atom
0.5 atomic%-7 atomic%, fluorine atom 0 atomic%-3 atomic
When the atoms are contained in the deposited film in the amount of omic%, these atoms terminate dangling bonds that may be present in the crystal grains, or dangling bonds that are said to be abundant in the crystal grain boundaries. By terminating, the so-called crystal defect state density is reduced, and at the same time, the stress generated structurally is reduced, and a film excellent in electrical, optical and mechanical properties is obtained. Therefore, since a high-quality film is formed stably without being doped, p-type and n-type doping can be easily and reliably achieved.

本発明において、BP:H(F)膜をn型に価電子制御す
るのに用いられる元素は、周期律表第VI A族の元素、す
なわち、O,S,Se,Teが挙げられ、中でも、Se,Teが好適に
用いられる。一方、p型に価電子制御するのに用いられ
る元素は、周期律表第II B族の元素、すなわち、Zn,Cd,
Hgが挙げられ、中でもZn,Cdが好適に用いられる。
In the present invention, the elements used to control the BP: H (F) film to be n-type valence electrons include elements of Group VIA of the periodic table, that is, O, S, Se, and Te. , Se and Te are preferably used. On the other hand, the elements used for p-type valence electron control are elements of group IIB of the periodic table, namely, Zn, Cd,
Hg is mentioned, and among them, Zn and Cd are preferably used.

具体的には、II B族元素を含む化合物としては、Zn
(CH32,Zn(C2H52,Zn(OCH32,Zn(OC2H52,Cd
(CH32,Cd(C2H52,Cd(C3H72,Cd(C4H92,Hg(C
H32,Hg(C2H52,Hg(C6H52,Hg〔C≡(C6H5)〕2
等を挙げることができ、VI A族元素を含む化合物として
は、NO,N2O、CO2,CO,H2S,SCl2,S2Cl2,SOCl2,SO2C
l2,SeCl4,Se2Cl2,Se2Br2,SeOCl2,Se(CH32,Se(C
2H52,TeCl2,Te(CH32,Te(C2H52等を挙げること
ができる。
Specifically, as a compound containing a group IIB element, Zn
(CH 3) 2, Zn ( C 2 H 5) 2, Zn (OCH 3) 2, Zn (OC 2 H 5) 2, Cd
(CH 3) 2, Cd ( C 2 H 5) 2, Cd (C 3 H 7) 2, Cd (C 4 H 9) 2, Hg (C
H 3 ) 2 , Hg (C 2 H 5 ) 2 , Hg (C 6 H 5 ) 2 , Hg [C≡ (C 6 H 5 )] 2
Examples of compounds containing a VIA group element include NO, N 2 O, CO 2 , CO, H 2 S, SCl 2 , S 2 Cl 2 , SOCl 2 , and SO 2 C
l 2, SeCl 4, Se 2 Cl 2, Se 2 Br 2, SeOCl 2, Se (CH 3) 2, Se (C
2 H 5) 2, TeCl 2 , Te (CH 3) 2, Te (C 2 H 5) may be mentioned 2.

勿論、これ等の原料物質は1種のみを用いてもよい
が、2種又はそれ以上を併用してもよい。そして、これ
らの原料物質が常温、常圧で液体もしくは固体状態であ
る場合には、バブリング装置を用いてAr,He等の不活性
ガスをキャリアーガスとしてバブリングし、ガス化して
用いるか、加熱昇華炉を用いてAr、He等の不活性ガスを
キャリアーガスとして昇華物を輸送して用いる。
Of course, these raw materials may be used alone or in combination of two or more. When these raw materials are in a liquid or solid state at normal temperature and normal pressure, bubbling is performed using an inert gas such as Ar or He as a carrier gas using a bubbling device, and then used in a gasified state or heated and sublimated. A sublimate is transported and used using a furnace with an inert gas such as Ar or He as a carrier gas.

さらに周期律表IV A族の元素、すなわち、C,Si,Ge,S
n,Pbを価電子制御用原子として用いることもできる。す
なわち、これらの原子がB原子を置換した場合にはn型
となり、P原子を置換した場合にはp型となる。また、
両者の原子を置換した場合には中性化することもある
が、置換率の相違によってn型又はp型いずれかの伝導
型を示す。中でも、Si,Ge,Snが好適に用いられる。
Further, the elements of group A of the periodic table IV, namely, C, Si, Ge, S
n and Pb can be used as valence electron controlling atoms. That is, when these atoms replace B atoms, they become n-type, and when these atoms replace P atoms, they become p-type. Also,
When both atoms are substituted, they may be neutralized, but show either n-type or p-type conductivity depending on the difference in the substitution rate. Among them, Si, Ge, and Sn are preferably used.

具体的には、CH4,C2H6,C2H4,C2H2,C3H8,C3H6,C
3H4,CF4,(CF25,(CF26,(CF24,C2F6,C
3F8,CHF3,CH2F2,CCl4,(CCl25,CBr4,(CB
r25,C2Cl6,C2Br6,CHCl3,CH2Cl2,CHI3,CH2I2,C
2Cl3F3,C2H3F3,C2H2F4,SiH4,Si2H6,Si3H8,(Si
H24,(SiH25,(SiH26,SiF4,(SiF25,(Si
F26,(SiF24,Si2F6,Si3F8,SiHF3,SiH2F2,SiC
l4,(SiCl25,SiBr4,(SiBr25,Si2Cl6,Si2B
r6,SiHCl3,SiH2Cl2,SiHBr3,SiHI3,Si2Cl3F3,Si2H
3F3,Si2H2F4,Si2H3Cl3,Si2H2Cl4,GeH4,Ge2H6,GeF
4,(GeF25,(GeF26,(GeF24,Ge2F6,Ge3F8
GeHF3,GeH2F2,GeCl4,(GeCl25,GeBr4,(GeBr2
5,Ge2Cl6,Ge2Br6,GeHCl3,GeH2Cl2,GeHBr3,GeH
I3,Ge2Cl3F3,Ge2H3F3,Ge2H3Cl3,Ge2H2F4,Ge2H2C
l4,SnH4,SnCl4,SnBr4,Sn(CH34,Sn(C2H54,Sn
(C3H74,Sn(C4H94,Sn(OCH34,Sn(OC2H54,Sn
(i−OC3H74,Sn(t−OC4H94,Pb(CH34,Pb(C2H
54,Pb(C4H94等を挙げることができる。
Specifically, CH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , C 3 H 8 , C 3 H 6 , C
3 H 4, CF 4, ( CF 2) 5, (CF 2) 6, (CF 2) 4, C 2 F 6, C
3 F 8, CHF 3, CH 2 F 2, CCl 4, (CCl 2) 5, CBr 4, (CB
r 2) 5, C 2 Cl 6, C 2 Br 6, CHCl 3, CH 2 Cl 2, CHI 3, CH 2 I 2, C
2 Cl 3 F 3 , C 2 H 3 F 3 , C 2 H 2 F 4 , SiH 4 , Si 2 H 6 , Si 3 H 8 , (Si
H 2) 4, (SiH 2 ) 5, (SiH 2) 6, SiF 4, (SiF 2) 5, (Si
F 2 ) 6 , (SiF 2 ) 4 , Si 2 F 6 , Si 3 F 8 , SiHF 3 , SiH 2 F 2 , SiC
l 4, (SiCl 2) 5 , SiBr 4, (SiBr 2) 5, Si 2 Cl 6, Si 2 B
r 6 , SiHCl 3 , SiH 2 Cl 2 , SiHBr 3 , SiHI 3 , Si 2 Cl 3 F 3 , Si 2 H
3 F 3, Si 2 H 2 F 4, Si 2 H 3 Cl 3, Si 2 H 2 Cl 4, GeH 4, Ge 2 H 6, GeF
4, (GeF 2) 5, (GeF 2) 6, (GeF 2) 4, Ge 2 F 6, Ge 3 F 8,
GeHF 3 , GeH 2 F 2 , GeCl 4 , (GeCl 2 ) 5 , GeBr 4 , (GeBr 2 )
5, Ge 2 Cl 6, Ge 2 Br 6, GeHCl 3, GeH 2 Cl 2, GeHBr 3, GeH
I 3 , Ge 2 Cl 3 F 3 , Ge 2 H 3 F 3 , Ge 2 H 3 Cl 3 , Ge 2 H 2 F 4 , Ge 2 H 2 C
l 4, SnH 4, SnCl 4 , SnBr 4, Sn (CH 3) 4, Sn (C 2 H 5) 4, Sn
(C 3 H 7 ) 4 , Sn (C 4 H 9 ) 4 , Sn (OCH 3 ) 4 , Sn (OC 2 H 5 ) 4 , Sn
(I-OC 3 H 7) 4, Sn (t-OC 4 H 9) 4, Pb (CH 3) 4, Pb (C 2 H
5 ) 4 , Pb (C 4 H 9 ) 4 and the like.

勿論、これらの原料物質は1種のみならず2種以上混
合して使用することもできる。
Of course, these raw materials can be used alone or in combination of two or more.

前記した原料物質が常温、常圧下で気体状態である場
合にはマスフローコントローラー等によって成膜空間又
は活性化空間への導入量を制御し、液体状態である場合
は、Ar,He等の希ガス又は水素ガスをキャリアーガスと
して、必要に応じ温度制御が可能なバブラーを用いてガ
ス化し、また、固体状態である場合には、Ar,He等の希
ガス又は水素ガスをキャリアーガスとして加熱昇華炉を
用いてガス化して、主にキャリアーガス流量と炉温度に
より導入量を制御する。
When the raw material is in a gaseous state under normal temperature and normal pressure, the amount introduced into the film formation space or the activation space is controlled by a mass flow controller or the like, and in a liquid state, a rare gas such as Ar or He is used. Alternatively, hydrogen gas is used as a carrier gas, and gasification is performed using a bubbler whose temperature can be controlled as necessary.If the gas is in a solid state, a rare gas such as Ar or He or a hydrogen gas is used as a carrier gas to heat the sublimation furnace. And the amount introduced is controlled mainly by the flow rate of the carrier gas and the furnace temperature.

前記本発明の(1)および(3)の方法において用い
られるB原子を含有する原料物質としては、B2H6,B4H
10,B5H9,B5H11,B6H10,B6H12,B6H14等の水素化ホウ
素、BF3,BCl3,BBr3等のハロゲン化ホウ素、B(CH3
3等が挙げられる。また、P原子を含有する原料物質と
しては、具体的には、PH3,P2H4,PF3,PF5,PCl3,PCl
5,PBr3,PBr5,P(CH33,P(C2H53,P(C3H73,P(C
4H93,P(OCH33,P(OC2H53,P(OC3H73,P(OC
4H93,P2O5,POCl3,PO(OCH33,PO(OC2H53,PO(O
C3H73,PO(OC4H93等を挙げることができる。
Examples of the raw material containing a B atom used in the methods (1) and (3) of the present invention include B 2 H 6 , B 4 H
10, B 5 H 9, B 5 H 11, B 6 H 10, B 6 H 12, B 6 H 14 , etc. borohydride, BF 3, BCl 3, BBr 3 , etc. of boron halide, B (CH 3 )
3 and the like. As the raw material containing P atoms, specifically, PH 3 , P 2 H 4 , PF 3 , PF 5 , PCl 3 , PCl
5, PBr 3, PBr 5, P (CH 3) 3, P (C 2 H 5) 3, P (C 3 H 7) 3, P (C
4 H 9) 3, P ( OCH 3) 3, P (OC 2 H 5) 3, P (OC 3 H 7) 3, P (OC
4 H 9) 3, P 2 O 5, POCl 3, PO (OCH 3) 3, PO (OC 2 H 5) 3, PO (O
C 3 H 7 ) 3 , PO (OC 4 H 9 ) 3 and the like.

勿論、これらの原料物質は1種のみならず2種以上混
合して使用することもできる。
Of course, these raw materials can be used alone or in combination of two or more.

前記した原料物質が常温、常圧下で気体状態である場
合にはマスフローコントローラー等によって成膜空間又
は活性化空間への導入量を制御し、液体状態である場合
は、Ar,He等の希ガス又は水素ガスをキャリアーガスと
して、必要に応じ温度制御が可能なバブラーを用いてガ
ス化し、また固体状態である場合には、Ar,He等の希ガ
ス又は水素ガスをキャリアーガスとして加熱昇華炉を用
いてガス化して、主にキャリアーガス流量と炉温度によ
り導入量を制御する。
When the raw material is in a gaseous state under normal temperature and normal pressure, the amount introduced into the film formation space or the activation space is controlled by a mass flow controller or the like, and in a liquid state, a rare gas such as Ar or He is used. Alternatively, using a hydrogen gas as a carrier gas, gasification is performed using a bubbler capable of controlling the temperature as necessary, and when in a solid state, a heating sublimation furnace using a rare gas such as Ar or He or hydrogen gas as a carrier gas is used. It is used for gasification, and the amount introduced is controlled mainly by the carrier gas flow rate and the furnace temperature.

前記本発明(1)乃至(3)の方法によりBP:H(F)
膜を形成する際には、いずれの方法においても基板温度
は、好ましくは50℃〜600℃、より好ましくは50℃〜450
℃、最適には100℃〜400℃に設定されることが望まし
い。また、前記本発明の(1)及び(3)の方法におけ
る成膜時の内圧は、好ましくは1×10-4Torr〜50Torr、
より好ましくは5×10-3Torr〜10Torr、最適には1×10
-3Torr〜5Torrに設定されるのが望ましい。一方、
(2)の方法においては、好ましくは1×10-5Torr〜1
×10-1Torr、より好ましくは1×10-4Torr〜1×10-2To
rrに設定されるのが望ましい。
According to the method of the present invention (1) to (3), BP: H (F)
In forming the film, the substrate temperature in any method is preferably 50 ° C to 600 ° C, more preferably 50 ° C to 450 ° C.
° C, optimally between 100 ° C and 400 ° C. The internal pressure at the time of film formation in the methods (1) and (3) of the present invention is preferably 1 × 10 −4 Torr to 50 Torr,
More preferably 5 × 10 −3 Torr to 10 Torr, optimally 1 × 10 Torr
It is desirable to set to -3 Torr to 5 Torr. on the other hand,
In the method (2), preferably 1 × 10 −5 Torr to 1
× 10 -1 Torr, more preferably 1 × 10 -4 Torr to 1 × 10 -2 To
Preferably set to rr.

本実施例の(1)乃至(3)の方法は、前述したよう
に、第2図乃至第4図に示した構成の堆積膜形成装置に
より実施されるが、これらの構成に何ら限定されるもの
ではない。
As described above, the methods (1) to (3) of this embodiment are performed by the deposited film forming apparatus having the configuration shown in FIGS. 2 to 4, but are not limited to these configurations. Not something.

次に、本発明の光起電力素子構成について説明する。
pinヘテロ接合を用いた光起電力素子を構成するにあた
り、p型半導体層側より光入射を行う場合、p型半導体
層が極く薄い場合には該層での光の吸収量は極めて少な
く、入射光のほとんどをi型半導体層に吸収させること
ができ、大きな光電流を取り出すことが期待される。
Next, the configuration of the photovoltaic element of the present invention will be described.
In configuring a photovoltaic element using a pin heterojunction, when light is incident from the p-type semiconductor layer side, when the p-type semiconductor layer is extremely thin, the amount of light absorbed by the layer is extremely small, Most of the incident light can be absorbed by the i-type semiconductor layer, and a large photocurrent is expected to be taken out.

しかし、前記p型半導体層の層厚を薄くするにも、物
理的、電気的特性上限界があり、成膜技術的にも数十Å
〜数百Åの厚さは必要であって、用いるp型半導体層の
バンドギャップの大きさによってはここでの光吸収量が
無視できないものとなる。
However, reducing the thickness of the p-type semiconductor layer has limitations in physical and electrical characteristics, and several tens of thousands in film forming technology.
A thickness of about several hundreds of mm is necessary, and the amount of light absorption here cannot be ignored depending on the band gap of the p-type semiconductor layer used.

したがって、比較的短波長側の光を吸収しフォトキャ
リアを発生するA−Si:HやA−SiC:Hをi型半導体層と
して用いる場合には、特にこのp型半導体層での光吸収
を抑えることにより、取り出される光電流の大幅な改善
がなされる。それ故、p型半導体層としてはバンドギャ
ップの広い半導体材料で構成されることが必要である。
Therefore, when A-Si: H or A-SiC: H that absorbs light on the relatively short wavelength side and generates photocarriers is used as the i-type semiconductor layer, the light absorption in the p-type semiconductor layer is particularly reduced. By suppressing this, a significant improvement in the extracted photocurrent is achieved. Therefore, it is necessary that the p-type semiconductor layer be made of a semiconductor material having a wide band gap.

一方、pinヘテロ接合型光起電力素子において、p型
半導体層及び/又はn型半導体層にバンドギャップの広
い半導体材料を用いた場合には、高い開放電圧(Voc)
を発生させることができ、前述の効果との相乗効果によ
り高い光電変換効率を達成することができる。
On the other hand, in the case of using a semiconductor material having a wide band gap for the p-type semiconductor layer and / or the n-type semiconductor layer in the pin heterojunction photovoltaic device, a high open-circuit voltage (Voc) is obtained.
Can be generated, and a high photoelectric conversion efficiency can be achieved by a synergistic effect with the above-described effect.

本発明に係わるp型又はn型の伝導型を有するBP:H
(F)膜は、その組成及び構造等について、特に水素原
子及び/又はフッ素原子の特定量が含有され、且つ平均
結晶粒径が所定値の範囲にあるものであれば、膜中に存
在する欠陥が極めて低減されたものであり、従来のBP膜
に比較して大幅に特性改善がなされているので上記目的
を達成するのに好適な材料として用いることができる。
BP: H having p-type or n-type conductivity according to the present invention
(F) The film is present in the film as long as it contains a specific amount of hydrogen atoms and / or fluorine atoms and has an average crystal grain size within a predetermined value range, particularly in terms of its composition and structure. Since defects are extremely reduced and the characteristics are greatly improved as compared with the conventional BP film, it can be used as a material suitable for achieving the above object.

勿論、上述の考え方はn型半導体層側より光入射を行
う場合にも適用される。さらに、pinヘテロ接合型光起
電力素子を2層もしくは3層積層したいわゆるタンデム
型又はトリプル型光起電力素子においては、最も光入射
側に位置する光起電力素子に、本発明に係わるp型又は
n型の伝導型を有するBP:H:F膜をp型及び/又はn型半
導体層として用いることの効果は大きい。
Of course, the above concept is also applied to the case where light is incident from the n-type semiconductor layer side. Furthermore, in a so-called tandem type or triple type photovoltaic element in which two or three pin heterojunction type photovoltaic elements are stacked, the p-type photovoltaic element located closest to the light incident side is the p-type according to the present invention. Alternatively, the effect of using a BP: H: F film having an n-type conductivity type as a p-type and / or n-type semiconductor layer is great.

また、比較的長波長側の光まで吸収できるため、本来
大きな光電流の取れるA−SiGe:Hやμc−Si:Hをi型半
導体層として用いた場合でも、バンドギャップの大きな
本発明のBP:H(F)膜から成るp型半導体層とバンドギ
ャップの狭いi型半導体層との間の伝導帯のギャップに
起因する、いわゆるバックサーフェスフィールド効果に
より、i型半導体層で発生した電子のp−i接合界面で
の逆拡散が防止され、やはり光電流の増大が期待でき
る。
Further, since light of a relatively long wavelength side can be absorbed, even when A-SiGe: H or μc-Si: H capable of originally obtaining a large photocurrent is used as the i-type semiconductor layer, the BP of the present invention having a large band gap is used. : Electron generated in the i-type semiconductor layer by the so-called back surface field effect caused by the conduction band gap between the p-type semiconductor layer composed of the H (F) film and the i-type semiconductor layer having a narrow band gap. Reverse diffusion at the -i junction interface is prevented, and an increase in photocurrent can be expected.

本発明の光起電力素子は前述してきた通り大きな光電
流が取れ、その光電変換率は従来より大幅に向上する。
このことから蛍光灯のように比較的短波長光成分の多い
光源に対しても、白熱電球のように長波長光成分の多い
光源に対しても、優れた光電変換効率が得られるので本
発明の光起電力素子は、民生機器用の電源として好適に
用いることができる。
As described above, the photovoltaic element of the present invention can obtain a large photocurrent, and its photoelectric conversion rate is greatly improved as compared with the conventional one.
Therefore, the present invention can provide excellent photoelectric conversion efficiency both for a light source having a relatively large wavelength component such as a fluorescent lamp and a light source having a large wavelength component such as an incandescent lamp. Can be suitably used as a power source for consumer equipment.

また、前述したようにタンデム型又はトリプル型とし
た場合には使用に伴う特性の劣化は、実用上支障の無い
程度に抑えられることからその優れた光電変換効率と相
まって、本発明の光起電力素子は太陽光発電による電力
供給システム用の太陽電池としても好適に用いることが
できる。
In addition, when the tandem type or the triple type is used as described above, the deterioration of characteristics due to use is suppressed to a level that does not hinder practical use. The element can be suitably used also as a solar cell for a power supply system by solar power generation.

以下に本発明の光起電力素子の層構成の例を示すが、
本発明の光起電力素子はこれにより何ら限定されるもの
ではない。
Hereinafter, examples of the layer configuration of the photovoltaic device of the present invention will be described.
The photovoltaic device of the present invention is not limited by this.

第1図(A)及び(B)は、本発明の光起電力素子と
して本発明に係わる半導体堆積膜を用いた場合の層構成
の典型的な例を模式的に示す図である。
FIGS. 1A and 1B are diagrams schematically showing a typical example of a layer configuration when a semiconductor deposited film according to the present invention is used as a photovoltaic element of the present invention.

第1図(A)に示す例は、支持体101上に下部電極10
2、n型半導体層103、i型半導体層104、p型半導体層1
05、透明電極106及び集電電極107をこの順に堆積形成し
た光起電力素子100である。なお、本光起電力素子では
透明電極106の側より光の入射が行われることを前提と
している。
In the example shown in FIG. 1A, the lower electrode 10
2, n-type semiconductor layer 103, i-type semiconductor layer 104, p-type semiconductor layer 1
05 is a photovoltaic element 100 in which a transparent electrode 106 and a collecting electrode 107 are formed in this order. In this photovoltaic element, it is assumed that light is incident from the transparent electrode 106 side.

第1図(B)に示す例は、透光性の支持体101上に透
明電極106、p型半導体層105、i型半導体層104、n型
半導体層103及び下部電極102をこの順に堆積形成した光
起電力素子100である。本光起電力素子では透光性の支
持体101の側より光の入射が行われることを前提として
いる。
In the example shown in FIG. 1B, a transparent electrode 106, a p-type semiconductor layer 105, an i-type semiconductor layer 104, an n-type semiconductor layer 103, and a lower electrode 102 are deposited and formed in this order on a translucent support 101. This is the photovoltaic element 100 obtained. In this photovoltaic element, it is assumed that light is incident from the transparent support 101 side.

第1図(C)に示す例は、バンドギャップ及び/又は
層厚の異なる3種の半導体層をi層として用いたpin接
合型光起電力素子111,112,113を3素子積層して構成さ
れた、いわゆるトイプル型光起電力素子120である。101
は支持体であり、下部電極102、n型半導体層103、i型
半導体層104、p型半導体層105、n型半導体層114、i
型半導体層115、p型半導体層116、n型半導体層117、
i型半導体層118、p型半導体層119、透明電極106及び
集電電極107がこの順に積層形成され、本光起電力素子
では透明電極106の側より光の入射が行われることを前
提としている。
The example shown in FIG. 1 (C) is a so-called so-called pin-type photovoltaic element 111, 112, 113 using three types of semiconductor layers having different band gaps and / or layer thicknesses as i-layers. This is a toy pull type photovoltaic element 120. 101
Denotes a support, and the lower electrode 102, the n-type semiconductor layer 103, the i-type semiconductor layer 104, the p-type semiconductor layer 105, the n-type semiconductor layer 114, i
Semiconductor layer 115, p-type semiconductor layer 116, n-type semiconductor layer 117,
The i-type semiconductor layer 118, the p-type semiconductor layer 119, the transparent electrode 106, and the current collecting electrode 107 are laminated in this order, and it is assumed that light is incident from the transparent electrode 106 side in this photovoltaic element. .

なお、いずれの光起電力素子においてもn型半導体層
とp型半導体層とは目的に応じて各層の積層順を入れ変
えて使用することもできる。
In any of the photovoltaic elements, the n-type semiconductor layer and the p-type semiconductor layer can be used in a different order of lamination according to the purpose.

以下、これらの光起電力素子の構成について説明す
る。
Hereinafter, the configurations of these photovoltaic elements will be described.

支持体 本発明において用いられる支持体101は、単結晶質も
しくは非単結晶質のものであってもよく、さらにそれら
は導電性のものであっても、また電気絶縁性のものであ
っても、また電気絶縁性のものであってもよい。さらに
は、それらは透光性のものであってもよい。さらには、
それらは透光性のものであっても、また非透光性のもの
であってもよいが、支持体101の側より光入射が行われ
る場合には、もちろん透光性であることが必要である。
それらの具体例として、Fe,Ni,Cr,Al,Mo,Au,Nb,Ta,V,T
i,Pt,Pb等の金属又はこれらの合金、例えば真ちゅう、
ステンレス鋼等が挙げられる。
Support The support 101 used in the present invention may be single-crystalline or non-single-crystalline, and furthermore, they may be conductive or electrically insulating. Alternatively, it may be electrically insulating. Furthermore, they may be translucent. Moreover,
They may be light-transmitting or non-light-transmitting, but need to be light-transmitting when light enters from the support 101 side. It is.
As specific examples thereof, Fe, Ni, Cr, Al, Mo, Au, Nb, Ta, V, T
metals such as i, Pt, Pb or alloys thereof, such as brass,
Stainless steel and the like.

これらの他、ポリエステル、ポリエチレン、ポリカー
ボネート、セルロースアセテート、ポリプロピレン、ポ
リ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポ
リアミド、ポリイミド等の合成樹脂のフィルム又はシー
ト、ガラス、セラミックス等が挙げられる。
In addition to these, there may be mentioned films or sheets of synthetic resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, etc., glass, ceramics and the like.

また単結晶性支持体としては、Si,Ge,C,NaCl,KCl,Li
F,GaSb,InAs,InSb,Gap,MgO,CaF2,BaF2,α−Al2O3等の
単結晶体よりスライスしてウエハー状等に加工したも
の、およびこれらの上に同物質もしくは格子定数の近い
物質をエピタキシャル成長させたものが挙げられる。
In addition, as a single crystalline support, Si, Ge, C, NaCl, KCl, Li
F, GaSb, InAs, InSb, Gap, MgO, CaF 2 , BaF 2 , α-Al 2 O 3 etc. sliced from a single crystal and processed into a wafer, etc., and the same substance or lattice on them A material obtained by epitaxially growing a material having a constant close to that is exemplified.

支持体の形状は目的、用途により平滑表面あるいは凹
凸表面の板状、長尺ベルト状、円筒状等であることがで
き、その厚さは、所望通りの光起電力素子を形成しうる
ように適宜決定するが、光起電力素子として可撓性が要
求される場合、または支持体の側より光入射がなされる
場合には、支持体としての機能が十分発揮される範囲内
で可能な限り薄くすることができる。しかしながら、支
持体の製造上及び取扱い上、機械的強度等の点から、通
常は10μm以上とされる。
The shape of the support can be plate-shaped, long belt-shaped, cylindrical, or the like having a smooth surface or an uneven surface depending on the purpose and application, and the thickness thereof is such that a desired photovoltaic element can be formed. It is determined as appropriate, but when flexibility is required as the photovoltaic element, or when light is incident from the side of the support, as much as possible within the range where the function as the support is sufficiently exhibited. Can be thin. However, the thickness is usually 10 μm or more from the viewpoints of production and handling of the support, mechanical strength and the like.

電極 本発明の光起電力素子においては、当該素子の構成形
態により適宜の電極が選択使用される。それらの電極と
しては、下部電極、上部電極(透明電極)、集電電極を
挙げることができる。(ただし、ここで言う上部電極と
は光の入射側に設けられたものを示し、下部電極とは半
導体層を挟んで上部電極に対向して設けられたものを示
すこととする。) これらの電極について以下に詳しく説明する。
Electrode In the photovoltaic element of the present invention, an appropriate electrode is selected and used depending on the configuration of the element. Examples of these electrodes include a lower electrode, an upper electrode (transparent electrode), and a collecting electrode. (However, the upper electrode referred to here indicates an electrode provided on the light incident side, and the lower electrode indicates an electrode provided opposite to the upper electrode with a semiconductor layer interposed therebetween.) The electrodes are described in detail below.

(i)下部電極 本発明において用いられる下部電極102としては、上
述した支持体101の材料が透光性であるか否かによっ
て、光起電力発生用の光を照射する面が異なる故(たと
えば支持体101が金属等の非透光性の材料である場合に
は、第1図(A)で示したごとく透明電極106側から光
起電力発生用の光を照射する。)、その設置される場所
が異なる。
(I) Lower Electrode As the lower electrode 102 used in the present invention, the surface to which light for generating photovoltaic light is irradiated is different depending on whether or not the material of the support 101 is translucent (for example, When the support 101 is a non-translucent material such as a metal, light for photovoltaic generation is irradiated from the transparent electrode 106 side as shown in FIG. 1 (A)). Location is different.

具体的には、第1図(A)及び(C)のような層構成
の場合には支持体101とn型半導体層103との間に設けら
れる。しかし、支持体101が導電性である場合には、該
支持体が下部電極を兼ねることができる。ただし、支持
体101が導電性であってもシート抵抗値が高い場合に
は、電流取り出し用の低抵抗の電極として、あるいは支
持体面での反射率を高め入射光の有効利用を図る目的で
電極102を設置してもよい。
Specifically, in the case of a layer configuration as shown in FIGS. 1A and 1C, it is provided between the support 101 and the n-type semiconductor layer 103. However, when the support 101 is conductive, the support can also serve as the lower electrode. However, if the sheet resistance is high even if the support 101 is conductive, the electrode is used as a low-resistance electrode for extracting current or for the purpose of increasing the reflectance on the support surface and effectively using incident light. 102 may be installed.

第1図(B)の場合には透光性の支持体101が用いら
れており、支持体101の側から光が入射されるので、電
流取り出し及び当該電極での光反射用の目的で、下部電
極102が支持体101と対向して半導体層を挟んで設けられ
ている。
In the case of FIG. 1 (B), a light-transmitting support 101 is used, and light enters from the support 101 side. Therefore, for the purpose of current extraction and light reflection at the electrode, A lower electrode 102 is provided facing the support 101 with the semiconductor layer interposed therebetween.

また、支持体101として電気絶縁性のものを用いる場
合には電流取り出し用の電極として、支持体101とn型
半導体層103との間に下部電極102が設けられる。
When an electrically insulating material is used as the support 101, a lower electrode 102 is provided between the support 101 and the n-type semiconductor layer 103 as an electrode for extracting current.

電極材料としては、Ag,Au,Pt,Ni,Cr,Cu,Al,Ti,Zn,Mo,
W等の金属又はこれらの合金が挙げられ、これ等の金属
の薄膜を真空蒸着、電子ビーム蒸着、スパッタリング等
で形成する。また、形成された金属薄膜は光起電力素子
の出力に対して抵抗成分とならぬように配慮されねばな
らず、シート抵抗値として好ましくは50Ω以下、より好
ましくは10Ω以下であることが望ましい。
As electrode materials, Ag, Au, Pt, Ni, Cr, Cu, Al, Ti, Zn, Mo,
Metals such as W or alloys thereof are mentioned, and thin films of these metals are formed by vacuum evaporation, electron beam evaporation, sputtering, or the like. Further, care must be taken that the formed metal thin film does not become a resistance component with respect to the output of the photovoltaic element, and the sheet resistance is preferably 50Ω or less, more preferably 10Ω or less.

下部電極102とn型半導体層103との間に、図中には示
されていないが、導電性酸化亜鉛等の拡散防止層を設け
ても良い。該拡散防止層の効果としては電極102を構成
する金属元素がn型半導体層中へ拡散するのを防止する
のみならず、若干の抵抗値をもたせることで半導体層を
挟んで設けられた下部電極102と透明電極106との間にピ
ンホール等の欠陥で発生するショートを防止すること、
および薄膜による多重干渉を発生させ入射された光を光
起電力素子内に閉じ込める等の効果を挙げることができ
る。
Although not shown in the figure, a diffusion preventing layer such as conductive zinc oxide may be provided between the lower electrode 102 and the n-type semiconductor layer 103. The effect of the diffusion prevention layer is not only to prevent the metal element constituting the electrode 102 from diffusing into the n-type semiconductor layer, but also to provide a small resistance value so that the lower electrode provided with the semiconductor layer interposed therebetween. To prevent short-circuiting caused by a defect such as a pinhole between the transparent electrode 106 and the transparent electrode 106;
In addition, there can be obtained an effect that multiple interference by a thin film is generated and incident light is confined in a photovoltaic element.

(ii)上部電極(透明電極) 本発明において用いられる透明電極106としては太陽
や白色蛍光灯等からの光を半導体層内に効率良く吸収さ
せるために光の透過率が85%以上であることが望まし
く、さらに、電気的には光起電力素子の出力に対して抵
抗成分とならぬようにシート抵抗値は100Ω以下である
ことが望ましい。このような特性を備えた材料としてSn
O2,In2O3,ZnO,CdO,Cd2SnO4,ITO(In2O3+SnO2)などの
金属酸化物や、Au,Al,Cu等の金属を極めて薄く半透明状
に成膜した金属薄膜等が挙げられる。透明電極は第1図
(A)においてはp型半導体層105層の上に積層され、
第1図(B)においては基板101の上に積層されるもの
であるため、互いの密着性の良いものを選ぶことが必要
である。これらの作製方法としては、抵抗加熱蒸着法、
電子ビーム加熱蒸着法、スパッタリング法、スプレー法
等を用いることができ所望に応じて適宜選択される。
(Ii) Upper electrode (transparent electrode) The transparent electrode 106 used in the present invention has a light transmittance of 85% or more in order to efficiently absorb light from the sun or a white fluorescent lamp into the semiconductor layer. The sheet resistance is desirably 100Ω or less so that the output of the photovoltaic element does not become a resistance component. As a material having such properties, Sn
Metal oxides such as O 2 , In 2 O 3 , ZnO, CdO, Cd 2 SnO 4 , ITO (In 2 O 3 + SnO 2 ), and metals such as Au, Al, Cu etc. Metal thin film and the like. The transparent electrode is laminated on the p-type semiconductor layer 105 in FIG.
In FIG. 1B, since they are stacked on the substrate 101, it is necessary to select ones having good adhesion to each other. These production methods include resistance heating evaporation,
An electron beam heating vapor deposition method, a sputtering method, a spray method, or the like can be used, and is appropriately selected as desired.

(iii)集電電極 本発明において用いられる集電電極107は、透明電極1
06の表面抵抗値を低減させる目的で透明電極106上に設
けられる。電極材料としては、Ag,Cr,Ni,Al,Au,Ti,Pt,C
u,Mo,W等の金属又はこれらの合金の薄膜が挙げられる。
これらの薄膜は積層させて用いることができる。また、
半導体層への光入射光量が十分に確保されるよう、その
形状及び面積が適宜設計される。
(Iii) Current collecting electrode The current collecting electrode 107 used in the present invention is a transparent electrode 1
06 is provided on the transparent electrode 106 for the purpose of reducing the surface resistance value. Ag, Cr, Ni, Al, Au, Ti, Pt, C
Examples thereof include thin films of metals such as u, Mo, and W or alloys thereof.
These thin films can be stacked and used. Also,
The shape and area are appropriately designed so that the amount of light incident on the semiconductor layer is sufficiently ensured.

たとえば、その形状は光起電力素子の受光面に対して
一様に広がり、かつ受光面積に対してその面積は好まし
くは15%以下、より好ましくは10%以下であることが望
ましい。
For example, it is desirable that the shape is uniformly spread over the light receiving surface of the photovoltaic element, and that the area is preferably 15% or less, more preferably 10% or less with respect to the light receiving area.

また、シート抵抗値としては、好ましくは50Ω以下、
より好ましくは10Ω以下であることが望ましい。
Further, as a sheet resistance value, preferably 50Ω or less,
More preferably, it is desirably 10Ω or less.

i型半導体層 本発明において好適に用いられるi型半導体層を構成
する半導体材料としては、A−Si:H,A−Si:F,A−Si:H:
F,A−SiC:H,A−SiC:F,A−SiC:H:F,A−SiGe:H,A−SiGe:
F,A−SiGe:H:F,poly−Si:H,poly−Si:F,poly−Si:H:Fが
挙げられる。
i-type semiconductor layer As the semiconductor material constituting the i-type semiconductor layer suitably used in the present invention, A-Si: H, A-Si: F, A-Si: H:
F, A-SiC: H, A-SiC: F, A-SiC: H: F, A-SiGe: H, A-SiGe:
F, A-SiGe: H: F, poly-Si: H, poly-Si: F, poly-Si: H: F.

本発明の光起電力素子は、これらのi型半導体層と前
述した本発明のBP:H(F)で構成されるp型及び/又は
n型半導体層との組み合わせによって所望の特性が得ら
れるものである。この点については以下に述べる実験D
により、さらに明らかにされる。
In the photovoltaic element of the present invention, desired characteristics can be obtained by a combination of these i-type semiconductor layers and the aforementioned p-type and / or n-type semiconductor layers composed of BP: H (F) of the present invention. Things. Regarding this point, the following experiment D
Will be further clarified.

実験D 本実験においては、前述したi型半導体層の構成材料
の他に、水素及びフッ素を含まないA−Si,A−SiC,A−S
iGe,poly−Siもi型半導体層として用い、p型及び/又
はn型半導体層としては本発明のBP:H(F)膜又は従来
法によるBP膜を用いて、各種pinへテロ接合型光起電力
素子(試料No.91〜109)を作製し、AM−1光(100mW/cm
2)照射下での短絡電流(Isc)及び開放電圧(Voc)を
測定、評価した。
Experiment D In this experiment, in addition to the constituent materials of the i-type semiconductor layer, A-Si, A-SiC, A-S
iGe, poly-Si is also used as an i-type semiconductor layer, and a BP: H (F) film of the present invention or a conventional BP film is used as a p-type and / or n-type semiconductor layer. A photovoltaic device (sample Nos. 91 to 109) was fabricated, and AM-1 light (100 mW / cm)
2 ) Under irradiation, short-circuit current (Isc) and open-circuit voltage (Voc) were measured and evaluated.

光起電力素子としての層構成は第1図(B)に示した
構成とし、支持体101には石英ガラス、透明電極106には
スパッタリング法により形成したITO膜、下部電極102に
は電子ビーム加熱法により形成したAg薄膜を用い、支持
体101の側より光入射を行った。
The layer configuration of the photovoltaic element is the configuration shown in FIG. 1B. The support 101 is made of quartz glass, the transparent electrode 106 is an ITO film formed by a sputtering method, and the lower electrode 102 is an electron beam heating. Light was incident from the support 101 side using an Ag thin film formed by the method.

本発明のp型半導体層としてのBP:H(F)膜は前述の
試料No.76で、本発明のn型半導体層としてのBP:H
(F)膜は前述の試料No.36で形成したのと同様の成膜
条件で作製した。
The BP: H (F) film as the p-type semiconductor layer of the present invention is the above-mentioned sample No. 76, and the BP: H (F) film as the n-type semiconductor layer of the present invention is used.
(F) The film was formed under the same film forming conditions as those of Sample No. 36 described above.

従来法によるp型半導体層としてのBP膜は前述の試料
No.71で形成したのと同様の成膜条件で作製した。また
従来法によるn型半導体層としてのA−Si:H膜は公知の
プラズマCVD法にて形成した。
The BP film as the p-type semiconductor layer by the conventional method
It was manufactured under the same film forming conditions as those formed in No. 71. An A-Si: H film as an n-type semiconductor layer according to a conventional method was formed by a known plasma CVD method.

i型半導体層の形成方法としては、前述の「水素原子
及び必要に応じフッ素原子の導入されたBP:H(F)膜の
形成法についての検討」の項で示した(1)乃至(3)
の成膜方法において、B原子を含有する原料ガス及びP
原子を含有する原料ガスのかわりにSi原子を含有する原
料ガス、C原子を含有する原料ガス又はGe原子を含有す
る原料ガスを用いるか、BP等からなるターゲットのかわ
りにSi,SiC,SiGe等からなるターゲットを用いれば良
い。そこで、i型半導体層中へ含有させる水素原子及び
/又はフッ素原子の量はH2ガス流量,HFガス流量等の各
種パラメーターの変化によって適宜調整、制御される。
従って、i型半導体層の形成装置としては、基本的に第
2図乃至第4図に示したのと同様の構成の堆積膜形成装
置を用いることができる。詳細なi型半導体層形成法に
ついては後述の実施例にて説明する。また、材料構成又
は伝導型等の異なる半導体層を同一の堆積膜形成装置を
用いて、導入するガス種等を変えて形成することはでき
るが、好ましくは形成する半導体層の種類ごとに独立し
た堆積膜形成装置を用意することが望ましい。
The method for forming the i-type semiconductor layer is described in the above-mentioned “Study on the method for forming a BP: H (F) film into which hydrogen atoms and, if necessary, fluorine atoms are introduced” (1) to (3). )
The source gas containing B atoms and P
Use a source gas containing Si atoms, a source gas containing C atoms or a source gas containing Ge atoms instead of a source gas containing atoms, or use Si, SiC, SiGe, etc. instead of a target consisting of BP etc. May be used. Therefore, the amount of hydrogen atoms and / or fluorine atoms contained in the i-type semiconductor layer is appropriately adjusted and controlled by changing various parameters such as the H 2 gas flow rate and the HF gas flow rate.
Accordingly, as an apparatus for forming an i-type semiconductor layer, a deposited film forming apparatus having basically the same configuration as that shown in FIGS. 2 to 4 can be used. A detailed method of forming the i-type semiconductor layer will be described in Examples described later. In addition, different semiconductor layers having different material configurations or conduction types can be formed by using the same deposition film forming apparatus and changing the kind of gas to be introduced and the like. It is desirable to provide a deposited film forming apparatus.

第8表に各種光起電力素子の構成と評価結果を示し
た。
Table 8 shows the configurations and evaluation results of various photovoltaic elements.

これらの結果より、i型半導体層及びn型半導体層に
共通の半導体膜を用いた場合にはIsc,Vocともにp型半
導体層に本発明のp型BP:H(F)膜を用いた場合の方
が、従来法によるp型BP膜を用いた場合(試料No.91〜9
3,97〜99と試料No.104〜109)に比較していずれも良好
な特性向上が認められた。さらに、n型半導体層に本発
明のn型BP:H(F)膜を用いた場合にVoc,Iscの向上が
認められた。一方、本発明のp型BP:H(F)膜を用いた
場合でも、i型半導体層としてスパッタリング法にて作
製した水素もフッ素も含まないA−Si,A−Sic,A−SiGe,
poly−Siを用いた場合(試料No.100〜103)には使用に
耐える特性は得られなかった。
From these results, when a common semiconductor film is used for the i-type semiconductor layer and the n-type semiconductor layer, the p-type BP: H (F) film of the present invention is used for the p-type semiconductor layer for both Isc and Voc. Is the case where the p-type BP film according to the conventional method is used (sample Nos. 91 to 9).
3,97-99 and sample Nos. 104-109), all of which exhibited better property improvement. Furthermore, when the n-type BP: H (F) film of the present invention was used for the n-type semiconductor layer, an improvement in Voc and Isc was observed. On the other hand, even when the p-type BP: H (F) film of the present invention is used, A-Si, A-Sic, A-SiGe, which contains neither hydrogen nor fluorine and is formed by a sputtering method as an i-type semiconductor layer.
When poly-Si was used (sample Nos. 100 to 103), characteristics that could withstand use could not be obtained.

なお以下、厳密な区別のため本発明において用いる水
素とフッ素の両方又は一方を含む非晶質シリコン、多結
晶シリコン、非晶質のシリコンと炭素の合金、非晶質の
シリコンとゲルマニウムの合金をそれぞれA−Si:H:F,A
−Si:H,A−Si:F,poly−Si:H:F,poly−Si:H,poly−Si:F,
A−SiC:H:F,A−SiC:H,A−SiC:F,A−SiGe:H:F,A−SiGe:
H,A−SiGe:Fと記し、水素もフッ素も含まない場合を単
にA−Si,poly−Si,A−SiC,A−SiGeと記す。
Hereinafter, for strict distinction, amorphous silicon containing both or one of hydrogen and fluorine used in the present invention, polycrystalline silicon, an alloy of amorphous silicon and carbon, and an alloy of amorphous silicon and germanium are used. A-Si: H: F, A
−Si: H, A−Si: F, poly−Si: H: F, poly−Si: H, poly−Si: F,
A-SiC: H: F, A-SiC: H, A-SiC: F, A-SiGe: H: F, A-SiGe:
H, A-SiGe: F, and the case containing neither hydrogen nor fluorine are simply described as A-Si, poly-Si, A-SiC, A-SiGe.

以上の実験結果により、本発明によって提供されるp
型及び/又はn型BP:H(F)膜を用いてpinヘテロ接合
型光起電力素子を形成するにあたり、i型半導体層とし
て好適に用いられる半導体材料はA−Si:H,A−Si:F,A−
Si:H:F,A−SiC:H,A−SiC:F,A−SiC:H:F,A−SiGe:H,A−S
iGe:F,A−SiGe:H:F,poly−Si:H,poly−Si:F,poly−Si:
H:Fであることが判明した。
From the above experimental results, p provided by the present invention
In forming a pin heterojunction type photovoltaic device using a n-type and / or n-type BP: H (F) film, a semiconductor material preferably used as an i-type semiconductor layer is A-Si: H, A-Si : F, A−
Si: H: F, A-SiC: H, A-SiC: F, A-SiC: H: F, A-SiGe: H, A-S
iGe: F, A-SiGe: H: F, poly-Si: H, poly-Si: F, poly-Si:
It turned out to be H: F.

本発明において良好なpinヘテロ接合を形成させる手
段としてはn型半導体層の形成とi型半導体層の形成と
p型半導体層の形成は真空中にて連続して行われるのが
望ましい。具体的には、同一の堆積膜形成装置において
連続して形成するか、もしくは、それぞれの半導体層を
異なる装置を用いて形成する場合には、各堆積膜形成装
置をゲートバルブ等を介して連結し、たとえば第1の堆
積膜形成装置にてn型半導体層を形成後、第2の堆積膜
形成装置へ該n型半導体層の形成された基板を真空条件
にて搬送し、第2の堆積膜形成装置にてi型半導体層を
形成し、さらに第3の堆積膜形成装置へ該i型半導体層
まで形成された基板を真空条件下にて搬送し、第3の堆
積膜形成装置にてp型半導体層を形成するようにすれば
よい。
In the present invention, as a means for forming a good pin heterojunction, it is desirable that the formation of the n-type semiconductor layer, the formation of the i-type semiconductor layer, and the formation of the p-type semiconductor layer be performed continuously in a vacuum. Specifically, when the semiconductor layers are formed continuously in the same deposition film forming apparatus, or when the respective semiconductor layers are formed using different apparatuses, the respective deposition film forming apparatuses are connected via a gate valve or the like. For example, after forming an n-type semiconductor layer with the first deposited film forming apparatus, the substrate on which the n-type semiconductor layer is formed is transferred to a second deposited film forming apparatus under vacuum conditions, and the second deposited film is formed. An i-type semiconductor layer is formed by a film forming apparatus, and the substrate formed up to the i-type semiconductor layer is transported to a third deposited film forming apparatus under vacuum conditions. What is necessary is just to form a p-type semiconductor layer.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明の光起電力素子について
さらに詳しく説明するが、本発明はこれらの実施例によ
りなんら限定されるものではない。
Hereinafter, the photovoltaic device of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図(A)に示すpinヘテロ接合型光起電力素子を
第2図に示す構成の堆積膜形成装置を用いて、前述の本
発明の(1)の成膜方法により以下の手順で作製した。
Example 1 The pin heterojunction type photovoltaic element shown in FIG. 1A was formed by using the deposition film forming apparatus having the structure shown in FIG. Produced by the procedure.

50mm×50mmの大きさのステンレス製基板101を不図示
のスパッタリング装置内に入れ10-5Torr以下に真空排気
した後、Arをスパッタ用ガスとして用い、前記基板101
上に下部電極102となる約1000ÅのAg薄膜を堆積した。
この基板101を取り出し、ロードロック室212内にある基
板搬送治具206上の基板保持用カセット202上に下部電極
102の堆積された面を図中下側に向けて固定し、ロード
ロック室212内を不図示の排気ポンプで10-5Torr以下の
圧力に真空排気した。この間、成膜室201は排気ポンプ2
21により10-5Torr以下の圧力に排気されている。両室の
圧力がほぼ等しくなった時点でゲートバルブ207を開
け、基板搬送治具206を用いて基板保持用カセット202を
成膜室201内に移動し再びゲートバルブ207は閉じた。
After placing a stainless steel substrate 101 having a size of 50 mm × 50 mm in a sputtering apparatus (not shown) and evacuating it to 10 −5 Torr or less, the substrate 101
An Ag thin film of about 1000 ° serving as the lower electrode 102 was deposited thereon.
The substrate 101 is taken out, and the lower electrode is placed on a substrate holding cassette 202 on a substrate transfer jig 206 in the load lock chamber 212.
The surface on which 102 was deposited was fixed facing downward in the figure, and the inside of the load lock chamber 212 was evacuated to a pressure of 10 -5 Torr or less by an exhaust pump (not shown). During this time, the deposition chamber 201 is
Due to 21, the gas is exhausted to a pressure of 10 -5 Torr or less. When the pressures in both chambers became substantially equal, the gate valve 207 was opened, the substrate holding cassette 202 was moved into the film forming chamber 201 using the substrate transfer jig 206, and the gate valve 207 was closed again.

次に、ヒーター205にて基板203の表面温度が220℃と
なるように加熱を行った。基板温度が安定した時点で、
不図示のボンベに貯蔵されたSi2F6ガス25sccmとPH3(Si
F4にて4000ppm稀釈)ガス10sccmとを混合しつつ、ガス
供給パイプ214より電気炉211にて700℃に加熱保持され
ている活性化室208内へ導入した。同時に、不図示のボ
ンベに貯蔵されたHeガス及びH2ガスを各々100sccmと50s
ccmの流量で混合しガス供給パイプ215より活性化室209
内へ導入した。次いで、排気バルブ220の開度を調節
し、成膜室201の内圧を0.3Torrに保ちつつ、2.45GHzの
マイクロ波発生装置212より300Wのマイクロ波電力を活
性化室209内へ投入した。輸送管217及び218から成膜室2
01内へ導入された、前駆体及び水素ラジカル等は直ちに
反応しn型半導体層としてのA−Si:H:F膜103を堆積形
成した。400Åのn型A−Si:H:F膜を堆積形成した後原
料ガスの導入及びマイクロ波電力の投入を止めて排気ポ
ンプ221により成膜室201内を10-5Torr以下に真空排気し
た。次いで、成膜室201と全く同じ構成で10-5Torrに真
空排気されている成膜室222へ、n型半導体層103まで形
成された基板203を基板搬送治具206を用いて移動させ
た。以下、成膜室222内の構成は、成膜室201と同じ故第
2図に示したのと同じ図面番号にて説明する。
Next, heating was performed by the heater 205 so that the surface temperature of the substrate 203 became 220 ° C. When the substrate temperature stabilizes,
25 sccm of Si 2 F 6 gas and PH 3 (Si
While mixing the 4000ppm dilution) gas 10sccm at F 4, it was introduced into the activation chamber 208 which is heated to keep 700 ° C. from the gas supply pipe 214 in an electric furnace 211. At the same time, each of 100sccm and 50s He gas and H 2 gas stored in the gas cylinder (not shown)
The mixture is mixed at a flow rate of ccm.
Introduced inside. Next, the opening degree of the exhaust valve 220 was adjusted, and 300 W microwave power was supplied from the 2.45 GHz microwave generator 212 into the activation chamber 209 while maintaining the internal pressure of the film forming chamber 201 at 0.3 Torr. Deposition chamber 2 from transport pipes 217 and 218
The precursor, hydrogen radicals, and the like introduced into 01 were immediately reacted to deposit and form an A-Si: H: F film 103 as an n-type semiconductor layer. After depositing and forming an n-type A-Si: H: F film having a thickness of 400 °, the introduction of the source gas and the supply of the microwave power were stopped, and the inside of the film forming chamber 201 was evacuated to 10 -5 Torr or less by the exhaust pump 221. Next, the substrate 203 formed up to the n-type semiconductor layer 103 was moved using the substrate transfer jig 206 to the film formation chamber 222 evacuated to 10 −5 Torr with the same configuration as the film formation chamber 201. . Hereinafter, since the configuration inside the film forming chamber 222 is the same as that of the film forming chamber 201, it will be described using the same drawing numbers as those shown in FIG.

次に、ドーピング用原料ガスとしてのPH3ガスの導入
をやめSi2F6ガスを30sccm導入し、マイクロ波電力を400
Wとした以外は上記と同じ条件にて3500Åのi型半導体
層としてのA−Si:H:F膜104を形成した。
Next, the introduction of PH 3 gas as a source gas for doping was stopped, Si 2 F 6 gas was introduced at 30 sccm, and microwave power was increased to 400
An A-Si: H: F film 104 was formed as an i-type semiconductor layer at 3500 ° under the same conditions as above except that W was used.

成膜終了後、ガスの導入及びマイクロ波電力の投入を
止めて成膜室222内を10-5Torrまで真空排気した。
After the film formation, the introduction of the gas and the supply of the microwave power were stopped, and the inside of the film formation chamber 222 was evacuated to 10 -5 Torr.

次いで、i型半導体層104まで形成された基板203を前
述と同様の操作で成膜室201と同じ構成の成膜室(不図
示)へ搬送した。そこで、Heガス20sccmをキャリアーガ
スとして用い、バブリング装置(不図示)内に充填され
たB(C2H53/Zn(CH32=104:1溶液を2.5×10-4mol/
minの流量でバブリングし、ガス供給パイプ214を介して
活性化室208内へ導入した。活性化室208内へはマイクロ
波発生装置211より60Wのマイクロ波電力を直ちに投入し
た。同時に、PF5ガス5.5sccmをガス供給パイプ216を介
して電気炉213で500℃に加熱保持されている活性化室21
0へ導入し、H2ガス8sccm及びHeガス40sccmの混合ガスを
ガス供給パイプ215を介して活性化室209へ導入し、マイ
クロ波発生装置212より320Wのマイクロ波電力を活性化
室209内へ投入した。この時成膜室201内の圧力は60mTor
rに制御した。輸送管217,218,219を介して、活性化室20
8,209,210にて生成した前駆体、水素ラジカル等が成膜
室201内へ導入され直ちに化学反応を起こし、輸送管218
のガス放出口から8cmの位置に設けられ210℃に加熱保持
された基板203上にp型半導体層としてBP:H:F膜を形成
した。
Next, the substrate 203 formed up to the i-type semiconductor layer 104 was transferred to a film formation chamber (not shown) having the same configuration as the film formation chamber 201 by the same operation as described above. Therefore, using a He gas of 20 sccm as a carrier gas, a B (C 2 H 5 ) 3 / Zn (CH 3 ) 2 = 10 4 : 1 solution filled in a bubbling device (not shown) is used as a solution of 2.5 × 10 -4 mol. /
Bubbling was performed at a flow rate of min and introduced into the activation chamber 208 via the gas supply pipe 214. The microwave power of 60 W was immediately supplied from the microwave generator 211 into the activation chamber 208. At the same time, activation chamber 21 in which 5.5 sccm of PF 5 gas is heated and held at 500 ° C. in electric furnace 213 through gas supply pipe 216.
0, and a mixed gas of H 2 gas 8 sccm and He gas 40 sccm is introduced into the activation chamber 209 via the gas supply pipe 215, and the microwave power of 320 W is supplied from the microwave generator 212 into the activation chamber 209. I put it in. At this time, the pressure in the film forming chamber 201 is 60 mTor.
Controlled to r. Activation chamber 20 via transport pipes 217, 218, 219
The precursors, hydrogen radicals, and the like generated in 8,209,210 are introduced into the film forming chamber 201 and immediately cause a chemical reaction, and the transport pipe 218
A BP: H: F film was formed as a p-type semiconductor layer on a substrate 203 provided at a position 8 cm from the gas discharge port and heated and maintained at 210 ° C.

200Åのp型BP:H:F膜をi型半導体層104上に積層形成
後、基板搬送治具206にて基板保持用カセット202をゲー
トバルブ207を介して取り出し用ロードロック室(不図
示)に移動させ、冷却後n型、i型及びp型半導体層の
堆積された基板203を取り出した。該基板203をInとSnの
金属粒が重量比1:1で充填された蒸着用ボートがセット
された真空蒸着装置に入れ、10-5Torr以下に真空排気し
た後、抵抗加熱法により1×10-3Torr程度の酸素雰囲気
中で、透明電極106としてのITO薄膜を約700Å蒸着し
た。この時の基板加熱温度は170℃とした。冷却後、該
基板203を取り出し、透明電極106の上面に集電電極パタ
ーン形成用のパーマロイ製マスクを密着させ、真空蒸着
装置に入れ、1×10-5Torr以下に真空排気した後抵抗加
熱法によりAgを厚み約0.8μm蒸着し、くしの歯状の集
電電極107とし、このようにして形成された光起電力素
子を素子No.1とした。
After laminating a 200 ° p-type BP: H: F film on the i-type semiconductor layer 104, a load lock chamber (not shown) for taking out the substrate holding cassette 202 through the gate valve 207 by the substrate transfer jig 206. After cooling, the substrate 203 on which the n-type, i-type and p-type semiconductor layers were deposited was taken out. The substrate 203 was placed in a vacuum deposition apparatus in which a deposition boat filled with metal particles of In and Sn at a weight ratio of 1: 1 was set and evacuated to 10 −5 Torr or less. In an oxygen atmosphere of about 10 −3 Torr, an ITO thin film as the transparent electrode 106 was deposited by about 700 °. The substrate heating temperature at this time was 170 ° C. After cooling, the substrate 203 is taken out, a permalloy mask for forming a current collecting electrode pattern is brought into close contact with the upper surface of the transparent electrode 106, placed in a vacuum evaporation apparatus, and evacuated to 1 × 10 −5 Torr or less, and then subjected to a resistance heating method. Then, Ag was vapor-deposited to a thickness of about 0.8 μm to form a comb-shaped current collecting electrode 107. The photovoltaic element thus formed was referred to as Element No. 1.

この素子No.1の特性を以下のようにして評価した。 The characteristics of the device No. 1 were evaluated as follows.

素子No.1の透明電極106側よりAM−1光(100mW/cm2
を照射したときの開放電圧Voc及び短絡電流Isc、また、
AM−1光を400nmの干渉フィルターを通して照射したと
きの出力の相対値(後述する比較例1で作製した素子の
同一条件下での測定値に対する相対値。)を測定した。
第9表中に測定結果を示す。
AM-1 light (100 mW / cm 2 ) from the transparent electrode 106 side of device No. 1
Open voltage Voc and short-circuit current Isc when irradiating
The relative value of the output when the AM-1 light was irradiated through a 400 nm interference filter (relative value to the measured value of the device manufactured in Comparative Example 1 described below under the same conditions) was measured.
Table 9 shows the measurement results.

また、別に、石英ガラス基板を用い、上述した方法と
同様の方法及び手順を用いてp型半導体層としてのBP:
H:F膜を単独で形成した。得られた堆積膜について、前
述の〔実験〕の項で実施したのと同様の方法にて膜中の
水素原子及びフッ素原子含有量及び平均結晶粒径の測定
を行った。測定結果を第9表中に示す。
Separately, using a quartz glass substrate, BP as a p-type semiconductor layer using the same method and procedure as described above:
The H: F film was formed alone. With respect to the obtained deposited film, the contents of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in the above-mentioned [Experiment]. The measurement results are shown in Table 9.

実施例2 本実施例は実施例1におけるpinヘテロ接合型光起電
力素子にてp型半導体層としてのBP:H:F膜を第3図に示
した堆積膜形成装置を用いて形成した。
Example 2 In this example, a BP: H: F film as a p-type semiconductor layer was formed using the deposited film forming apparatus shown in FIG. 3 in the pin heterojunction photovoltaic device in Example 1.

したがって、第1図(A)に示すpinヘテロ接合型光
起電力素子において基板101、下部電極102、n型半導体
層103、i型半導体層104の形成までは実施例1と全く同
様の操作にて行った。
Therefore, in the pin heterojunction type photovoltaic element shown in FIG. 1A, the operation is the same as that of the first embodiment up to the formation of the substrate 101, the lower electrode 102, the n-type semiconductor layer 103, and the i-type semiconductor layer 104. I went.

基板保持用カセット302に固定され、i型半導体層ま
で堆積された基板303を基板搬送用治具306にて成膜室30
1に搬送し、10-5Torr以下に保ちつつ基板303をヒーター
305で220℃に加熱し、基板温度が安定したところで第10
表に示した条件でスパッタリングを開始しi型半導体層
104上に200Åのp型半導体層としてのBP:H:F膜105を堆
積した。
The substrate 303 fixed to the substrate holding cassette 302 and deposited up to the i-type semiconductor layer is deposited by the substrate transport jig 306 into the film forming chamber 30.
1 and heat the substrate 303 while keeping it at 10 -5 Torr or less.
Heat at 305 to 220 ° C, and when the substrate temperature stabilizes,
Sputtering was started under the conditions shown in the table and the i-type semiconductor layer was
A BP: H: F film 105 as a 200 ° p-type semiconductor layer was deposited on 104.

成膜終了後、成膜室301から取り出し用ロードロック
室(不図示)へ基板303を移動し、冷却後取り出し、実
施例1で実施したのと同様の操作及び方法で、透明電極
106としてのITO膜を700Å、その上に集電電極107として
のくし歯状のAg薄膜を0.8μm堆積して素子No.2とし、
実施例1と同様の太陽電池特性の評価を行った。評価結
果を第9表中に示す。
After the film formation, the substrate 303 is moved from the film formation chamber 301 to a take-out load lock chamber (not shown), cooled, taken out, and subjected to the same operation and method as in the first embodiment.
The ITO film as 106 is 700 mm, and a comb-shaped Ag thin film as the current collecting electrode 107 is deposited thereon at 0.8 μm to form an element No. 2,
The same solar cell characteristics as in Example 1 were evaluated. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、第10表に示した
のと同様の成膜条件にてp型半導体層としてのBP:H:F膜
を堆積した。得られた堆積膜について実施例1と同様に
して、膜中の水素原子及びフッ素原子含有量及び平均結
晶粒径の測定を行った。測定結果を第9表中に示す。
Separately, using a quartz glass substrate, a BP: H: F film as a p-type semiconductor layer was deposited under the same film forming conditions as shown in Table 10. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例3 本実施例は実施例1におけるpinヘテロ接合型光起電
力素子にてp型半導体層としてのBP:H:F膜を第4図に示
した堆積膜形成装置を用いて形成した。
Example 3 In this example, a BP: H: F film as a p-type semiconductor layer was formed using the deposited film forming apparatus shown in FIG. 4 in the pin heterojunction type photovoltaic element in Example 1.

したがって、第1図(A)に示すpinヘテロ接合型光
起電力素子において基板101、下部電極102、n型半導体
層103、i型半導体層104の形成までは実施例1と全く同
様の操作にて行った。
Therefore, in the pin heterojunction type photovoltaic element shown in FIG. 1A, the operation is the same as that of the first embodiment up to the formation of the substrate 101, the lower electrode 102, the n-type semiconductor layer 103, and the i-type semiconductor layer 104. I went.

基板保持用カセット402に固定されi型半導体層104ま
で堆積された基板403を基板搬送用治具406にて成膜室40
1に搬送し、10-5Torr以下に保ちつつ基板403をヒーター
405で230℃に加熱し、基板温度が安定したところで第11
表に示した条件で原料ガス(A)、原料ガス(B)、原
料ガス(C)をそれぞれ導入管408及び409より成膜室40
1に導入し、排気バルブ414の開度を調節して成膜室401
の内圧を圧力計417でモニターしつつ0.8Torrに保った。
高周波電源410はマッチング回路411を介してカソード電
極412に接続されており、前記高周波電源410より13.56M
Hzの高周波電力70Wをただちに投入し成膜を開始した。
このようにして、i型半導体層としてのA−Si:H:F膜10
4上にp型半導体層としてのBP:H:F膜105を200Å堆積し
た。
The substrate 403 fixed to the substrate holding cassette 402 and deposited up to the i-type semiconductor layer 104 is deposited by the substrate transport jig 406 into the film forming chamber 40.
1 and heat the substrate 403 while keeping it at 10 -5 Torr or less.
Heat at 405 to 230 ° C, and when the substrate temperature stabilizes,
Under the conditions shown in the table, the source gas (A), the source gas (B), and the source gas (C) were supplied from the introduction pipes 408 and 409 to the film forming chamber 40, respectively.
1 and adjust the opening of the exhaust valve 414 to form the deposition chamber 401.
Was maintained at 0.8 Torr while monitoring the pressure with a pressure gauge 417.
The high-frequency power supply 410 is connected to the cathode electrode 412 via the matching circuit 411, and 13.56 M
A high frequency power of 70 Hz was immediately applied to start film formation.
Thus, the A-Si: H: F film 10 as an i-type semiconductor layer
A BP: H: F film 105 as a p-type semiconductor layer was deposited on the substrate 4 at a thickness of 200 °.

成膜終了後、成膜室401から取り出し用ロードロック
室(不図示)へ基板403を移動し、冷却後取り出し、実
施例1で実施したのと同様の操作及び方法で透明電極10
6としてのITO膜を700Å、その上に集電電極107としての
くし歯状のAg薄膜を0.8μm堆積し素子No.3とし、実施
例1と同様の太陽電池特性の評価を行った。その評価結
果を第9表中に示す。
After completion of the film formation, the substrate 403 is moved from the film formation chamber 401 to a load lock chamber (not shown) for removal, cooled, taken out, and subjected to the same operation and method as in the first embodiment.
An ITO film as No. 6 was 700 °, and a comb-shaped Ag thin film as the current collecting electrode 107 was deposited thereon at 0.8 μm to obtain a device No. 3, and the same solar cell characteristics as in Example 1 were evaluated. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、第11表に示した
のと同様の成膜条件にてp型半導体層としてのBP:H:F膜
を堆積した。得られた堆積膜について実施例1と同様に
して、膜中の水素原子及びフッ素原子含有量及び平均結
晶粒径の測定を行った。測定結果を第9表中に示す。
Separately, a BP: H: F film as a p-type semiconductor layer was deposited using a quartz glass substrate under the same film forming conditions as shown in Table 11. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例4 本実施例は実施例1におけるpinヘテロ接合型光起電
力素子にてi型半導体層としてのA−Si:H:F膜のかわり
にA−SiC:H:F膜を用いた。従って、第1図(A)に示
すpinヘテロ接合型光起電力素子において基板101、下部
電極102、n型半導体層103の形成までは実施例1と全く
同様の操作にて行った。
Example 4 In this example, an A-SiC: H: F film was used in place of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction type photovoltaic device in Example 1. Therefore, in the pin heterojunction type photovoltaic element shown in FIG. 1A, the operations up to the formation of the substrate 101, the lower electrode 102, and the n-type semiconductor layer 103 were performed in exactly the same manner as in Example 1.

次いで、成膜室201と全く同じ構成で10-5Torrに真空
排気されている成膜室(構成は成膜室201と同じ故、共
通の図面番号にて説明する。)へn型半導体層まで形成
された基板203をゲートバルブ207を開け、基板搬送用地
具206を用いて搬送し、ゲートバルブ207を閉め、成膜室
201内の圧力を10-5Torrに保ちつつ、基板203ををヒータ
ー205で220℃に加熱し、基板温度が安定したところで第
12表に示した条件で原料ガス(A)、原料ガス(B)及
び原料ガス(C)をそれぞれ、ガス供給パイプ214,215,
216より活性化室208,209,210内へ導入して励起種化し、
該励起種を輸送管217,218,219を介して成膜室201内へ導
入し成膜を開始した。使用した励起エネルギー発生装置
及び励起条件等は第12表に示した。
Next, the n-type semiconductor layer is transferred to a film forming chamber (the structure is the same as that of the film forming chamber 201, and will be described with a common drawing number) which is completely evacuated to 10 -5 Torr with the same structure as the film forming chamber 201. The substrate 203 formed up to this point is opened with the gate valve 207 opened, transferred using the substrate transfer jig 206, the gate valve 207 is closed, and the film forming chamber is opened.
The substrate 203 was heated to 220 ° C. by the heater 205 while maintaining the pressure in the inside at 10 −5 Torr, and when the substrate temperature became stable,
Under the conditions shown in Table 12, the source gas (A), the source gas (B), and the source gas (C) were respectively supplied to the gas supply pipes 214, 215,
From 216, they are introduced into the activation chambers 208, 209, 210 to be excited species,
The excited species was introduced into the film forming chamber 201 through the transport pipes 217, 218, and 219 to start film formation. Table 12 shows the excitation energy generators and excitation conditions used.

このようにして、n型半導体層としてのA−Si:H:F膜
103上にi型半導体層としてのA−SiC:H:F膜104を3500
Å堆積した。
Thus, the A-Si: H: F film as the n-type semiconductor layer
An A-SiC: H: F film 104 as an i-type semiconductor layer 104
Å Deposited.

次いで、実施例1で実施したのと同様の操作及び方法
にてp型半導体層105としてのBP:H:F膜を200Å、透明電
極106としてのITO膜を700Å、集電電極107としてのくし
歯状のAg薄膜を0.8μm堆積して素子No.4とし、実施例
1と同様の太陽電池特性の評価を行った。その評価結果
を第9表中に示す。
Then, the BP: H: F film serving as the p-type semiconductor layer 105 was formed at a thickness of 200 °, the ITO film serving as the transparent electrode 106 was provided at a thickness of 700 °, and the comb serving as the current collecting electrode 107 was formed in the same manner as in Example 1. A device No. 4 was formed by depositing a tooth-shaped Ag thin film at 0.8 μm, and the solar cell characteristics were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、実施例1で実施
したのと同様の成膜条件にてp型半導体層としてのBP:
H:F膜を堆積した。得られた堆積膜について実施例1と
同様にして、膜中の水素原子及びフッ素原子含有量及び
平均結晶粒径の測定を行った。測定結果を第9表中に示
す。
Separately, a BP as a p-type semiconductor layer was formed using a quartz glass substrate under the same film forming conditions as in Example 1.
An H: F film was deposited. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例5 本実施例は実施例1におけるpinヘテロ接合型光起電
力素子にてi型半導体層としてのA−Si:H:F膜のかわり
にA−SiGe:H:F膜を用いた。従って、第1図(A)に示
すpinヘテロ接合型光起電力素子において基板101、下部
電極102、n型半導体層103の形成までは実施例1と全く
同様の操作にて行った。
Example 5 In this example, an A-SiGe: H: F film was used in place of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic device in Example 1. Therefore, in the pin heterojunction type photovoltaic element shown in FIG. 1A, the operations up to the formation of the substrate 101, the lower electrode 102, and the n-type semiconductor layer 103 were performed in exactly the same manner as in Example 1.

次いで、成膜室201と全く同じ構成で10-5Torrに真空
排気されている成膜室(構成は成膜室201と同じ故、共
通の図面番号にて説明する。)へn型半導体層まで形成
された基板203をゲートバルブ207を開け、基板搬送用治
具206を用いて搬送し、ゲートバルブ207を閉め、成膜室
201内の圧力を10-5Torrに保ちつつ、基板203をヒーター
205で220℃に加熱し、基板温度が安定したところで第12
表に示した条件で原料ガス(A)、原料ガス(B)及び
原料ガス(C)をそれぞれ、ガス供給パイプ214,215,21
6より活性化室208,209,210内へ導入して励起種化し、該
励起種を輸送管217,218,219を介して成膜室201内へ導入
し成膜を開始した。使用した励起エネルギー発生装置及
び励起条件等は第13表に示した。
Next, the n-type semiconductor layer is transferred to a film forming chamber (the structure is the same as that of the film forming chamber 201, and will be described with a common drawing number) which is completely evacuated to 10 -5 Torr with the same structure as the film forming chamber 201. The substrate 203 formed up to this point is opened by opening the gate valve 207, transferred using the substrate transfer jig 206, and closed by the gate valve 207, and the film forming chamber is opened.
Heating substrate 203 while maintaining the pressure in 201 at 10 -5 Torr
Heat to 220 ° C with 205.
Under the conditions shown in the table, the source gas (A), the source gas (B), and the source gas (C) were respectively supplied to gas supply pipes 214, 215, and 21.
From 6, the excited species were introduced into the activation chambers 208, 209 and 210 to be excited species, and the excited species were introduced into the film formation chamber 201 via the transport pipes 217, 218 and 219 to start film formation. Table 13 shows the excitation energy generators and excitation conditions used.

このようにして、n型半導体層としてのA−Si:H:F膜
103上にi型半導体層としてのA−SiGe:H:F膜104を3500
Å堆積した。
Thus, the A-Si: H: F film as the n-type semiconductor layer
An A-SiGe: H: F film 104 as an i-type semiconductor layer is
Å Deposited.

次いで、実施例1で実施したのと同様の操作及び方法
にてp型半導体層105としてのBP:H:F膜を200Å、透明電
極106としてのITO膜を700Å、集電電極107としてのくし
歯状のAg薄膜を0.8μm堆積して素子No.5とし、実施例
1と同様の太陽電池特性の評価を行った。その評価結果
を第9表中に示す。
Then, the BP: H: F film serving as the p-type semiconductor layer 105 was formed at a thickness of 200 °, the ITO film serving as the transparent electrode 106 was provided at a thickness of 700 °, and the comb serving as the current collecting electrode 107 was formed in the same manner as in Example 1. An element No. 5 was formed by depositing a tooth-shaped Ag thin film of 0.8 μm, and the same solar cell characteristics as in Example 1 were evaluated. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、実施例1で実施
したのと同様の成膜条件にてp型半導体層としてのBP:
H:F膜を堆積した。得られた堆積膜について実施例1と
同様にして、膜中の水素原子及びフッ素原子含有量及び
平均結晶粒径の測定を行った。測定結果を第9表中に示
す。
Separately, a BP as a p-type semiconductor layer was formed using a quartz glass substrate under the same film forming conditions as in Example 1.
An H: F film was deposited. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例6 本実施例は実施例1におけるpinヘテロ接合型光起電
力素子にてi型半導体層としてのA−Si:H:F膜のかわり
にpoly−Si:H:F膜を用いた。従って、第1図(A)に示
すpinヘテロ接合型光起電力素子において基板101、下部
電極102、n型半導体層103の形成までは実施例1と全く
同様の操作にて行った。
Example 6 In this example, a poly-Si: H: F film was used in place of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction type photovoltaic device in Example 1. Therefore, in the pin heterojunction type photovoltaic element shown in FIG. 1A, the operations up to the formation of the substrate 101, the lower electrode 102, and the n-type semiconductor layer 103 were performed in exactly the same manner as in Example 1.

次いで、成膜室201と全く同じ構成で10-5Torrに真空
排気されている成膜室(構成は成膜室201と同じ故、共
通の図面番号にて説明する。)へn型半導体層まで形成
された基板203をゲートバルブ207を開け、基板搬送用治
具206を用いて搬送し、ゲートバルブ207を閉め、成膜室
201内の圧力を10-5Torrに保ちつつ、基板203をヒーター
205で220℃に加熱し、基板温度が安定したところで第14
表に示した条件で原料ガス(A)及び原料ガス(B)を
それぞれ、ガス供給パイプ214,215より活性化室208,209
内へ導入して励起種化し、該励起種を輸送管217,218を
介して成膜室201内へ導入し成膜を開始した。使用した
励起エネルギー発生装置及び励起条件等は第14表に示し
た。
Next, the n-type semiconductor layer is transferred to a film forming chamber (the structure is the same as that of the film forming chamber 201, and will be described with a common drawing number) which is completely evacuated to 10 -5 Torr with the same structure as the film forming chamber 201. The substrate 203 formed up to this point is opened by opening the gate valve 207, transferred using the substrate transfer jig 206, and closed by the gate valve 207, and the film forming chamber is opened.
Heating substrate 203 while maintaining the pressure in 201 at 10 -5 Torr
Heat to 220 ° C with 205, and when the substrate temperature stabilizes,
Under the conditions shown in the table, the source gas (A) and the source gas (B) were supplied from the gas supply pipes 214 and 215 to the activation chambers 208 and 209, respectively.
Then, the excited species were introduced into the inside of the film formation chamber 201 via the transport pipes 217 and 218 to start film formation. Table 14 shows the used excitation energy generators and excitation conditions.

このようにして、n型半導体層としてのA−Si:H:F膜
103上にi型半導体層としてのpoly−Si:H:F膜104を9000
Å堆積した。
Thus, the A-Si: H: F film as the n-type semiconductor layer
A poly-Si: H: F film 104 as an i-type semiconductor layer 104
Å Deposited.

次いで、実施例1で実施したのと同様の操作及び方法
にてp型半導体層105としてのBP:H:F膜を200Å、と茗溪
電極106としてのITO膜を700Å、集電電極107としてのく
し歯状のAg薄膜を0.8μm堆積して素子No.6とし、実施
例1と同様の太陽電池特性の評価を行った。その評価結
果を第9表中に示す。
Then, the BP: H: F film serving as the p-type semiconductor layer 105 was set at 200 °, the ITO film serving as the Mykei electrode 106 was set at 700 °, and the current collecting electrode 107 was used as the p-type semiconductor layer 105 by the same operation and method as in Example 1. A comb-shaped Ag thin film was deposited at 0.8 μm to obtain a device No. 6, and the same solar cell characteristics as in Example 1 were evaluated. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、実施例1で実施
したのと同様の成膜条件にてp型半導体層としてのBP:
H:F膜を堆積した。得られた堆積膜について実施例1と
同様にして、膜中の水素原子及びフッ素原子含有量及び
平均結晶粒径の測定を行った。測定結果を第9表中に示
す。
Separately, a BP as a p-type semiconductor layer was formed using a quartz glass substrate under the same film forming conditions as in Example 1.
An H: F film was deposited. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例7 本実施例では、ステンレス基板のかわりに、ガラス基
板を用いて第1図(B)に示した構造のpinヘテロ接合
型光起電力素子を作製し、実施例1と同様の特性評価を
行った。以下に作製方法について述べる。
Example 7 In this example, a pin heterojunction type photovoltaic element having the structure shown in FIG. 1B was manufactured using a glass substrate instead of a stainless steel substrate, and the same characteristic evaluation as in Example 1 was performed. Was done. The manufacturing method is described below.

コーニング社製#7059ガラス基板101上に透明電極106
としてのITO膜を実施例1と同様の抵抗加熱法で500Å形
成し、該ITO膜上に実施例1で行ったと同様の操作及び
方法でp型半導体層としてのBP:H:F膜を200Å堆積し
た。引き続き実施例1と同様の操作及び方法でi型半導
体層としてのA−Si:H:F膜を3500Å堆積した。さらに実
施例1と同様の操作及び方法でn型半導体層としてのA
−Si:H:F膜を400Å堆積した。
Transparent electrode 106 on Corning # 7059 glass substrate 101
An ITO film was formed at 500 ° by the same resistance heating method as in Example 1, and a BP: H: F film as a p-type semiconductor layer was formed on the ITO film by 200 ° by the same operation and method as in Example 1. Deposited. Subsequently, an A-Si: H: F film as an i-type semiconductor layer was deposited at 3500 ° by the same operation and method as in Example 1. Further, A as an n-type semiconductor layer is formed by the same operation and method as in Example 1.
-An Si: H: F film was deposited at 400 Å.

次いで、下部電極102としてのAg薄膜を0.5μm堆積し
て素子No.7とし、実施例1と同様の太陽電池特性の評価
を行った。その評価結果を第9表中に示す。
Next, an Ag thin film as the lower electrode 102 was deposited to a thickness of 0.5 μm to obtain a device No. 7, and the same solar cell characteristics as in Example 1 were evaluated. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、実施例1で実施
したのと同様の成膜条件にてp型半導体層としてのBP:
H:F膜を堆積した。得られた堆積膜について実施例1と
同様にして、膜中の水素原子及びフッ素原子含有量及び
平均結晶粒径の測定を行った。測定結果を第9表中に示
す。
Separately, a BP as a p-type semiconductor layer was formed using a quartz glass substrate under the same film forming conditions as in Example 1.
An H: F film was deposited. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例8 本実施例は実施例1におけるpinヘテロ接合型光起電
力素子にてn型半導体層にもA−Si:H:F膜のかわりに本
発明のBP:H:F膜を用いた。従って、第1図(A)に示す
pinヘテロ接合型光起電力素子において基板101、下部電
極102の形成までは実施例1と全く同様の操作にて行っ
た。
Example 8 In this example, the BP: H: F film of the present invention was used instead of the A-Si: H: F film for the n-type semiconductor layer in the pin heterojunction photovoltaic device in Example 1. . Therefore, as shown in FIG.
The operation up to the formation of the substrate 101 and the lower electrode 102 in the pin heterojunction photovoltaic element was performed in exactly the same manner as in Example 1.

次いで、成膜室201と全く同じ構成で10-5Torrに真空
排気されている成膜室(構成は成膜室201と同じ故、共
通の図面番号にて説明する。)へ下部電極102まで形成
された基板203をゲートバルブ207を開け、基板搬送用治
具206を用いて搬送し、ゲートバルブ207を閉め、成膜室
201内の圧力を10-5Torrに保ちつつ、基板203をヒーター
205で220℃に加熱し、基板温度が安定したところで第12
表に示した条件で原料ガス(A)、原料ガス(B)及び
原料ガス(C)をそれぞれ、ガス供給パイプ214,215,21
6より活性化室208,209,210内へ導入して励起種化し、該
励起種を輸送管217,218,219を介して成膜室201内へ導入
し成膜を開始した。使用した励起エネルギー発生装置及
び励起条件等は第15表に示した。
Next, the film formation chamber is completely evacuated to 10 −5 Torr with the same structure as the film formation chamber 201 (the structure is the same as that of the film formation chamber 201 and will be described with a common drawing number). The formed substrate 203 is opened by opening the gate valve 207, transferred using the substrate transfer jig 206, and closed by the gate valve 207, and the film forming chamber is opened.
Heating substrate 203 while maintaining the pressure in 201 at 10 -5 Torr
Heat to 220 ° C with 205.
Under the conditions shown in the table, the source gas (A), the source gas (B), and the source gas (C) were respectively supplied to gas supply pipes 214, 215, and 21.
From 6, the excited species were introduced into the activation chambers 208, 209 and 210 to be excited species, and the excited species were introduced into the film formation chamber 201 via the transport pipes 217, 218 and 219 to start film formation. Table 15 shows the used excitation energy generators and excitation conditions.

このようにして、下部電極102上にn型半導体層103と
してのBP:H:F膜を400Å堆積した。
Thus, a BP: H: F film as the n-type semiconductor layer 103 was deposited on the lower electrode 102 at a thickness of 400 °.

次いで、実施例1で実施したのと同様の操作及び方法
にてi型半導体層104としてのA−Si:H:F膜を3500Å、
p型半導体層105としてのBP:H:F膜を200Å、透明電極10
6としてのITO膜を700Å、集電電極107としてのくし歯状
のAg薄膜を0.8μm堆積して素子No.8とし、実施例1と
同様の太陽電池特性の評価を行った。その評価結果を第
9表中に示す。
Then, the A-Si: H: F film as the i-type semiconductor layer 104 was formed at 3500 ° by the same operation and method as in Example 1.
200 ° of BP: H: F film as the p-type semiconductor layer 105, transparent electrode 10
Element No. 8 was obtained by depositing an ITO film as 700 mm and a comb-shaped Ag thin film as the current collecting electrode 107 at 0.8 μm to obtain a device No. 8, and the same solar cell characteristics as in Example 1 were evaluated. The evaluation results are shown in Table 9.

また、別に、石英ガラス基板を用い、実施例1で実施
したのと同様の成膜条件にてp型半導体層としてのBP:
H:F膜及び第15表に示した成膜条件にてn型半導体層と
してのBP:H:F膜を各々堆積した。得られた堆積膜につい
て実施例1と同様にして、膜中の水素原子及びフッ素原
子含有量及び平均結晶粒径の測定を行った。測定結果を
第9表中に示す。
Separately, a BP as a p-type semiconductor layer was formed using a quartz glass substrate under the same film forming conditions as in Example 1.
An H: F film and a BP: H: F film as an n-type semiconductor layer were deposited under the film forming conditions shown in Table 15. For the obtained deposited film, the content of hydrogen atoms and fluorine atoms in the film and the average crystal grain size were measured in the same manner as in Example 1. The measurement results are shown in Table 9.

実施例9 本実施例は、実施例1におけるpinヘテロ接合型光起
電力素子にてn型半導体層としてのA−Si:H:F膜のかわ
りに従来法のスパッタリング法にて形成されたBP膜を用
いている。従って、第1図(A)に示すpinヘテロ接合
型光起電力素子において基板101、下部電極102の形成及
びi型半導体層104、p型半導体層105、透明電極106及
び集電電極107の形成は実施例1と全く同様の操作にて
行った。
Embodiment 9 This embodiment is directed to a BP formed by a conventional sputtering method in place of the A-Si: H: F film as the n-type semiconductor layer in the pin heterojunction photovoltaic device in Embodiment 1. A membrane is used. Accordingly, in the pin heterojunction photovoltaic element shown in FIG. 1A, the formation of the substrate 101 and the lower electrode 102 and the formation of the i-type semiconductor layer 104, the p-type semiconductor layer 105, the transparent electrode 106, and the current collecting electrode 107 Was performed in exactly the same manner as in Example 1.

n型半導体層103としてのBP膜の形成は第3図に示し
た堆積膜形成装置を用いて、第16表に示した条件にて行
った。
The formation of the BP film as the n-type semiconductor layer 103 was performed under the conditions shown in Table 16 using the deposition film forming apparatus shown in FIG.

このようにして形成された太陽電池を素子No.9とし、
太陽電池特性等の評価を行った。その評価結果を第17表
に示す。
The solar cell thus formed was designated as element No. 9,
The solar cell characteristics and the like were evaluated. Table 17 shows the evaluation results.

実施例10 本実施例は、実施例1におけるpinヘテロ接合型光起
電力素子にてn型半導体層としてのA−Si:H:F膜のかわ
りにプラズマCVD法にて形成されたA−SiGe:H:F膜を用
いている。従って、第1図(A)に示すpinヘテロ接合
型光起電力素子において基板101、下部電極102の形成及
びi型半導体層104、p型半導体層105、透明電極106及
び集電電極107の形成は実施例1と全く同様の操作にて
行った。
Embodiment 10 In this embodiment, a pin heterojunction type photovoltaic device according to Embodiment 1 is replaced by an A-SiGe film formed by a plasma CVD method instead of an A-Si: H: F film as an n-type semiconductor layer. : H: F film is used. Accordingly, in the pin heterojunction photovoltaic element shown in FIG. 1A, the formation of the substrate 101 and the lower electrode 102 and the formation of the i-type semiconductor layer 104, the p-type semiconductor layer 105, the transparent electrode 106, and the current collecting electrode 107 Was performed in exactly the same manner as in Example 1.

n型半導体層103としてのA−SiGe:H:F膜の形成は第
4図に示した堆積膜形成装置を用いて、第18表に示した
条件にて行った。
The A-SiGe: H: F film as the n-type semiconductor layer 103 was formed using the deposition film forming apparatus shown in FIG. 4 under the conditions shown in Table 18.

このようにして形成された太陽電池を素子No.10と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 10, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例11 本実施例は、実施例1におけるpinヘテロ接合型光起
電力素子にてn型半導体層としてのA−Si:H:F膜のかわ
りにプラズマCVD法にて形成されたA−SiC:H:F膜を用い
ている。従って、第1図(A)に示すpinヘテロ接合型
光起電力素子において基板101、下部電極102の形成及び
i型半導体層104、p型半導体層105、透明電極106及び
集電電極107の形成は実施例1と全く同様の操作にて行
った。
Embodiment 11 In this embodiment, an A-SiC film formed by a plasma CVD method in place of the A-Si: H: F film as the n-type semiconductor layer in the pin heterojunction photovoltaic device in the first embodiment is described. : H: F film is used. Accordingly, in the pin heterojunction photovoltaic element shown in FIG. 1A, the formation of the substrate 101 and the lower electrode 102 and the formation of the i-type semiconductor layer 104, the p-type semiconductor layer 105, the transparent electrode 106, and the current collecting electrode 107 Was performed in exactly the same manner as in Example 1.

n型半導体層103としてのA−SiC:H:F膜の形成は第4
図に示した堆積膜形成装置を用いて、第19表に示した条
件にて行った。
The formation of the A-SiC: H: F film as the n-type semiconductor layer 103 is the fourth step.
The deposition was performed under the conditions shown in Table 19 using the deposited film forming apparatus shown in the figure.

このようにして形成された太陽電池を素子No.11と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 11, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例12 本実施例は、実施例1におけるpinヘテロ接合型光起
電力素子にてn型半導体層としてのA−Si:H:F膜のかわ
りにスパッタリング法にて形成されたGaAs膜を用いてい
る。従って、第1図(A)に示すpinヘテロ接合型光起
電力素子において基板101、下部電極102の形成及びi型
半導体層104、p型半導体層105、透明電極106及び集電
電極107の形成は実施例1と全く同様の操作にて行っ
た。
Example 12 In this example, a GaAs film formed by a sputtering method was used instead of the A-Si: H: F film as the n-type semiconductor layer in the pin heterojunction photovoltaic device in Example 1. ing. Accordingly, in the pin heterojunction photovoltaic element shown in FIG. 1A, the formation of the substrate 101 and the lower electrode 102 and the formation of the i-type semiconductor layer 104, the p-type semiconductor layer 105, the transparent electrode 106, and the current collecting electrode 107 Was performed in exactly the same manner as in Example 1.

n型半導体層103としてのGaAs膜の形成は第3図に示
した堆積膜形成装置を用いて、第20表に示した条件にて
行った。
The GaAs film as the n-type semiconductor layer 103 was formed using the deposition film forming apparatus shown in FIG. 3 under the conditions shown in Table 20.

このようにして形成された太陽電池を素子No.12と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 12, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例13 本実施例は、実施例8におけるpinヘテロ接合型光起
電力素子にてi型半導体層としてのA−Si:H:F膜のかわ
りにA−Si:H膜を用いている。
Embodiment 13 This embodiment uses an A-Si: H film instead of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic device of the eighth embodiment.

従って、i型の半導体層104の形成以外は全て実施例
8と同様の操作及び方法にて太陽電池を形成した。
Therefore, except that the i-type semiconductor layer 104 was formed, a solar cell was formed by the same operation and method as in Example 8.

i型半導体層104としてのA−Si:H膜の形成は第4図
に示した堆積膜形成装置を用いて第21表に示した条件に
て行った。
The formation of the A-Si: H film as the i-type semiconductor layer 104 was performed using the deposition film forming apparatus shown in FIG. 4 under the conditions shown in Table 21.

このようにして形成された太陽電池を素子No.13と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 13, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例14 本実施例は、実施例8におけるpinヘテロ接合型光起
電力素子にてi型半導体層としてのA−Si:H:F膜のかわ
りにA−SiGe:H膜を用いている。
Embodiment 14 In the present embodiment, an A-SiGe: H film is used in place of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic element in the eighth embodiment.

従って、i型の半導体層104の形成以外は全て実施例
8と同様の操作及び方法にて太陽電池を形成した。
Therefore, except that the i-type semiconductor layer 104 was formed, a solar cell was formed by the same operation and method as in Example 8.

i型の半導体層104としてのA−SiGe:H膜の形成は第
4図に示した堆積膜形成装置を用いて第22表に示した条
件にて行った。
The formation of the A-SiGe: H film as the i-type semiconductor layer 104 was performed using the deposition film forming apparatus shown in FIG. 4 under the conditions shown in Table 22.

このようにして形成された太陽電池を素子No.14と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 14, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例15 本実施例は、実施例8におけるpinヘテロ接合型光起
電力素子にてi型半導体層としてのA−Si:H:F膜のかわ
りにA−SiC:H膜を用いている。
Embodiment 15 This embodiment uses an A-SiC: H film instead of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic device of the eighth embodiment.

従って、i型の半導体層104の形成以外は全て実施例
8と同様の操作及び方法にて太陽電池を形成した。
Therefore, except that the i-type semiconductor layer 104 was formed, a solar cell was formed by the same operation and method as in Example 8.

i型半導体層104としてのA−SiC:H膜の形成は第4図
に示した堆積膜形成装置を用いて第23表に示した条件に
て行った。
The formation of the A-SiC: H film as the i-type semiconductor layer 104 was performed using the deposition film forming apparatus shown in FIG. 4 under the conditions shown in Table 23.

このようにして形成された太陽電池を素子No.15と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 15, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例16 本実施例は、実施例8におけるpinヘテロ接合型光起
電力素子にてi型半導体層としてのA−Si:H:F膜のかわ
りにA−Si:F膜を用いている。
Embodiment 16 In this embodiment, an A-Si: F film is used in place of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic device of the eighth embodiment.

従って、i型の半導体層104の形成以外は全て実施例
8と同様の操作及び方法にて太陽電池を形成した。
Therefore, except that the i-type semiconductor layer 104 was formed, a solar cell was formed by the same operation and method as in Example 8.

i型A−Si:F膜の形成は第3図に示した堆積膜形成装
置を用いて第24表に示した条件にて行った。
The i-type A-Si: F film was formed using the deposition film forming apparatus shown in FIG. 3 under the conditions shown in Table 24.

このようにして形成された太陽電池を素子No.16と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 16, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例17 本実施例は、実施例8におけるpinヘテロ接合型光起
電力素子にてi型半導体層としてのA−Si:H:F膜のかわ
りにA−SiGeC:H膜を用いている。
Embodiment 17 In this embodiment, an A-SiGeC: H film is used in place of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic device of the eighth embodiment.

従って、i型の半導体層104の形成以外は全て実施例
8と同様の操作及び方法にて太陽電池を形成した。
Therefore, except that the i-type semiconductor layer 104 was formed, a solar cell was formed by the same operation and method as in Example 8.

i型A−SiGeC:H膜の形成は第4図に示した堆積膜形
成装置を用いて第25表に示した条件にて行った。
The i-type A-SiGeC: H film was formed using the deposition film forming apparatus shown in FIG. 4 under the conditions shown in Table 25.

このようにして形成された太陽電池を素子No.17と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 17, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例18 本実施例は、実施例8におけるpinヘテロ接合型光起
電力素子にてi型半導体層としてのA−Si:H:F膜のかわ
りにpoly−Si:H膜を用いている。
Embodiment 18 In this embodiment, a poly-Si: H film is used instead of the A-Si: H: F film as the i-type semiconductor layer in the pin heterojunction photovoltaic device of the eighth embodiment.

従って、i型の半導体層104の形成以外は全て実施例
8と同様の操作及び方法にて太陽電池を形成した。
Therefore, except that the i-type semiconductor layer 104 was formed, a solar cell was formed by the same operation and method as in Example 8.

i型poly−Si:H膜の形成は第3図に示した堆積膜形成
装置を用いて第26表に示した条件にて行った。
The i-type poly-Si: H film was formed using the deposition film forming apparatus shown in FIG. 3 under the conditions shown in Table 26.

このようにして形成された太陽電池を素子No.18と
し、太陽電池特性等の評価を行った。その評価結果を第
17表に示す。
The solar cell thus formed was designated as element No. 18, and the solar cell characteristics and the like were evaluated. The evaluation results
The results are shown in Table 17.

実施例19 本実施例は、第1図(B)に示すpinヘテロ接合型光
起電力素子において、103をn型半導体層、105をp型半
導体層とし、p型半導体層105及びi型半導体層104をA
−Si:H:F膜で、n型半導体層103を本発明のBP:H:F膜で
構成しガラス基板101の側から光入射をするようにした
素子である。
Example 19 This example is directed to a pin heterojunction photovoltaic device shown in FIG. 1B, in which 103 is an n-type semiconductor layer, 105 is a p-type semiconductor layer, and p-type semiconductor layer 105 and i-type semiconductor layer. Layer 104 A
This is an element in which an n-type semiconductor layer 103 is made of a BP: H: F film of the present invention, which is made of a Si: H: F film and light is incident from the glass substrate 101 side.

i型半導体層104は実施例1にて、n型半導体層103は
実施例8にて形成したのと全く同様の操作及び方法にて
形成し、p型半導体層105は実施例1におけるn型のA
−Si:H:F膜の形成条件にてPH3のかわりにBF3(H2で4000
ppm稀釈)を35sccm導入した以外全く同様の操作及び方
法にて形成した。
The i-type semiconductor layer 104 is formed by the same operation and method as those formed in the eighth embodiment, and the p-type semiconductor layer 105 is formed by the n-type semiconductor layer 105 in the first embodiment. A
-Si: H: BF 3 in place of PH 3 at F film formation conditions (H 2 at 4000
ppm dilution) was introduced in exactly the same manner and method except that 35 sccm was introduced.

また、基板101、下部電極102、透明電極106の形成は
実施例7と全く同様の操作及び方法にて行った。
Further, the formation of the substrate 101, the lower electrode 102, and the transparent electrode 106 was performed by exactly the same operation and method as in Example 7.

このようにして形成された太陽電池を素子No.19と
し、太陽電池特性等の評価を行った。その評価結果を第
27表に示す。
The solar cell thus formed was designated as element No. 19, and the solar cell characteristics and the like were evaluated. The evaluation results
It is shown in Table 27.

実施例20 本実施例は、第1図(B)に示すpinヘテロ接合型光
起電力素子において、103をn型半導体層、105をp型半
導体層とし、p型半導体層105をA−SiC:H:F:膜で、i
型半導体層104をA−Si:H:F膜で、n型半導体層103を本
発明のBP:H:F膜で構成しガラス基板101の側から光入射
をするようにした素子である。
Embodiment 20 This embodiment is directed to a pin heterojunction type photovoltaic device shown in FIG. 1B in which 103 is an n-type semiconductor layer, 105 is a p-type semiconductor layer, and p-type semiconductor layer 105 is A-SiC. : H: F: membrane, i
This is an element in which the type semiconductor layer 104 is formed of an A-Si: H: F film, and the n-type semiconductor layer 103 is formed of a BP: H: F film of the present invention so that light enters from the glass substrate 101 side.

i型半導体層104は実施例1にて、n型半導体層103は
実施例8にて形成したのと全く同様の操作及び方法にて
形成し、p型半導体層105は実施例11におけるn型のA
−SiC:H:F膜の形成条件にてPH3のかわりにBF3(H2で400
0ppm稀釈)を30sccm導入した以外全く同様の操作及び方
法にて形成した。
The i-type semiconductor layer 104 is formed in the same operation and method as those formed in the eighth embodiment, and the p-type semiconductor layer 105 is formed in the n-type semiconductor layer 105 in the eleventh embodiment. A
-SiC: H: BF at F film formation conditions in place of PH 3 3 (H 2 at 400
Except for introducing 30 sccm (0 ppm dilution), it was formed in exactly the same operation and method.

また、基板101、下部電極102、透明電極106の形成は
実施例7と全く同様の操作及び方法にて行った。
Further, the formation of the substrate 101, the lower electrode 102, and the transparent electrode 106 was performed by exactly the same operation and method as in Example 7.

このようにして形成された太陽電池を素子No.20と
し、太陽電池特性等の評価を行った。その評価結果を第
27表に示す。
The solar cell thus formed was designated as element No. 20, and the solar cell characteristics and the like were evaluated. The evaluation results
It is shown in Table 27.

実施例21 本実施例は、第1図(B)に示すpinヘテロ接合型光
起電力素子において、103をn型半導体層、105をp型半
導体層とし、p型半導体層105をZnTe膜で、i型半導体
層104をA−Si:H:F膜で、n型半導体層103を本発明のB
P:H:F膜で構成しガラス基板101の側から光入射をするよ
うにした素子である。
Example 21 In this example, in the pin heterojunction photovoltaic element shown in FIG. 1B, 103 is an n-type semiconductor layer, 105 is a p-type semiconductor layer, and p-type semiconductor layer 105 is a ZnTe film. , I-type semiconductor layer 104 is an A-Si: H: F film, and n-type semiconductor layer 103 is
This is an element formed of a P: H: F film and receiving light from the glass substrate 101 side.

i型半導体層104は実施例1にて、n型半導体層103は
実施例8にて形成したのと全く同様の操作及び方法にて
形成した。
The i-type semiconductor layer 104 was formed in Example 1 and the n-type semiconductor layer 103 was formed by exactly the same operation and method as those formed in Example 8.

p型ZnTe膜の形成は第3図に示した堆積膜形成装置を
用いて第28表に示した条件にて行った。
The p-type ZnTe film was formed using the deposition film forming apparatus shown in FIG. 3 under the conditions shown in Table 28.

基板101、下部電極102、透明電極106の形成は実施例
7と全く同様の操作及び方法にて行った。
The formation of the substrate 101, the lower electrode 102, and the transparent electrode 106 was performed by exactly the same operation and method as in Example 7.

このようにして形成された太陽電池を素子No.21と
し、太陽電池特性等の評価を行った。その評価結果を第
27表に示す。
The solar cell thus formed was designated as element No. 21, and the solar cell characteristics and the like were evaluated. The evaluation results
It is shown in Table 27.

実施例22 本実施例は、第1図(B)に示すpinヘテロ接合型光
起電力素子において、103をn型半導体層、105をp型半
導体層とし、p型半導体層105を従来法によるBP膜で、
i型半導体層104をA−Si:H:F膜で、n型半導体層103を
本発明のBP:H:F膜で構成しガラス基板101の側から光入
射をするようにした素子である。
Embodiment 22 In this embodiment, in the pin heterojunction photovoltaic device shown in FIG. 1B, 103 is an n-type semiconductor layer, 105 is a p-type semiconductor layer, and p-type semiconductor layer 105 is a conventional method. With BP membrane,
The i-type semiconductor layer 104 is an A-Si: H: F film, the n-type semiconductor layer 103 is a BP: H: F film of the present invention, and light is incident from the glass substrate 101 side. .

i型半導体層104は実施例1にて、n型半導体層103は
実施例8にて形成したのと全く同様の操作及び方法にて
形成した。
The i-type semiconductor layer 104 was formed in Example 1 and the n-type semiconductor layer 103 was formed by exactly the same operation and method as those formed in Example 8.

p型BP膜の形成は第3図に示した堆積膜形成装置を用
いて第29表に示した条件にて行った。
The p-type BP film was formed using the deposition film forming apparatus shown in FIG. 3 under the conditions shown in Table 29.

基板101、下部電極102、透明電極106の形成は実施例
7と全く同様の操作及び方法にて行った。
The formation of the substrate 101, the lower electrode 102, and the transparent electrode 106 was performed by exactly the same operation and method as in Example 7.

このようにして形成された太陽電池を素子No.22と
し、太陽電池特性等の評価を行った。その評価結果を第
27表に示す。
The solar cell thus formed was designated as element No. 22, and the solar cell characteristics and the like were evaluated. The evaluation results
It is shown in Table 27.

実施例23 本実施例では、第1図(C)に示すバンドギャップの
異なる3種の半導体層をi層として用いたpinヘテロ接
合型光起電力素子を3素子積層して構成されたいわゆる
トリプル型光起電力素子120を作製した。
Embodiment 23 In this embodiment, a so-called triple formed by stacking three pin heterojunction photovoltaic elements using three types of semiconductor layers having different band gaps as i-layers as shown in FIG. A photovoltaic device 120 was produced.

基板101からp型半導体層105までは実施例5と全く同
様の操作及び方法で、i型半導体層がA−SiGe:H:F膜で
構成される第1層の光起電力素子111を作製した。
From the substrate 101 to the p-type semiconductor layer 105, a first-layer photovoltaic element 111 in which the i-type semiconductor layer is composed of an A-SiGe: H: F film is manufactured in exactly the same operation and method as in the fifth embodiment. did.

次いで、実施例1と全く同様の操作及び方法でn型半
導体層114、i型半導体層115、p型半導体層116を堆積
しi型半導体層がA−Si:H:F膜で構成される第2層の光
起電力素子112を作製した。ただしこの時i型半導体層
の膜厚は3000Åとした。引き続き実施例4と全く同様の
操作及び方法でn型半導体層117、i型半導体層118、p
型半導体層119を堆積し、i型半導体層がA−SiC:H:F膜
で構成される第3層の光起電力素子113を作製した。た
だしこの時i型半導体層の膜厚を2500Åとした。更に、
実施例1と同様の操作及び方法にて透明電極106として
のITO膜を700Åと集電電極107としてのくし歯状のAg薄
膜を0.8μm堆積し素子No.23とし、太陽電池特性等の評
価を行った。測定結果を第30表に示す。
Next, an n-type semiconductor layer 114, an i-type semiconductor layer 115, and a p-type semiconductor layer 116 are deposited by exactly the same operation and method as in Example 1, and the i-type semiconductor layer is formed of an A-Si: H: F film. A second layer photovoltaic element 112 was produced. However, at this time, the thickness of the i-type semiconductor layer was 3000 °. Subsequently, the n-type semiconductor layer 117, the i-type semiconductor layer 118, and the p-type
A type semiconductor layer 119 was deposited, and a third layer photovoltaic element 113 in which the i-type semiconductor layer was formed of an A-SiC: H: F film was manufactured. However, at this time, the thickness of the i-type semiconductor layer was 2500 °. Furthermore,
In the same operation and method as in Example 1, an ITO film as the transparent electrode 106 was deposited at 700 Å and a comb-shaped Ag thin film as the current collecting electrode 107 was deposited at 0.8 μm to obtain an element No. 23, and evaluation of solar cell characteristics and the like Was done. Table 30 shows the measurement results.

比較例1 本比較例では実施例1におけるpinヘテロ接合型光起
電力素子にてp型半導体層105としてのBP:H:F膜のかわ
りに200Åの膜厚のA−Si:H:F膜を用いる以外は全く同
様の操作及び方法で比較用の光起電力素子を作製した。
ここで、p型半導体層105は第2図に示したのと同様の
構成の堆積膜形成装置を用い、基板温度を220℃とし、S
i2F6ガス30sccmとBF3(SiF4にて4000ppm稀釈)ガス8scc
mとを混合しつつ、ガス供給パイプ214より、電気炉211
にて700℃に加熱保持されている活性化室208内へ導入し
た。同時に不図示のボンベに貯蔵されたHeガス及びH2
スを各々120sccmと50sccmの流量で混合し、ガス供給パ
イプ215より活性化室209内へ導入した。直ちに、マイク
ロ波発生装置212より320Wのマイクロ波電力を活性化室2
09内へ投入し、成膜を開始した。この時成膜室201の内
圧は0.35Torrとした。このようにして、比較用の素子N
o.24を作製し、太陽電池特性等の評価を行った。測定結
果を第31表に示す。
Comparative Example 1 In this comparative example, an A-Si: H: F film having a thickness of 200 mm was used instead of the BP: H: F film as the p-type semiconductor layer 105 in the pin heterojunction photovoltaic device of Example 1. A photovoltaic element for comparison was produced in exactly the same operation and method except that was used.
Here, the p-type semiconductor layer 105 was formed using a deposition film forming apparatus having the same configuration as that shown in FIG.
i 2 F 6 gas 30sccm and BF 3 (4000 ppm diluted with SiF 4) gas 8scc
m while mixing with the electric furnace 211 from the gas supply pipe 214.
And introduced into the activation chamber 208 which is heated and maintained at 700 ° C. At the same time, He gas and H 2 gas stored in a cylinder (not shown) were mixed at flow rates of 120 sccm and 50 sccm, respectively, and introduced into the activation chamber 209 from the gas supply pipe 215. Immediately, microwave power of 320 W is supplied from the microwave generator 212 to the activation room 2.
09 and the film formation was started. At this time, the internal pressure of the film forming chamber 201 was set to 0.35 Torr. In this way, the comparative element N
o.24 was prepared and the solar cell characteristics and the like were evaluated. Table 31 shows the measurement results.

比較例2 実施例1におけるpinヘテロ接合型光起電力素子にて
p型半導体層105を堆積する際に、H2ガスを導入しなか
った以外は、全く同様の操作及び方法にて比較用の素子
No.25を作製した。また実施例1においてp型半導体層1
05を堆積する際にH2ガスの流量を0.5sccmとした以外は
全く同様の操作及び方法にて比較用の素子No.26を作製
した。これらの素子について太陽電池特性の評価を実施
例1と同様に行った。測定結果を第31表に示す。
Comparative Example 2 The same operation and method as in Example 1 were performed except that H 2 gas was not introduced when the p-type semiconductor layer 105 was deposited using the pin heterojunction photovoltaic device. element
No. 25 was produced. In the first embodiment, the p-type semiconductor layer 1
Element No. 26 for comparison was produced in exactly the same operation and method except that the flow rate of H 2 gas was set to 0.5 sccm when depositing 05. Evaluation of the solar cell characteristics of these devices was performed in the same manner as in Example 1. Table 31 shows the measurement results.

比較例3 実施例1においてp型半導体層を堆積する際に、B2H6
/Zn(CH32=104:1溶液のバブリング量を5.0×10-4mol
/min、PF5ガスの流量を15sccmとした以外は同様の操作
及び方法にて比較用の素子No.27を作製し、太陽電池特
性等の評価を行った。測定結果を第31表に示す。
Comparative Example 3 When depositing a p-type semiconductor layer in Example 1, B 2 H 6
/ Zn (CH 3 ) 2 = 10 4 : 1 solution bubbling amount is 5.0 × 10 -4 mol
/ min, to prepare a device No.27 for comparison in the same operation and method except that the 15sccm the flow rate of the PF 5 gas was evaluated such as a solar cell characteristics. Table 31 shows the measurement results.

比較例4 実施例1におけるpinヘテロ接合型光起電力素子にて
i型半導体層104としてのA−Si:H:F膜のかわりに、第
3図に示した装置を用い、第32表に示した成膜条件にて
作製したA−Si膜、A−SiC膜、A−SiGe膜を用いた以
外は、全く同様の操作及び方法にて比較用の光起電力素
子を作製し、素子No.28,29,30とした。太陽電池特性等
の測定結果を第31表に示す。
Comparative Example 4 The device shown in FIG. 3 was used instead of the A-Si: H: F film as the i-type semiconductor layer 104 in the pin heterojunction photovoltaic device in Example 1, and the results are shown in Table 32. A photovoltaic element for comparison was produced by exactly the same operation and method except that an A-Si film, an A-SiC film, and an A-SiGe film produced under the indicated film forming conditions were used. .28,29,30. Table 31 shows the measurement results of the solar cell characteristics and the like.

比較例5 実施例23のトリプル型光起電力素子120における、第
3層の光起電力素子113のp型半導体層119のみを本発明
のBP:H:F膜のかわりに、比較例1で作製したのと同じ、
p型A−Si:H:F膜に変えた以外は全く同様の構成の比較
用の光起電力素子を作製し、素子No.31とした。太陽電
池特性等の評価結果を第30表に示す。
Comparative Example 5 In the triple type photovoltaic element 120 of Example 23, only the p-type semiconductor layer 119 of the third layer photovoltaic element 113 was replaced with the BP: H: F film of the present invention in Comparative Example 1. Same as made,
A photovoltaic device for comparison having exactly the same configuration except that the film was changed to a p-type A-Si: H: F film was fabricated, and was designated as device No. 31. Table 30 shows the evaluation results of the solar cell characteristics and the like.

〈各試料の特性評価結果〉 実施例1乃至23及び比較例1乃至5において作製され
た各素子の太陽電池特性等の測定結果が第9,17,27,30,3
1表に示されている。
<Characteristics Evaluation Results of Each Sample> The measurement results of the solar cell characteristics and the like of each element manufactured in Examples 1 to 23 and Comparative Examples 1 to 5 are ninth, 17, 27, 30, and 3
Shown in Table 1.

光起電力素子としての特性評価項目は、AM−1光(10
0mW/cm2)照射下での開放電圧(Voc)、短絡電流(Is
c)、400nmの干渉フィルターを透過させたAM−1照射下
での各素子の出力の相対値(比較例1で作製した素子の
同一条件下での出力に対する相対値)があり、これらの
評価結果が示されている。
The characteristic evaluation items for the photovoltaic element were AM-1 light (10
0mW / cm 2 ) Open-circuit voltage (Voc), short-circuit current (Is
c) There is a relative value of the output of each element under the AM-1 irradiation transmitted through a 400 nm interference filter (relative value to the output of the element manufactured in Comparative Example 1 under the same conditions). The results are shown.

また、各光起電力素子を構成するのに使われたp型及
び/又はn型のBP:H:F膜が本発明において特定された水
素原子及びフッ素原子の含有量及び平均結晶粒径に制御
されているか、また、B原子とP原子との組成比は化学
量論比を満足しているかの確認のために作製した各p型
及び/又はn型のBP:H:F膜中の水素原子及びフッ素原子
の含有量及び平均結晶粒径及びB原子とP原子との組成
比の測定値も示されている。
In addition, the p-type and / or n-type BP: H: F film used to constitute each photovoltaic element has a hydrogen atom and fluorine atom content and an average crystal grain size specified in the present invention. The p-type and / or n-type BP: H: F films prepared to confirm that the composition ratio of B atoms and P atoms satisfies the stoichiometric ratio is controlled. The measured values of the content of hydrogen atoms and fluorine atoms, the average crystal grain size, and the composition ratio of B atoms to P atoms are also shown.

以上の結果をまとめると、実施例1乃至3のpinヘテ
ロ接合型光起電力素子では、n型半導体層、i型半導体
層としてA−Si:H:F膜を用い、p型半導体層として、本
発明の膜中の水素原子及びフッ素原子の含有量及び平均
結晶粒径が特定の範囲に制御されたBP:H(F)膜を用
い、且つ、該BP:H(F)膜の形成方法を種々変えた例が
示されているが、比較例1に示したp型半導体層にA−
Si:H:Fを用いた光起電力素子よりも、開放電圧Vocが高
く、短絡光電流Iscが大きく、400nmの干渉フィルターを
透過させたAM−1光照射下での相対出力が高い優れた光
起電力素子であることが判明した。
Summarizing the above results, in the pin heterojunction photovoltaic devices of Examples 1 to 3, the A-Si: H: F film was used as the n-type semiconductor layer and the i-type semiconductor layer, and the p-type semiconductor layer was A method for forming a BP: H (F) film using a BP: H (F) film in which the content of hydrogen atoms and fluorine atoms and the average crystal grain size in the film of the present invention are controlled to specific ranges. Are variously changed, but A-type is added to the p-type semiconductor layer shown in Comparative Example 1.
Higher open-circuit voltage Voc, higher short-circuit photocurrent Isc, and higher relative output under irradiation with AM-1 light transmitted through a 400 nm interference filter than photovoltaic devices using Si: H: F. It turned out to be a photovoltaic element.

また、実施例4においてはi型半導体層104として、
A−SiC:H:F膜を、実施例5においてはi型半導体層104
としてA−SiGe:H:F膜を、実施例6においてはi型半導
体層104としてpoly−Si:H:F膜を用い、その他の構成は
実施例1と同様にして光起電力素子を作製した。いずれ
もi型半導体層のバンドギャップの大小に応じて変化は
あるものの、総じてVocが高く、又はIscの大きい優れた
光起電力素子であることが判明した。
In the fourth embodiment, as the i-type semiconductor layer 104,
The A-SiC: H: F film is used as the i-type semiconductor layer 104 in the fifth embodiment.
In the sixth embodiment, an A-SiGe: H: F film is used. In the sixth embodiment, a poly-Si: H: F film is used as the i-type semiconductor layer 104. did. In each case, although it varied depending on the band gap of the i-type semiconductor layer, it was found that the photovoltaic device was an excellent photovoltaic device having a high Voc or a large Isc as a whole.

実施例7においては、ガラス基板を用いた第1図
(B)の構成の光起電力素子とし、ガラス基板側から光
入射を行ったが、実施例1乃至3と同様に優れた太陽電
池特性が得られた。
In Example 7, a photovoltaic element having a configuration shown in FIG. 1B using a glass substrate was used, and light was incident from the glass substrate side. However, similar to Examples 1 to 3, excellent solar cell characteristics were obtained. was gotten.

実施例8においては、p型半導体層105と同時にn型
半導体層103にも本発明のBP:H(F)膜を用いたが、実
施例1乃至3と同様に優れた太陽電池特性が得られた。
In Example 8, the BP: H (F) film of the present invention was used for the n-type semiconductor layer 103 simultaneously with the p-type semiconductor layer 105, but excellent solar cell characteristics were obtained as in Examples 1 to 3. Was done.

これらに対し比較例2で作製した光起電力素子は、p
型半導体層が水素原子及びフッ素原子の含有量及び結晶
粒径が本発明で特定した範囲外のものであったところ、
Vocが低く、Iscが小さく、相対出力が小さく、実施例1
乃至3で作製した光起電力素子に比較してはるかに太陽
電池特性が劣っていた。
On the other hand, the photovoltaic element manufactured in Comparative Example 2 has p
Where the type semiconductor layer had a content of hydrogen atoms and fluorine atoms and a crystal grain size outside the range specified in the present invention,
Low Voc, low Isc, low relative output, Example 1
The solar cell characteristics were far inferior to those of the photovoltaic devices manufactured in Nos. 1 to 3.

また、比較例3ではp型半導体層としてのBP:H(F)
膜にてB原子とP原子の組成比が化学量論比を満足しな
いものであったところ、やはり実施例1乃至3で作製し
た光起電力素子に比較して太陽電池特性が劣っていた。
In Comparative Example 3, BP: H (F) as a p-type semiconductor layer was used.
When the composition ratio of B atoms and P atoms did not satisfy the stoichiometric ratio in the film, the solar cell characteristics were also inferior to those of the photovoltaic devices manufactured in Examples 1 to 3.

また比較例4では、i型半導体層104として水素原子
及びフッ素原子を含まないA−Si膜、A−SiC膜、A−S
iGe膜を用い、一方、p型半導体層としては本発明にお
いて特定されたBP:H(F)膜を用いたにもかからず、実
施例3乃至5に比較してはるかに太陽電池特性が劣って
いた。
In Comparative Example 4, as the i-type semiconductor layer 104, an A-Si film containing no hydrogen atoms and no fluorine atoms, an A-SiC film, an AS
Although the iGe film was used and the BP: H (F) film specified in the present invention was used as the p-type semiconductor layer, the solar cell characteristics were much higher than those of Examples 3 to 5. Was inferior.

実施例9乃至12においてはn型半導体層として、BP
膜、A−SiGe:H:F膜、A−SiC:H:F膜、GaAs膜を用い、
その他の構成は実施例1と同様とした光起電力素子につ
いて検討した。いずれもn型半導体層のバンドギャップ
の大小の影響は若干あるものの、総じてVocが高く、ま
たはIscの大きい優れた太陽電池特性が得られた。
In Examples 9 to 12, BP was used as the n-type semiconductor layer.
Using a film, an A-SiGe: H: F film, an A-SiC: H: F film, and a GaAs film,
A photovoltaic element having the same other configuration as that of Example 1 was examined. In each case, although the band gap of the n-type semiconductor layer was slightly affected, excellent solar cell characteristics having a high Voc or a large Isc were obtained as a whole.

実施例13乃至18においては、実施例8で実施した構成
の光起電力素子にてi型半導体層の組成を変えた検討を
行った。具体的にはA−Si:H膜、A−SiGe:H膜、A−Si
C:H膜、A−Si:F膜、A−SiGeC:H膜、poiy−Si:H膜を用
い光起電力素子を作製した。いずれもi型半導体層のバ
ンドギャップの大小に応じた変化はあるものの、総じて
Vocが高く、又はIscの大きい優れた太陽電池特性が得ら
れた。
In Examples 13 to 18, a study was conducted in which the composition of the i-type semiconductor layer was changed in the photovoltaic device having the configuration implemented in Example 8. Specifically, A-Si: H film, A-SiGe: H film, A-Si
A photovoltaic element was manufactured using a C: H film, an A-Si: F film, an A-SiGeC: H film, and a poiy-Si: H film. In any case, although there is a change according to the magnitude of the band gap of the i-type semiconductor layer, overall
Excellent solar cell characteristics with high Voc or large Isc were obtained.

実施例19乃至22においては、第1図(B)の構成の光
起電力素子であるが、p型半導体層とn型半導体層の積
層位置を入れ替え、n型半導体層の側から光入射を行っ
た。ここでn型半導体層には本発明のBP:H(F)膜を、
i型半導体層にはA−Si:H:F膜を用い、p型半導体層に
は組成の異なるものを種々用いた。具体的にはA−Si:
H:F膜、A−SiC:H:F膜、ZnTe膜、BP膜について検討を行
ったが、p型半導体層のバンドギャップの大小の影響は
若干あるものの、総じてVocが高く、又はIscの大きい優
れた太陽電池特性が得られた。
In Examples 19 to 22, the photovoltaic element having the configuration shown in FIG. 1B is used. However, the stacking positions of the p-type semiconductor layer and the n-type semiconductor layer are switched, and light is incident from the n-type semiconductor layer side. went. Here, the BP: H (F) film of the present invention is applied to the n-type semiconductor layer,
An A-Si: H: F film was used for the i-type semiconductor layer, and various p-type semiconductor layers having different compositions were used. Specifically, A-Si:
The H: F film, the A-SiC: H: F film, the ZnTe film, and the BP film were examined.Although the effect of the band gap of the p-type semiconductor layer was slightly affected, Voc was generally high or Isc Great and excellent solar cell characteristics were obtained.

実施例23及び比較例5における光起電力素子としての
特性評価項目は、AM−1光(100mW/cm2)照射下でのVo
c,Isc及びAM−1光の10時間連続照射前後の光電変換効
率の変化量(Δη/η0:Δηは光電変換効率の変化
量、η0は初期の光電変換効率を示す。)とし、これら
の評価結果が第30表に示されている。
The characteristic evaluation item as a photovoltaic element in Example 23 and Comparative Example 5 was Vo under irradiation with AM-1 light (100 mW / cm 2 ).
The amount of change in photoelectric conversion efficiency before and after continuous irradiation of c, Isc and AM-1 light for 10 hours (Δη / η 0 : Δη indicates the amount of change in photoelectric conversion efficiency, η 0 indicates the initial photoelectric conversion efficiency), The results of these evaluations are shown in Table 30.

以上の結果より、p型半導体層に本発明のBP:H(F)
膜を用いた実施例23のトリプル構造の光起電力素子は、
p型半導体層にA−Si:H:F膜を用いた比較例5のトリプ
ル構造の光起電力素子に比べ、Voc,Iscとも優れている
ことが判明した。光電変換効率の変化量については実施
例23における光起電力素子の方が比較例5のそれに比較
して小さい。一般に光電変換効率の劣化現象は、光の連
続照射開始後10時間以内において顕著に起こり、その後
の変化は極めて緩慢であることから、連続10時間の光照
射にて変化率の小さい実施例23における光起電力素子が
初期特性が優れているばかりでなく、長時間に亘って使
用可能な、太陽電池として実用性の高い光起電力素子で
あることが判った。
From the above results, the BP: H (F) of the present invention was added to the p-type semiconductor layer.
The triple structure photovoltaic element of Example 23 using the film,
It was found that both Voc and Isc were superior to the triple structure photovoltaic element of Comparative Example 5 using the A-Si: H: F film for the p-type semiconductor layer. Regarding the amount of change in photoelectric conversion efficiency, the photovoltaic element in Example 23 is smaller than that in Comparative Example 5. In general, the deterioration phenomenon of the photoelectric conversion efficiency occurs remarkably within 10 hours after the start of continuous irradiation of light, and the change after that is extremely slow. It has been found that the photovoltaic element is not only excellent in initial characteristics, but also a photovoltaic element that can be used for a long time and is highly practical as a solar cell.

〔発明の効果の概要〕 以上説明したように、本発明の光起電力素子は短波長
光の光電変換効率が高く、高い開放電圧(Voc)で、大
きな短絡電流(Isc)を取り出すことができ、さらに安
価な基板を用いることができ、また、積層型とすること
により、使用に伴う特性劣化を極めて小さくできること
から、電力供給システム用の太陽電池として、実用性の
高いものとすることができる。
[Summary of Effects of the Invention] As described above, the photovoltaic device of the present invention has a high photoelectric conversion efficiency of short wavelength light, and can extract a large short-circuit current (Isc) with a high open-circuit voltage (Voc). In addition, a more inexpensive substrate can be used, and the stacked type can extremely reduce the characteristic deterioration due to use, so that it can be highly practical as a solar cell for a power supply system. .

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)及び(B)は、本発明の光起電力素子の層
構成の典型的な例の模式的断面図である。第1図(C)
は本発明の積層型光起電力素子の層構成の模式的断面図
である。 第2図は、本発明のHRCVD法を実施するための堆積膜形
成装置例の模式的概略図である。 第3図は、本発明の反応性スパッタリング法を実施する
ための堆積膜形成装置例の模式的概略図である。 第4図は、本発明のプラズマCVD法を実施するための堆
積膜形成装置例の模式的概略図である。 第1図について、 100,111,112,113…光起電力素子、101…支持体、102…
下部電極、103,114…n型半導体層、104,115,118…i型
半導体層、105,116,119…p型半導体層、106…透明電
極、107…集電電極。 第2図、第3図、第4図について、 201,301,401…成膜室、202,302,402…基板保持用カセッ
ト、203,303,403…基板、204,304,404…熱電対、205,30
5,405…ヒーター、206,306,406…基板搬送治具、207,30
7,407…ゲートバルブ、308,408,409…ガス導入管、208,
209,210…活性化室、211,212,213…励起エネルギー発生
装置、214,215,216…ガス供給パイプ、212,313,413…ロ
ードロック室、217,218,219…搬送管、220,314,414…バ
ルブ、221,315,415…排気ポンプ、222,316,416…他の成
膜室、223,309,417…圧力計、310,410…高周波電源、31
1,411…マッチング回路、312,412…カソード電極、317
…ターゲット。
FIGS. 1A and 1B are schematic cross-sectional views of a typical example of a layer configuration of a photovoltaic device of the present invention. Fig. 1 (C)
FIG. 1 is a schematic sectional view of a layer structure of a stacked photovoltaic device of the present invention. FIG. 2 is a schematic diagram of an example of a deposited film forming apparatus for performing the HRCVD method of the present invention. FIG. 3 is a schematic diagram of an example of a deposited film forming apparatus for performing the reactive sputtering method of the present invention. FIG. 4 is a schematic diagram of an example of a deposited film forming apparatus for performing the plasma CVD method of the present invention. 1, 100, 111, 112, 113 ... photovoltaic element, 101 ... support, 102 ...
Lower electrode, 103, 114 ... n-type semiconductor layer, 104, 115, 118 ... i-type semiconductor layer, 105, 116, 119 ... p-type semiconductor layer, 106 ... transparent electrode, 107 ... current collecting electrode. 2, 3, and 4, 201, 301, 401: film forming chamber, 202, 302, 402: substrate holding cassette, 203, 303, 403: substrate, 204, 304, 404: thermocouple, 205, 30
5,405: heater, 206, 306, 406: substrate transfer jig, 207, 30
7,407… Gate valve, 308,408,409… Gas inlet pipe, 208,
209,210: activation chamber, 211, 212, 213: excitation energy generator, 214, 215, 216: gas supply pipe, 212, 313, 413: load lock chamber, 217, 218, 219: transport pipe, 220, 314, 414: valve, 221, 315, 415: exhaust pump, 222, 316, 416: other film formation chamber, 223, 309, 417: pressure Total, 310,410… High frequency power supply, 31
1,411 matching circuit, 312,412 cathode electrode, 317
…target.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 総一郎 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭56−116673(JP,A) 特開 昭55−151374(JP,A) 特開 昭55−124272(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Soichiro Kawakami 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-56-11667 (JP, A) -151374 (JP, A) JP-A-55-124272 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 31/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】p型半導体層とi型半導体層とn型半導体
層との接合構造を有する光起電力素子であって、前記半
導体層のうち少なくとも前記p型半導体層又は前記n型
半導体層のいずれか一方が水素原子及び/又はフッ素原
子と、p型又はn型の価電子制御原子とを含む平均結晶
粒径が50乃至800Åである多結晶BP薄膜であり、前記水
素原子の含有量が0.5乃至7atomic%であり、且つ前記i
型半導体層が水素原子及び/又はフッ素原子を含む非単
結晶シリコン半導体で構成されていることを特徴とする
光起電力素子。
1. A photovoltaic device having a junction structure of a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, wherein at least the p-type semiconductor layer or the n-type semiconductor layer of the semiconductor layers is provided. Is a polycrystalline BP thin film having an average crystal grain size of 50 to 800 ° containing a hydrogen atom and / or a fluorine atom and a p-type or n-type valence electron controlling atom, and the content of the hydrogen atom Is 0.5 to 7 atomic%, and
A photovoltaic element, wherein the type semiconductor layer is made of a non-single-crystal silicon semiconductor containing hydrogen atoms and / or fluorine atoms.
【請求項2】p型半導体層とi型半導体層とn型半導体
層との接合構造を有する光起電力素子であって、前記半
導体層のうち少なくとも前記p型半導体層又は前記n型
半導体層のいずれか一方が水素原子及び/又はフッ素原
子と、p型又はn型の価電子制御原子とを含む平結晶粒
径が50乃至800Åである多結晶BP薄膜であり、前記水素
原子の含有量が0.5乃至7atomic%であり、且つ前記i型
半導体層がゲルマニウム原子及び/又は炭素原子と、水
素原子及び/又はフッ素原子とを含む非単結晶シリコン
合金系半導体で構成されていることを特徴とする光起電
力素子。
2. A photovoltaic device having a junction structure of a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, wherein at least the p-type semiconductor layer or the n-type semiconductor layer of the semiconductor layers is provided. Is a polycrystalline BP thin film having a flat crystal grain size of 50 to 800 ° containing a hydrogen atom and / or a fluorine atom and a p-type or n-type valence electron controlling atom, and the content of the hydrogen atom Is 0.5 to 7 atomic%, and the i-type semiconductor layer is made of a non-single-crystal silicon alloy-based semiconductor containing germanium atoms and / or carbon atoms, and hydrogen atoms and / or fluorine atoms. Photovoltaic element.
【請求項3】前記p型半導体層又は前記n型半導体層の
うち少なくともいずれか一方が3atomic%以下のフッ素
原子を含有する請求項1又は2に記載の光起電力素子。
3. The photovoltaic device according to claim 1, wherein at least one of the p-type semiconductor layer and the n-type semiconductor layer contains 3 atomic% or less of fluorine atoms.
JP2003432A 1989-01-21 1990-01-12 Photovoltaic element Expired - Fee Related JP2829656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/467,537 US5007971A (en) 1989-01-21 1990-01-19 Pin heterojunction photovoltaic elements with polycrystal BP(H,F) semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1250989 1989-01-21
JP1-12509 1989-01-21

Publications (2)

Publication Number Publication Date
JPH02275679A JPH02275679A (en) 1990-11-09
JP2829656B2 true JP2829656B2 (en) 1998-11-25

Family

ID=11807316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432A Expired - Fee Related JP2829656B2 (en) 1989-01-21 1990-01-12 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP2829656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847985B (en) * 2017-03-31 2018-05-25 东南大学 Hetero-junctions exciton solar cell and preparation method

Also Published As

Publication number Publication date
JPH02275679A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JP2829653B2 (en) Photovoltaic element
US4959106A (en) Photovoltaic element with a semiconductor layer comprising non-single crystal material containing at least ZN, SE and H in an amount of 1 to 4 atomic %
KR100251070B1 (en) Photovoltaic device
US5006180A (en) Pin heterojunction photovoltaic elements with polycrystal GaP (H,F) semiconductor film
JP2951146B2 (en) Photovoltaic devices
US5007971A (en) Pin heterojunction photovoltaic elements with polycrystal BP(H,F) semiconductor film
US4888062A (en) Pin junction photovoltaic element having I-type semiconductor layer comprising non-single crystal material containing at least Zn, Se and H in an amount of 1 to 4 atomic %
US5002618A (en) Pin heterojunction photovoltaic elements with polycrystal BAs(H,F) semiconductor film
JP2003017724A (en) Photovoltaic element
US5002617A (en) Pin heterojunction photovoltaic elements with polycrystal AlAs(H,F) semiconductor film
US4926229A (en) Pin junction photovoltaic element with P or N-type semiconductor layer comprising non-single crystal material containing Zn, Se, H in an amount of 1 to 4 atomic % and a dopant and I-type semiconductor layer comprising non-single crystal Si(H,F) material
JP2962897B2 (en) Photovoltaic element
US5008726A (en) PIN junction photovoltaic element containing Zn, Se, Te, H in an amount of 1 to 4 atomic %
JPH10178195A (en) Photovoltaic element
JP2733176B2 (en) Photovoltaic element and power generation device using the same
JP2829656B2 (en) Photovoltaic element
JPH11261087A (en) Photovoltaic element
JP2829655B2 (en) Photovoltaic element
JP2829654B2 (en) Photovoltaic element
JP2845383B2 (en) Photovoltaic element
JP2744269B2 (en) Photovoltaic element
JP2744270B2 (en) Photovoltaic element
JP2895213B2 (en) Photovoltaic element
JP2757896B2 (en) Photovoltaic device
JP2003258286A (en) Thin film solar battery and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees